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The Physics of Carbon 14

Last time, we saw that in certain circumstances, astronomical, archaeological and
historical data can combine to yield powerful constraints on when certain events hap-
pened. However, these situations are very rare, and for more down-to-earth objects
and events, age measurements must be made in some other way. Carbon-14 is one of
the most famous and powerful methods for dating objects from human history and
pre-history. Carbon-14 dating is also a good example of radiometric dating methods
that we will encounter throughout these lectures. Therefore, we have two lectures
dedicated to the subject. This lecture focuses on the physics and the principles be-
hind Carbon-14 dating, while the next lecture will discuss what happens when this
method is used in practice.

1 The General Idea

Carbon-14 dating was developed in the late 1940’s by Willard F. Libby here at the
University of Chicago (He won the Nobel Prize for this work in 1960). The basic con-
cept is illustrated in figure 1. Carbon-14 is a heavy, unstable form of carbon, which
decays (transforms into nitrogen) on a timescale of thousands of years. Carbon-14 is
constantly being produced by cosmic rays colliding with air molecules in the atmo-
sphere. From there, it enters the carbon cycle, where it absorbed into the tissues of
living creatures. Since living creatures constantly exchange carbon with the atmo-
sphere (animals exhale carbon dioxide into the atmosphere and plants absorb carbon
dioxide from the atmosphere via photosynthesis) they have about the same fraction
of carbon in the form of Carbon-14 in their bodies as the atmosphere does.

After the organism dies, it no longer exchanges carbon with the atmosphere. Thus
the unstable Carbon-14 in the material decays while no new carbon is absorbed to
replace it. Therefore, the less Carbon-14 the material contains the older it is

2 Nuclear clocks

Carbon-14 dating is the most famous from of radiometric dating. All radiometric
dating methods use the transformation/decay of the nuclei of particular atoms to
measure age. As we will encounter several other radiometric methods in the course of
these lectures, we will spend some time here covering the basic principles of nuclear
decay.

2.1 Definitions

The nucleus is the tiny core of an atom, where the positively charged protons and
the neutral neutrons are found, and where most of the mass of the atom resides.
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Figure 1: A summary of how Carbon-14 dating works, drawing from Radiocarbon Dating by Taylor.



Negatively charged electrons exist in a relatively dispersed cloud surrounding this
nucleus. The number of electrons (usually) equals the number of protons and deter-
mines how the atom interacts with other atoms. Atoms with the same numbers of
protons therefore have the same chemistry and are identified as the same element.
Atoms with the same number of protons can differ in how many neutrons they con-
tain. Since neutrons are neutral, they do not affect the chemistry of the atom but
they do affect its mass. Atoms with the same number of protons but different num-
bers of neutrons are called different isotopes of the same element. For example, most
carbon has 6 protons and 6 neutrons and is stable, while Carbon-14 is an isotope with
6 protons and 8 neutrons (the number 14 in the name refers to the total number of
protons and neutrons in the nucleus) and is unstable.

2.2 FE = mc? and the Nucleus

The forces holding the protons and neutrons together in the nucleus are rather curious.
These forces must be strong enough to hold the positively charged protons together
(remember, like charges repel). However, these forces must also operate only over a
very short range, because they do not affect the interactions between atoms. The
details of how these forces operate are very complicated and tricky to calculate.
Fortunately, we can understand a lot about nuclear stability and decay without going
into these details.

The famous equation E = mc? provides a good starting point. The factor of ¢? in
this equation is just a constant number, so the critical part of this equation is that it
identifies the mass m of an object with an energy FE.

To understand the importance of this statement, realize what mass and energy
mean in physics. Mass is a quantity intrinsic to an object that determines how it
responds to forces. Give the same push, an object with less mass will move away
more quickly than an object with more mass.

Energy, on the other hand is not necessarily intrinsic to an object. Energy can
change form and can be transfered from one system to another. The central feature
of energy is that it is conserved, which means it can neither be created nor destroyed,
indeed, this is the basis of the definition of energy in physics. One, obvious form
of energy is kinetic energy, or the energy of motion (the faster something moves the
more kinetic energy it has). Since energy can change form, all other forms of energy
can be interpreted as the potential to create motion in objects.

E = mc? states that an object with a certain mass must also have a certain
energy (independent of any energy it has due to motion, etc.). This fact allows us
to determine whether a nucleus is stable or not by comparing its mass to the mass
of its component parts. For example, an ordinary carbon nucleus has 6 protons and
6 neutrons. However, the mass of the nucleus is about 1% smaller than the total
mass of the 12 individual particles. The nucleus therefore has less energy than its
component parts, and we would have to supply energy to the nucleus in order to pull
it apart. The nucleus therefore cannot change into 12 isolated particles. on its own.
On the other hand, if the nucleus could change in some way that the material left
over after the transformation had less mass than the original nucleus, then no energy
needs to be supplied to the system, and the nucleus could transform on its own.
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Figure 2: The three types of nuclear decay. On the left, we have nuclei, made up of protons (red/gray
circles) and neutrons (black circles). These nuclei decay in different ways. At top we have alpha-
decay, where the nucleus breaks into two pieces. In the middle we have beta-decay, where a neutron
turns into a proton and emits an electron and a neutrino. At the bottom we have gamma decay,
where the nucleus emits a photon. Carbon-14 undergoes beta-decay.

In practice, there are only three ways a nucleus can possibly change, (other trans-
formations are not allowed because of various rules, such as that the total number of
protons+neutrons cannot change) these are illustrated in figure 2 and are:

e Alpha-decay, where the nucleus splits into two parts (one part consisting of
two protons and two neutrons).

e Beta decay, where a neutron in the nucleus converts into a proton, emitting an
electron and a neutrino (various permutations on this process are also possible).

e Gamma decay, where the nucleus emits a photon.

Carbon-14 can decay because one of the above transformations results in a reduc-
tion in mass. A Carbon-14 nucleus contains 6 protons and 8 neutrons. The common
isotope of nitrogen has 7 protons and 7 neutrons. Carbon-14 can therefore transform
into nitrogen through a beta decay. Furthermore, nitrogen is slightly less massive
than Carbon-14 (by about one part in 100,000), so no energy needs to be supplied
to the nucleus for the transformation to happen. Therefore, Carbon-14 can and does
decay into nitrogen spontaneously.

2.3 The Uncertain timing of a Half Life

What makes the decay of Carbon-14 and other unstable nuclei useful for measuring
age is that these transformations have a characteristic timescale, known as the half
life, which for Carbon-14 is about 5700 years. Say we have a sample of pure Carbon-
14. After 5700 years (one half-life), half of the Carbon 14 atoms will have decayed
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Figure 3: Half-life. Here we plot the fraction of undecayed material as a function of time, measured
in units of half-life. After one half-life, half of the material has decayed. After another half-life, half
of the remaining half has decayed, leaving one-quarter behind, and so on.

into nitrogen. After another 5700 years, half of the remaining half will have decayed,
and so on and so forth. This simple and regular behavior, illustrated in figure 3 is
clearly useful. However, this simplicity also hides a fundamental strangeness.

Consider a single atom of Carbon 14, it has a 1 in 2 chance of decaying into
nitrogen in the next 5700 years. If it lasts that long, then it has a 1 in 2 chance
of decaying in the following 5700 years, and so on. This means a Carbon-14 atom
which has managed to survive for thousands of years and a Carbon-14 atom created
yesterday are equally likely to decay in the next 5700 years. Therefore, the time at
which any given atom of Carbon 14 decays is in some sense unpredictable.

What makes this unpredictability particularly odd is that the probability of an
atom decaying has a half-life. To better understand why this is so strange, consider
a more down-to-earth example of a system with a “half life”, illustrated in figure 4.
Imagine we have a chamber filled with water, which has a narrow nozzle at the bottom.
The total weight of water in the chamber pushes water through the nozzle, causing
water to spew out of it at a fast rate. As the level of water in the chamber falls, there
is less pressure on material in the nozzle, and the flow of water out of the tank slows.

Say the chamber starts out filled with one liter of water, and after one second half
a liter of water has leaked out of the chamber through the nozzle. The chamber is
therefore half full after one second. Since the amount of water in the chamber has
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Figure 4: A system in classical physics with a half-life. This series of images shows a tank of water
at a series an a series of equally spaced times. Water in the tank is pushed out through a nozzle by
the weight of material in the tank. Initially, the flow rate is high, but as the amount of material in
the tank drops, the flow slows. The images show the amount of water left in the tank has a half-life
(compare with figure 3)

been cut in half, the pressure forcing water through the nozzle is cut in half, and so
the leak rate is also be half what it was when the chamber was full. Thus the amount
of water leaving the chamber in the next second is half that of the previous second,
that is 1/4 of a liter. This leaves 1/4 of a liter in the chamber, or half the volume
that was present in the previous second. As this process continues, the amount of
water in the chamber is cut is half every second. The volume of water in the chamber
therefore has a “half life” of one second.

It is not to hard to think up other systems that have “half life”-like behavior.
All you need is a system where how fast a parameter changes is proportional to the
parameter itself (in the above example, the rate at which water leaks out of the tank
is proportional to the amount and of water in the tank). However, it is difficult to
imagine a Carbon-14 nucleus behaving this way. A nucleus can be in only one of
two states, either the nucleus has decayed or it has not decayed (it is either still
Carbon 14 or it is nitrogen). There is no such thing as a partially decayed nucleus.
We therefore cannot imagine the Carbon-14 gradually transforming into Nitrogen
like the water gradually leaks out of the container. The transformation happens
all at once, producing a “click” on a Geiger counter. However, it does appear that
the probability that the decay happens behaves like the water flowing out of the
container. This is great example of the weirdness of quantum mechanics.
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Figure 5: The usual procedure for quantum mechanical problems. A similar procedure can be used
to calculate how probable it is for a Carbon-14 nucleus to have decayed after a fixed amount of time.

Quantum mechanics has a reputation for being a weird theory, but really it is a
perfectly reasonable way to solve many physics problems. For example, say we have a
particle at some position at some initial time, and we want to know where it will be 10
seconds later. Quantum mechanics tells us exactly how to solve this problem. First,
based on the initial position, momentum etc. of the particle, we calculate something
called a wavefunction. The wavefunction describes the probability the particle is
at any given point. We have equations that tell us exactly how this wavefunction
changes at time, so we can calculate what the wavefunction is after 10 seconds. This
final wavefunction then gives us the probability that the particle is found at any given
position (or moving in any given direction, etc.) Although we may not like that this
method gives us probabilities and not a unique answer, following this procedure yield
results that match experiments, so it is a perfectly good physical theory. (By analogy,
we may not like Newton’s laws, but that doesn’t stop us from accepting and using
them.)

In a similar way, quantum physics calculations can tell us the probability the an
atom of Carbon 14 will decay in 1 year, 100 years, 1000 years or a million years. The
way the relevant wavefunction changes with time gives rise to the observed half-life.
Again, the procedure poses no real problems.

Now say instead of just coming back at a specific time and seeing if the nucleus has



decayed, we actually hang around watch the nucleus. At some time, the thing decays
and causes a “click” on a Geiger counter. Obviously, something different happens at
this time, since from then on, we know for sure the nucleus has decayed. But what
exactly happened is not at all clear. Somehow, the steady, predictable evolution
in the wavefunction collapses into some discrete event. The probability that this
transition occurs is controlled by the wavefunction, but it happens at different times
for different nuclei. Physicists still have trouble understanding exactly how and why
this transition occurs. Indeed, this transition is responsible for most, if not all of the
apparent “weirdness” of quantum mechanics (such as Schrodinger’s infamous Cat)
. We cannot get into the details of these paradoxes here (they could form an entire
lecture series in and of themselves), since we have to get back to the practical question
of how to use Carbon-14 as a clock.

3 Measuring Age with Carbon-14

In addition to the half-life of Carbon-14, we need two pieces of information to calculate
the age of some object: (1) How much Carbon-14 the object had to start with, and (2)
How much Carbon-14 the object has now. Given these two numbers, we can calculate
what fraction of the original Carbon-14 is left in the object. Then it is straightforward
to determine how old the object is. For example, say an object originally contained
2 grams of Carbon-14 and now contains only 1 gram. The fraction of the original
Carbon-14 remaining in the object is then 1/2, so the object is one half-life, or about
5700 years, old.

In practice, the quantity that is measured is not the total amount of Carbon-14 in
the object, since that depends on the size of the sample. What is instead measured
is the fraction of carbon atoms in the object that are Carbon-14. Thus, we need to
know the original and current Carbon-14 fractions to calculate the age of the object.

3.1 How much Carbon-14 was in the object originally?

Without a time machine, one cannot directly measure the original Carbon-14 content
of an object. However, based on how Carbon-14 is produced and absorbed into
objects, it is reasonable to suggest that all living things had roughly the same fraction
of their carbon atoms in the form of Carbon-14.

Until quite recently, most of Carbon-14 on earth was originally created by cosmic
rays (since 1950, the Carbon-14 generated by nuclear weapons testing must be taken
into account, but this need not concern us here). Cosmic rays are bare atomic nuclei
(i.e. atoms without electrons) that fly through the universe at extremely high speeds,
many approaching the speed of light.

The source of cosmic rays is still somewhat uncertain. Most of them certainly
come from outside our solar system, however, it is difficult to be more specific than
this. The problem is that the cosmic ray nuclei are charged particles, and there are
magnetic fields in space. Just as an electro-magnet can be made by running a current
through a coil of wire, moving charged particles (like electrons in a wire) are deflected
as they move through magnetic fields (see Figure 6). Therefore, cosmic ray nuclei
do not move on straight lines, but instead take complicated twisting paths between
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Figure 6: When a charged particle like a nucleus passes through a magnetic field, it is deflected.
Magnetic fields in the galaxy similarly cause cosmic rays to move in complicated curving paths
through space.

their source and earth, which makes it very difficult to reconstruct exactly where they
originally came from.

When these particles do reach earth, they collide with atoms in our atmosphere.
During these collisions, the huge kinetic energy of the cosmic ray is more than enough
to break both colliding nuclei into their component parts. This energy is even suf-
ficient to generate exotic subatomic particles. If the cosmic rays are traveling fast
enough, the debris from this collision can contain enough kinetic energy to produce
additional violent collisions, producing a shower of nuclei and subatomic particles.

Of particular interest here is that the debris of these collisions includes free neu-
trons. These neutrons rattle around in the atmosphere for a while and eventually
they usually get stuck in the nucleus of a nitrogen atom (remember, our atmosphere
is mostly composed of nitrogen). This happens relatively easily since the neutron
does not have a charge, so it can get close to a nucleus without any trouble (unlike a
proton, which would be repelled by the nucleus’ positive charge). After capturing the
neutron, the resulting nucleus has seven neutrons and eight neutrons. This petrubed
nucleus is extremely unstable and quickly spews out the proton, leaving behind an
atom of Carbon-14. (Note that the time between the absorption of the neutron and
the expulsion of the proton is very short, this is therefore understand as a nuclear
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Figure 7: Libby’s original “curve of knowns”, which shows that older objects have less Carbon-14
activity, as expected.(Taken from Libby’s Nobel Prize Lecture in 1960).

reaction, not a nuclear decay).

This Carbon-14 atom attaches itself to some oxygen atoms to form carbon dioxide.
It then enters the carbon cycle, where it absorbed into the tissues of living creatures.
Since chemically Carbon-14 behaves like any other isotope of carbon, the fraction of
carbon that is Carbon-14 in any organism should equal the fraction of carbon that is
Carbon-14 in the atmosphere when the organism was alive.

Assuming the cosmic-ray flux on earth has been constant, we expect that all living
things will have the same fraction of their carbon in the form of Carbon-14. This
assumption is not unreasonable, but we still want to check that it is true. This will
be the subject of the next lecture.

3.2 How much Carbon-14 is there in the object today?

In principle the present Carbon-14 content of an object is a straightforward measure-
ment. However, the amount of Carbon-14 in living organisms is very small. There
is only one part Carbon-14 for a trillion parts carbon. The measurement is therefore
quite challenging.

The basic goal is to measure the fraction of carbon in the object that is Carbon-14.

10
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Figure 8: The basic idea of mass spectrometry. Ions generated from the sample are accelerated by
being attracted to a charge plate. A hole in this plate lets the ions through to a magnet. This
magnet deflects the ions, but more massive ions are deflected less, so the different mass ions can be
isolated.

The carbon can be extracted from the material using a variety of chemical techniques.
Isolating the Carbon-14, however, is a different matter. Carbon-14 has nearly the
same chemical properties as the other carbon isotopes, so it cannot be easily isolated
by chemical means. The measurement of the Carbon-14 fraction therefore must rely
on the unique physical properties of this isotope: its larger mass and its radioactivity.

The original method of measuring the Carbon-14 fraction used by Libby relied on
the radioactivity of these unstable nuclei. Each time an atom of Carbon-14 decays, it
emits an electron, which can be detected with a Geiger counter. With this method,
he was able to measure the current Carbon-14 content of a variety of objects of known
age, as shown in figure 7. These data demonstrated that the Carbon-14 fraction in
objects did in fact decrease with the age of the object, verifying that the original
Carbon-14 content of living things was roughly constant in time.

The primary limitation to this method is that Carbon-14 decays very slowly. In
one year, only 0.01% of the Carbon-14 atoms in a sample decays. So if we needed
1000 decays to estimate how much Carbon-14 is in the sample, and we were willing
to wait a year to get the number, we would need 10 million Carbon-14 atoms in the
sample. This method is therefore rather inefficient, and requires relatively large (1
gram) amounts of carbon to work.

Nowadays, small samples of material can be dated using mass spectrometry,
which uses electric and magnetic fields to sort atoms by mass (see figure 8). First,
individual atoms are released from the sample and ionized by adding or removing
electrons from each atom. These atoms have a net charge, so they are attracted
toward metal plates with an opposite charge. The atoms move faster and faster as
they approach the metal plates. A hole in the plates lets the atoms go through to the
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other side. They then enter an electromagnet. Just like cosmic rays are deflected by
interstellar magnetic fields, this magnet exerts forces on the atoms. The mass of the
atom then determines how much the atom responds to these forces. Therefore atoms
with different masses take different trajectories through the magnetic fields. These
atoms can then be isolated and counted separately.

Since the Carbon-14 fraction is extremely small, a special form of mass spectrome-
try is required, called an accelerator mass spectrometry or AMS. This technique
uses multiple stages of acceleration and ionization, as well as several magnets to
cleanly separate the Carbon-14 from all other possible atoms and molecules. This
means the spectrometers used for Carbon-14 measurements are large beasts that ex-
ist only in specialized facilities.

The big advantage of AMS Carbon-14 dating is that all Carbon-14 atoms in a
sample are counted, not just the ones that happen to decay. This method can be
used with sample sizes as small as one 1 milligram. This means that many objects
can be Carbon-14 dated without doing too much damage, and that even objects with
small amounts of carbon (like steel tools) can potentially be dated with Carbon-14.

Carbon-14 is indeed a powerful tool for measuring the age of things, largely because
it is based on a rather straightforward physics. However, as we will see in the next
lecture, to obtain accurate age measurements from Carbon-14, we cannot rely on
physics alone. Biology, archaeology and geology must be taken into consideration.

4 References

For a general overview of Carbon-14 dating, including a short history of Libby’s work,
see
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