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a b s t r a c t 

Saturn’s B ring is the most opaque ring in our Solar System, but many of its fundamental parameters, 

including its total mass, are not well constrained. Spiral density waves generated by mean-motion res- 

onances with Saturn’s m oons provide some of the best constraints on the rings’ mass density, but de- 

tecting and quantifying such waves in the B ring has been challenging because of this ring’s high opacity 

and abundant fine-scale structure. Using a wavelet-based analyses of 17 occultations of the star γ Crucis 

observed by the Visual and Infrared Mapping Spectrometer (VIMS) onboard the Cassini spacecraft, we 

are able to examine five density waves in the B ring. Two of these waves are generated by the Janus 

2:1 and Mimas 5:2 Inner Lindblad Resonances at 96,427 km and 101,311 km from Saturn’s center, respec- 

tively. Both of these waves can be detected in individual occultation profiles, but the multi-profile wavelet 

analysis reveals unexpected variations in the pattern speed of the Janus 2:1 wave that might arise from 

the periodic changes in Janus’ orbit. The other three wave signatures are associated with the Janus 3:2, 

Enceladus 3:1 and Pandora 3:2 Inner Lindblad Resonances at 115,959 km, 115,207 km and 108,546 km. 

These waves are not visible in individual profiles, but structures with the correct pattern speeds can be 

detected in appropriately phase-corrected average wavelets. Estimates of the ring’s surface mass density 

derived from these five waves fall between 40 and 140 g/cm 

2 , even though the ring’s optical depth in 

these regions ranges from ∼1.5 to almost 5. This suggests that the total mass of the B ring is most likely 

between one-third and two-thirds the mass of Saturn’s m oon Mimas. 

© 2016 The Authors. Published by Elsevier Inc. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ). 
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. Introduction 

The B ring is the brightest, most opaque and probably the most

assive of Saturn’s rings. It is also among the least well under-

tood, with even basic parameters like its maximum optical depth

nd its total mass being poorly constrained. Indeed, estimates of

he B-ring’s mass range from around 1 × 10 19 kg ( Cooper et al.,

985 ) to over 7 × 10 19 kg ( Robbins et al., 2010 ). The large uncer-

ainties in the B-ring’s mass and its typical surface mass density

ot only hamper effort s to underst and the structure and dynam-

cs of this ring, but also complicate effort s to ascertain the age and

istory of Saturn’s ring system ( Charnoz et al., 2009 ). 

One reason why the B-ring’s mass is so poorly constrained is

hat very few spiral density or bending waves have been identified
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n this ring. These spiral patterns provide the most reliable esti-

ates of a ring’s mass density, thanks to a very mature theoretical

odel that describes their formation and propagation ( Shu et al.,

984 ). Indeed, analyses of various density waves have yielded nu-

erous mass density estimates of the A ring ( Tiscareno et al., 2007,

013 ), Cassini Division ( Colwell et al., 2009a ) and C Ring ( Baillié

t al., 2011; Hedman and Nicholson, 2014 ). However, thus far there

ave only been two waves that have yielded sensible mass density

stimates for the B ring. The most prominent wave in the B ring

s the one generated by the Janus 2:1 resonance, which lies in the

east opaque, innermost part of the B ring. Analyses of Voyager oc-

ultation data yielded mass density estimates of around 70 g/cm 

2 

or this region ( Holberg et al., 1982; Esposito et al., 1983 ). On the

pposite end of the B ring, Lissauer (1985) identified a bending

ave due to the 4:2 vertical resonance with Mimas in the Voyager

maging data. Bending waves can be analyzed much like density

aves, allowing Lissauer (1985) to estimate a local surface mass

ensity of 54 ± 10 g/cm 

2 . More recently, analyses of normal modes
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Fig. 1. Overview of the B ring. The profile shows the normal optical depth of Saturn’s B ring as a function of ring radius derived from an occultation of the star γ Crucis 

on Cassini Orbit (“Rev”) 089 observed by the VIMS instrument. The background shading indicates the five distinct zones in the B ring ( Colwell et al., 2009b ), and the dashed 

lines mark the locations of mean motion resonances discussed in the text. 
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on the B-ring’s outer edge have found generally comparable mass

densities in this region ( Spitale and Porco, 2010; Nicholson et al.,

2014 ). 

The few existing measurements provide very limited informa-

tion about the B-ring’s surface mass density because they only

sample two locations in a very complex ring. As shown in Fig. 1 ,

the B-ring can be divided into five broad regions with very dif-

ferent optical depths ( Colwell et al., 2009b ). The Janus 2:1 wave

occupies the less opaque BI region, while the Mimas 4:2 wave is

found in the BV region, where the ring’s structure is highly vari-

able due to its proximity to the highly non-circular outer edge at

117,500 km. To date, no-one has reported mass density estimates

for the central BII, BIII and BIV regions, which include the most

opaque parts of Saturn’s rings. However, there are several strong

satellite resonances in these regions that could generate relatively

intense density waves. One is the Mimas 5:2 resonance, which is

found in the BII region, where the optical depth appears to switch

between values around 2 and near opaque. This wave has been

identified in occultation profiles ( Bratcher and Colwell, 2013 ), but a

mass density has not yet been published based on this feature. In

the BIV region, there should be strong resonances with Janus (3:2)

and Enceladus (3:1), but neither of these has been identified in

the observational data because this part of the B ring contains in-

tense fine-scale stochastic optical depth variations that obscure any

organized structure from a density wave. Finally, the Prometheus

3:2 and Pandora 3:2 resonances lie in BIII, the nearly-opaque core

of the ring, and so high-resolution occultations, which measure

the amount of light transmitted through the rings, have very low

signal-to-noise. 

Here we investigate all six of these Lindblad resonances in the B

ring using a new wavelet-based technique that combines data from

multiple occultations in order to identify weak coherent signals

due to waves that are not obvious in single measurements. These

methods reveal potential wave signatures from the Janus 3:2, Ence-

ladus 3:1 and Pandora 3:2 resonances (but not the Prometheus

3:2 resonance). Together with the Janus 2:1 and Mimas 5:2 den-
ity waves and the Mimas 4:2 bending wave, these wave features

rovide mass density estimates spanning a wide range of optical

epths, and thus provide a much clearer picture of the B-ring’s

otal mass. Our measurements indicate that regions with optical

epths ranging between 1 and 5 all have mass densities less than

50 g/cm 

2 . This is consistent with recent investigations of other

arts of Saturn’s rings, which demonstrate that large variations in

he ring’s optical depth are often not associated with comparable

ariations in its surface mass density ( Colwell et al., 2009a; Baillié

t al., 2011; Tiscareno et al., 2013; Hedman and Nicholson, 2014 ).

t the same time, these B-ring mass densities are well below the

alues that have been considered in some recent studies of the

ings’ opacity, history and spectral properties ( Robbins et al., 2010;

harnoz et al., 2011; Hedman et al., 2013 ) but may be consistent

ith estimates based on the rings’ charged particle emissions and

hermal properties ( Cooper et al., 1985; Reffet, et al., 2015 ). 

Section 2 briefly reviews the relevant aspects of density wave

heory, while Section 3 provides information about the occultation

ata used for this investigation. Section 4 describes the wavelet-

ased techniques we have developed to isolate and quantify the

ave signals associated with particular resonances. Section 5 dis-

usses the potential wave signatures associated with each of the

-ring Lindblad resonances, and the surface mass densities implied

y these features. Section 6 discusses the implications of these new

stimates. 

. Theoretical background 

Spiral density wave patterns are generated in the rings near

indblad resonances with periodic gravitational perturbations from

ither Saturn’s various m oons or asymmetries in the planet’s in-

ernal structure. At these locations, the periodic perturbations in-

uce organized radial epicyclic motions in the ring-particles’ or-

ital motions, which in turn generate a spiral wave pattern in the

ing’s optical depth that propagates through the rings. A good re-

iew of the detailed theory behind these structures is provided by
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l  
hu et al. (1984) , and we summarize some of the key aspects of

hese calculations here for the sake of clarity and to introduce the

otation used in this paper. 

A generic ( m + � ):( m − 1 ) inner Lindblad resonance with a satel-

ite occurs when the ring-particles’ radial epicyclic frequency κ
s an integer multiple of the difference between the frequency of

ome periodic perturbing force �p and the particles’ mean motion

 : 

 (n − �p ) = κ (1) 

n a differentially-rotating disk with finite mass density, these per-

urbations organize the motions of the ring particles, generating a

attern consisting of m spiral arms that rotates around the planet

t the rate �p . So long as the fractional optical depth variations

τ / τ are sufficiently small, they should be described by the fol-

owing function of ring radius r , inertial longitude λ and time t : 

δτ

τ
= A (r) cos [ φr (r) + φλt (λ, t) ] , (2) 

here A ( r ) is a radius-dependent amplitude of the density varia-

ions, while φr and φλt are phase parameters. Note that φr de-

ends only on the ring radius, and φλt depends on a combination

f the observed longitude and observation time. Note that φr gov-

rns the overall trends in the pattern’s wavelength that are com-

on to all the occultation profiles, while φλt affects the exact po-

itions of the wavecrests within each occultation. 

Since the pattern created by the resonance consists of m spiral

rms rotating around the planet at the rate �p , the longitude/time-

ependent part of the pattern’s phase φλt can be written as: 

λt (λ, t) = | m | [ λ − �p (t − t 0 )] (3) 

here λ and t are the observed inertial longitude and time, and

 0 is a reference epoch time, which for this analysis corresponds

o 20 08-20 0T0 0:0 0:0 0 UTC (a time near the middle of the interval

panned by the occultations used in this analysis). For a first-order

 � = 0 ) Lindblad resonance, �p equals the mean motion of the rele-

ant satellite, but for higher-order resonances the pattern speed is

 more complex function of the satellite’s orbital parameters. For

ll Lindblad Resonances, Eq. (1) can be used to express the pattern

peed in terms of the orbital properties of the ring material: 

p = n (r L ) − 1 

m 

κ(r L ) = 

(m − 1) 

m 

n ( r L ) + 

1 

m 

˙ 
 ( r L ) (4) 

here n ( r L ), κ( r L ) and ˙ 
 (r L ) are the orbital mean motion, radial

picyclic frequency and apsidal precession rate at the radial loca-

ion of the exact resonance r L . 

Meanwhile, the radius-dependent part of the phase φr can be

erived from the density-wave’s dispersion equation and the re-

ulting radius-dependent radial wavenumber of the pattern k ( r ).

or sufficiently weak waves at sufficiently large distances from the

esonance, the perturbations from the density wave should cause

he ring’s surface mass density to oscillate quasi-sinusoidally as a

unction of radius with a wavenumber k ( r ) given by the following

xpression: 

 (r) = 

dφr 

dr 
= 

3(m − 1) M P (r − r L ) 

2 πσ0 r 
4 
L 

, (5) 

here r L is the radial location of the exact resonance, M P is the

ass of the central planet (Saturn in this case) and σ 0 is the

ndisturbed surface mass density of the rings. The explicit depen-

ence on σ 0 is why measurements of the wave’s radial wavenum-

er at a specified distance from the resonance provide estimates

f the rings’ local surface mass density. Integrating this expres-

ion (and assuming a constant mass density), we find that the

adius-dependent part of the phase should be given by the follow-

ng asymptotic expression: 
r (r) = 

3(m − 1) M P (r − r L ) 
2 

4 πσ0 r 
4 
L 

+ φ0 , (6) 

here φ0 is a constant phase offset. 

. Observational data 

This analysis uses stellar occultation data obtained by the Vi-

ual and Infrared Mapping Spectrometer (VIMS) instrument on-

oard the Cassini spacecraft ( Brown et al., 2004 ). During these ob-

ervations the instrument measures the brightness of a selected

tar repeatedly as it passes behind the rings. While VIMS measures

he brightness of the star at multiple wavelengths, for this analy-

is we use only data obtained at wavelengths around 3 microns,

here the ring is especially dark. Each of these brightness mea-

urements is tagged with a precise time stamp, which (together

ith the relevant spacecraft trajectory information stored in the

AIF SPICE kernels; Acton (1996) ) allows us to compute the radius

nd inertial longitude where the starlight passed through the rings.

ased on the positions of sharp edges elsewhere in the rings, we

an confirm that these calculations are accurate to within one kilo-

eter. Global fits to the ring geometry provide small corrections

o the spacecraft’s trajectory that improve this accuracy to within

 few hundred meters ( French et al., 2011 ). 

This particular investigation examines 17 occultations of the

tar γ Crucis obtained in 2008, corresponding to “Revs” (Cassini

rbits) 71–102. These occultations are especially useful for study-

ng the B ring because γ Crucis is a very bright star that lies in

aturn’s far southern skies. The line of sight to the star therefore

asses through the rings at a very steep angle (62.35 °), reducing

he light’s pathlength through the rings and increasing the sig-

al transmitted through the rings. Furthermore, these occultations

ere all obtained from very similar observing geometries over a

elatively short period of time, which facilitates the comparisons

etween the various opacity profiles described in Section 4 below.

able 1 provides a summary of this data set, giving the occultations

hat cover each of the relevant resonances, along with the inertial

ongitudes and times where the line of sight to the star crossed the

esonant radius r L . These numbers, along with the pattern speeds

ppropriate for each resonance, are then inserted into Eq. (3) in

rder to compute the expected φλt values for each occultation and

ach of the waves considered in this study (see Table 1 ). 

The response of the VIMS instrument is highly linear, so the

easured signal is easily translated into estimates of the trans-

ission T through the ring by first subtracting the mean signal

n a region where the ring is nearly opaque (105,700-106,100 km

rom Saturn’s center) and then dividing the resulting brightness

easurements by the mean signal level in a region unobstructed

y ring material (either just outside the B ring in the Huygens

ap at 117,700–117,750 km or, if these data are missing, out-

ide the entire ring system beyond 145,0 0 0 km). This transmis-

ion can be converted into estimates of the normal optical depth

n = − ln (T ) sin (B ) , where B = 62 . 35 ◦ is the elevation angle of the

tar above the ring plane. Note that the signal from the unocculted

tar corresponds to about 250 counts per 100 m of radius in most

f these occultations (with some variability among the occultations

ue to how well the selected pixel captured the star). Since the

ead noise of the instrument is low (around 1 count), this means

hat these occultations have sufficient signal-to-noise to discern

ub-percent variations in the transmission on sub-kilometer radius

cales, and detect a finite signal through the rings even where the

ptical depth exceeds 4. 

During each occultation, VIMS recorded the average stellar sig-

al every 20–40 ms, which corresponds to a radial range of 200–

00 m. This sampling scale is larger than both the projected stel-

ar diameter (70–100 m) and the Fresnel zone (60–70 m), and so
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Table 1 

Longitudes, Ephemeris time (seconds past J20 0 0 in TDB) and wave phases φλt for the occultations by γ Crucis used in this analysis (computed using the 

indicated m -numbers and pattern speeds). 

Rev Ja 2:1 Mi 5:2 Pd 3:2 En 3:1 Ja 3:2 

m = 2 m = 3 m = 3 m = 2 m = 3 

�p = 518 . 24 ◦/day �p = 635 . 99 ◦/day �p = 572 . 79 ◦/day �p = 393 . 89 ◦/day �p = 518 . 24 ◦/day 

184.8 ° 185.3 ° 185.9 ° 186.4 ° 186.4 °
071 266191216. 266190496. 266189456. 266188496. 266188384. 

142.7 ° 156.4 ° 55.2 ° 303.2 ° 269.9 °
– – 185.5 ° 186.0 ° 186.0 °

072 – – 2668060 0 0. 266805040. 266 804 928. 

– – 31.7 ° 80.7 ° 334.2 °
184.0 ° 184.5 ° 185.1 ° 185.6 ° 185.7 °

073 267423904. 267423184. 267422144. 267421184. 267421088. 

113.4 ° 292.5 ° 16.4 ° 222.1 ° 45.9 °
183.0 ° 183.6 ° 184.2 ° – –

077 269856064. 269855328. 269854304. – –

94.8 ° 220.4 ° 241.6 ° – –

182.8 ° 183.4 ° 184.0 ° 184.6 ° 184.6 °
078 270464544. 270463808. 270462784. 270461856. 270461760. 

354.9 ° 102.7 ° 19.2 ° 215.8 ° 47.9 °
181.5 ° 182.1 ° 182.8 ° – –

079 271043200. 271042432. 271041344. – –

250.2 ° 280.9 ° 28.9 ° – –

180.7 ° 181.3 ° 182.1 ° 182.8 ° 182.9 °
081 272318080. 272317312. 272316224. 272315232. 272315104. 

75.1 ° 205.9 ° 231.6 ° 233.5 ° 172.5 °
180.3 ° 181.0 ° 181.8 ° 182.5 ° 182.5 °

082 272953856. 272953088. 2729520 0 0. 272951008. 272950880. 

7.4 ° 204.9 ° 185.9 ° 196.0 ° 251.2 °
179.4 ° 180.1 ° 181.0 ° 181.7 ° 181.7 °

086 275501376. 275500640. 275499520. 275498528. 275498432. 

44.8 ° 105.2 ° 276.9 ° 6.4 ° 127.5 °
179.2 ° 179.9 ° 180.7 ° 181.4 ° 181.5 °

089 277406464. 277405696. 277404608. 277403616. 277403488. 

230.7 ° 154.9 ° 187.2 ° 275.8 ° 46.2 °
205.9 ° 205.2 ° 204.4 ° 203.8 ° 203.7 °

093 280042592. 280041728. 280040480. 280039360. 280039232. 

340.3 ° 339.6 ° 34.7 ° 48.4 ° 204.6 °
191.8 ° 191.9 ° 191.9 ° 192.0 ° 192.0 °

094 280679008. 280678208. 280677056. 2806760 0 0. 280675904. 

237.6 ° 284.0 ° 296.6 ° 339.8 ° 232.9 °
186.3 ° 186.6 ° 187.0 ° 187.4 ° 187.4 °

096 282012064. 282011328. 282010272. 282009312. 282009216. 

75.0 ° 349.0 ° 46.2 ° 53.7 ° 346.9 °
– 186.5 ° 186.9 ° 187.3 ° 187.3 °

097 – 28270 0 0 0 0. 282698944. 282697984. 282697888. 

– 260.7 ° 29.2 ° 254.2 ° 194.3 °
218.7 ° 217.3 ° 215.5 ° 214.1 ° 213.9 °

100 285031424. 285030592. 285029376. 285028320. 285028192. 

278.7 ° 6.8 ° 206.0 ° 300.5 ° 101.9 °
218.7 ° 217.3 ° 215.5 ° 214.1 ° 213.9 °

101 285858560. 285857728. 285856544. 285855456. 285855328. 

76.0 ° 100.7 ° 315.2 ° 318.6 ° 337.7 °
218.4 ° 217.0 ° 215.3 ° 213.8 ° 213.7 °

102 286683744. 286682912. 286681728. 286680640. 286680544. 

256.3 ° 237.4 ° 102.7 ° 354.2 ° 248.2 °
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determines the effective resolution for these observations. In or-

der to simplify comparisons between the profiles and facilitate the

multi-profile wavelet analysis described below, the transmission,

longitude and time parameters for every profile of each ring fea-

ture were re-sampled and interpolated onto a uniform radial grid

sampled every 100 m (well above the resolution of any given oc-

cultation). 

4. Multi-profile wavelet analysis 

The Janus 2:1 and Mimas 5:2 waves are clearly visible in indi-

vidual occultation profiles, but none of the other density waves can

be clearly seen within a single profile. Identifying these waves is

difficult not only because the signal levels are low, but also because

the relevant parts of the B ring contain intense short-wavelength

variations that vary stochastically from occultation to occultation.
hese variations obscure any coherent signal from the relevant

ensity waves. Fortunately, we can use wavelet-based methods to

ombine data from multiple profiles and thereby isolate the den-

ity wave signals. 

The desired density wave patterns have wavelengths that

hould vary with radius across the ring (see Eq. (5) ), so these

aves are most easily identified using wavelets. Continuous

avelet transformations are analogous to localized Fourier trans-

ormations and have already proven to be extremely powerful

ools for quantifying the properties of waves in planetary rings

 Colwell et al., 2009a; Baillié et al., 2011; Tiscareno et al., 2007,

013; Hedman and Nicholson, 2013, 2014 ). For this investigation,

e compute the wavelet transform for each resampled profile with

he standard wavelet routine in the IDL language ( Torrence and

ompo, 1998 ), using a Morlet mother wavelet with ω 0 = 6 . This

ields a wavelet transform W (r, k ) for each profile i as a function
i 
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f radius r and wavenumber k . Note that this is a complex function,

nd so in general can be written as W i = A i e 
i �i , where A i (r, k ) and

i ( r, k ) are the (real) wavelet amplitude and phase. Note that if we

ave a pure sinusoidal signal at a given wavevector k 0 , then �i ( r,

 0 ) is the phase of the wave as a function of position. Also, one

an define the wavelet power P i (r, k ) = A 

2 
i 

Previous work by Colwell et al. (2009a ) and Baillié et al. (2011)

ombined wavelet data from multiple occultations in a manner

hat enabled them to identify waves that were too weak to dis-

ern in individual occultation profiles. This method amounts to co-

dding the wavelet power from the various occultations (techni-

ally, they co-added the values of the WWZ transform, a version of

he wavelet power that is better optimized for unevenly sampled

ata, see Foster (1996) ). With this approach, peaks in individual

avelet power maps that are due to stochastic opacity variations in

ndividual profiles are averaged out, while persistent signals at par-

icular wavelengths and locations remain in the averaged power.

his technique does improve the signal-to-noise for weak waves

nd is an especially good method for searching for waves with

nknown pattern speeds. However, this method does not clearly

dentify the density wave signals in the central and outer B ring.

ortunately, the waves of interest here have known pattern speeds,

nabling us to use a method that is even better at isolating the

ignatures of density waves. 

As mentioned in Section 2 , spiral density waves are patterns

onsisting of m tightly wrapped spiral arms rotating around the

lanet at a predictable pattern speed �p . In a given occultation

ut, this pattern produces a quasi-sinusoidal opacity variation de-

cribed by Eq. (2) . However, depending on the observed longitude

nd time, each profile will have a different value for the phase

arameter φλt . The crests and troughs of the wave will therefore

ppear at different locations in different profiles, and the wavelet

hases associated with these patterns will vary from occultation

o occultation. Fortunately, the waves considered here are all gen-

rated by resonances with known satellites, and so have known

alues of m and �p , and so we can use Eq. (3) to compute the ex-

ected φλt for each occultation profile and use this information to

solate thse desired signal from those specific waves. 

Let us denote the calculated value of φλt (assuming a given m

nd �p ) for the i th occultation profile as φi . If the track of the star

ehind the ring was in the radial direction and the star’s appar-

nt radial motion across the ring feature were fast compared to

he perturbing m oon’s orbital motion, then φi would have the a

onstant value for the entire profile. However, in reality both the

bservation time and observed longitude vary slightly as the star

asses behind the wave, so that φi is a function of radius, albeit a

ery weak one. In any case, we can use φi to compute the phase-

orrected wavelet for each profile: 

 φ,i (r, k ) = W i (r, k ) e −iφi (r) = A i (r, k ) e i (�i (r,k ) −φi (r)) (7) 

ecall that �i is the observed wavelet phase, while φi is the ex-

ected longitude/time-dependent part of the wavelet phase for

 spiral density wave with the selected m -number and pattern

peed. Hence for any signal in the wavelet due to the desired den-

ity wave, the corrected phase parameter �i − φi will equal φr ( r )

see Eq. (2) ) and should have the same value for all occultations.

hus any signal from such a pattern should persist in the average

hase-corrected wavelet : 

W φ(r, k ) 〉 = 

1 

N 

N ∑ 

i =1 

W φ,i (r, k ) , (8) 

here N is the number of occultations. By contrast, any pattern

hat does not have the selected �p should have different phases

n the phase-corrected wavelet and thus should average to zero in

W φ〉 in the limit of large N . The signal-to-noise for the selected
aves should therefore be much better in the average phase-

orrected wavelet than it is in wavelets from individual profiles.

n fact, we find that the average phase-corrected wavelet can yield

 clearer detection of weak waves than even the averaged wavelet

owers used by Colwell et al. (2009a ) and Baillié et al. (2011) . 

In order the illustrate the utility of the average phase-corrected

avelet, it is useful to consider two distinct wavelet powers. First,

e define the average wavelet power : 

¯
 (r, k ) = 〈 |W φ| 2 〉 = 

1 

N 

N ∑ 

i =1 

|W φ,i | 2 . (9) 

his is independent of the individual wavelet phases and so is

quivalent to the average value of wavelet powers from the indi-

idual profiles P i : 

¯
 (r, k ) = 〈|W i | 2 〉 = 

1 

N 

N ∑ 

i =1 

|W i | 2 , (10) 

nd is therefore similar to the statistics used by Colwell et al.

2009a ) and Baillié et al. (2011) . Second, define the power of the

verage phase-corrected wavelet as: 

 φ(r, k ) = |〈W φ〉| 2 = 

∣∣∣∣∣
1 

N 

N ∑ 

i =1 

W φ,i 

∣∣∣∣∣
2 

. (11) 

ote that in this case we perform the averaging prior to taking the

bsolute square, while the opposite is true for P̄ . Recall that for

ny real variable x the difference 〈 x 2 〉 − 〈 x 〉 2 is positive definite and

quivalent to the variance of x . The difference between these two

uantities P̄ − P φ is similarly a positive quantity determined by

he variance in the real and imaginary components of the wavelet

mong the various occultations. Hence P φ must have a value be-

ween 0 and P̄ . In fact, P φ can only equal P̄ when �i − φi is the

ame for all occultations, as would be the case if the opacity vari-

tions are entirely due to a single wave with the specified pattern

peed and m -number. For any other signal, P φ will be less than P̄ 

ecause of the finite scatter in �i − φi . Indeed, as N approaches in-

nity, P φ should approach zero for these signals (provided we can

ample all possible values of �i − φi ). The ratio between these two

owers: 

 (r, k ) = 

P φ(r, k ) 

P̄ (r, k ) 
, (12) 

hould therefore vary between 1 and 0 depending on how well the

hase shifts of the observed data match those derived using Eq. (3)

or the selected m -number and pattern speed. 

The utility of these parameters is illustrated in Fig. 2 , which

hows the results of this sort of analysis for a region of Saturn’s

 ring occupied by two relatively strong density waves due to the

andora 6:5 and Prometheus 7:6 resonances. Both of these waves

re apparent in the sample profile and can also be seen in the av-

rage wavelet power P̄ . However, if we consider the power of the

verage phase-corrected wavelet P φ, then we obtain a different

icture. This wavelet power was computed assuming that m = 7

nd �p = 587 . 29 ◦/day, appropriate for the Prometheus 7:6 Lind-

lad resonance that produces the right-hand wave. As desired, the

ower of this average phase-corrected wavelet shows a stronger

ignal from this wave than it does for the wave generated by Pan-

ora. Furthermore, if we consider the power ratio R , only the sig-

al from the desired Prometheus wave is visible. 

To further validate that this wave has the expected pattern

peed, we can compute the average phase-corrected wavelet for a

ange of different pattern speeds �p . In practice, we express these

attern speeds in terms of radial displacement δr in the assumed

esonance location in the rings. For each assumed δr , we compute

he power in the average phase-corrected wavelet and extract the
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Fig. 2. Sample analysis of the Prometheus 7:6 wave in the A ring. The top panel 

shows the transmission through the A ring as a function of radius from the Rev 

89 occultation by γ Crucis. The two density waves clearly visible in this profile are 

due to the Pandora 6:5 and Prometheus 7:6 resonances. The second panel shows 

the average wavelet power P̄ for the γ Crucis occultations, with clear diagonal 

bands associated with both waves. The third panel shows the power of the aver- 

age phase-corrected wavelet P φ, assuming m = 7 and a pattern speed appropri- 

ate for the Prometheus 7:6 resonance (the exact resonance location is marked by 

the vertical dotted line). Note that this highlights the right-hand wave. The fourth 

panel shows the ratio of the above powers R , and shows only the signal from that 

wave. Finally, the bottom panel shows the peak value of R as a function of radius 

and assumed pattern speed, parameterized as a displacement δr from the expected 

Prometheus 7:6 resonance location (marked with a horizontal dotted line). Note 

that the maps of P̄ and P φ use a common logarithmic stretch, while the maps of 

R use a linear stretch. 
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peak power ratio R at each radius (i.e. the maximum value of R
across all wavenumbers). The bottom panel in Fig. 2 displays this

peak R as a function of both radial location in the ring and as-

sumed resonant location. The highest ratios occur along the δr = 0

line within the radial range occupied by the Prometheus 7:6 wave,

thus demonstrating that the desired signal only appears in R when

the assumed pattern speed matches the expected value for this

wave. 

In addition to isolating signals associated with a particular pat-

tern speed, the average phase-corrected wavelet can be used to

quantify the wavelength trends in these signals and thereby obtain

estimates of the ring’s surface mass density. While in principle the

wavelength of the pattern can be determined from the location of

the peak power in wavenumber space, in practice the wavenum-
er can be more robustly determined from the radius-dependent

hase of the periodic signal φr ( r ) ( Tiscareno et al., 2007; Hedman

t al., 2014 ). In this situation, the best estimator of this phase can

e derived from the average phase-corrected wavelet 〈W φ(r, k ) 〉
 Eq. (8) ). As mentioned above, for any wave signature with the

orrect pattern speed, the complex phase of this averaged wavelet

hould equal φr ( r ). Hence, we may estimate the phase of the wave

t a given radius by computing the appropriately weighted average

avelet phase at that location over a range of wavenumbers that

ncapsulates the desired signal. 

In practice, computing the average phase directly is challeng-

ng because the phase parameter is a cyclic quantity. Hence we in-

tead compute the average real and imaginary parts of the wavelet

t each radius, and then use these quantities to determine the av-

rage phase. More specifically, we compute the (complex) profile

 , whose value at each radius r is given by the following expres-

ion: 

 (r) = 

1 

C 

∫ 2 π/k max 

2 π/k min 

〈W φ(r, k ) 〉R (r, k ) 
d( 2 π/k ) 

(2 π/k ) 3 / 2 
(13)

here C is a normalization constant. The value of C and the factors

f (2 π / k ) in the integral are chosen so that in the limit where R =
 for all wavenumbers, this expression corresponds to the inverse

avelet transform of 〈W φ(r, k ) 〉 ( Tiscareno et al., 2007; Torrence

nd Compo, 1998 ). Weighting this integral by the power ratio fur-

her filters the profiles and thus isolates the desired signal better.

his profile D is a complex quantity, with real and imaginary parts

 R and D I respectively. We therefore define our estimator of the

adius-dependent phase of the profile to be φD (r) = tan 

−1 (D I /D R ) .

or a density wave with the relevant pattern speed and m -number,

D (r) = 〈 �i − φi 〉 = φr (r) . Since φr ( r ) cycles through 2 π for ev-

ry cycle of the wave pattern, the radius-dependent wavenum-

er of the pattern is simply the radial derivative of this phase

 D (r) = d φD /d r. Since this estimate of the wavenumber de-

ends only on the local trends in the phase parameter, it can

e used to estimate the ring’s local surface mass density via

q. (5) . 

Fig. 3 illustrates these procedures for the Proemtheus 7:6 wave

n the A ring. The top panel of this figure shows the maxi-

um, minimum and mean normal optical depths derived from

he relevant occultation profiles. The second panel shows the real

art of the D profile derived from the average phase-corrected

avelet. For this particular profile, we integrated the wavelet be-

ween wavenumbers of 2 π /1 km and 2 π /10 km. The plotted

uantity is actually D R / ̄T , where D R is the real part of the pro-

le computed from the average phase-corrected wavelet, and T̄ 

s the average transmission through the ring among all the pro-

les. This plot therefore shows the fractional variations in the

ransmission associated with the wave. Note that while the sig-

als from the other waves are outside the range of this partic-

lar plot, they would be strongly attenuated in this filtered pro-

le. The third panel plots the pattern’s wavenumber derived from

he real and imaginary parts of this profile. These data are only

lotted where the peak power ratio R exceeds 0.5 for the sake

f clarity. The trend of increasing wavenumber with distance from

he resonance is clear. Finally the bottom two panels show esti-

ates of the surface mass density σ and the opacity τ n / σ de-

ived from these wavenumber estimates. There is some scatter

n these values (especially where the wavenumber is small close

o the resonance). Nevertheless, these data indicate that the sur-

ace mass density is between 35 g/cm 

2 and 50 g/cm 

2 , which is

easonably consistent with the values of 42.4 ± 0.2 g/cm 

2 and

5.1 ± 12.2 g/cm 

2 that Spilker et al. (2004) derived using Voy-

ger PPS and RRS occultation data. Our numbers are also simi-

ar to the mass densities derived from weaker nearby waves by

iscareno et al. (2007) . 
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Fig. 3. Extracting wavelength information from the Prometheus 7:6 wave in the A 

ring from the average phase-corrected wavelet. The top panel shows the mean nor- 

mal optical depth τ n of the ring, along with the range of optical depths among the 

various profiles. The second panel shows the reconstructed fractional variations in T 

derived from the average phase-corrected wavelet data for wavelengths between 1 

and 10 km. The third panel shows the wavenumber of the pattern as a function of 

radius. For the sake of clarity, only data where the peak power ratio was above 0.5 

are shown. The fourth panel shows the estimated surface mass density σ derived 

from this wave, and the bottom panel shows the estimated opacity τ n / σ . Note that 

in this case the opacity oscillates because of the residual variations in the average 

normal optical depth associated with the wave. 
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Fig. 4. Wavelet analysis of the Mimas 5:2 wave in the same format as Fig. 2 . The 

signature of the Mimas 5:2 wave can be seen in the middle three panels as a di- 

agonal dark band extending across the region occupied by the two innermost re- 

gions of reduced optical depth out to about 101,650 km. Note also that the signal is 

strongest at the expected pattern speed for this resonance (i.e δr = 0 ) in the bottom 

panel. 
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1 Note that this is a third order resonance and so the expected pattern speed 

is �p = (5 n M − 2 ˙ 
 M ) / 3 , where n M and ˙ 
 M are Mimas’ mean motion and apsidal 

precession rate, respectively. 
. Results 

The above procedures were used to search for density waves

ssociated with the six strongest Lindblad resonances in Saturn’s

 ring: the Janus 2:1 resonance at 96,247 km, the Mimas 5:2 reso-

ance at 101,311 km, the Prometheus 3:2 resonance at 106,772 km,

he Pandora 3:2 resonance at 108,546 km, the Enceladus 3:1 reso-

ance at 115,207 km, and the Janus 3:2 resonance at 115,959 km.

e could not identify any potential wave signature associated with

he Prometheus 3:2 resonance, but did find interesting signals for

ll of the other waves. Each of these patterns is discussed below,

eginning with the Mimas 5:2 wave, which provides the clean-

st and simplest density wave signal anywhere in the B ring. Then

e consider the Janus 2:1 wave, whose pattern speed shows sur-

rising irregularities that are likely tied to the periodic changes in

anus’ mean motion. Finally, we discuss the evidence for the Janus

:2, Enceladus 3:1 and Pandora 3:2 patterns, which may represent

reviously undetected density waves in regions of extremely high

ptical depth. 

.1. The Mimas 5:2 wave 

The Mimas 5:2 resonance falls at 101,311 km in the BII re-

ion, where the ring rapidly and repeatedly shifts between a state
ith an optical depth around 2 and one that is nearly opaque. The

:2 resonance with Mimas falls in one of the opaque regions, but

he wave launched by this resonance can be clearly seen propa-

ating across two regions with optical depth around 2 between

01,370 km and 101,650 km. Fig. 4 shows the wavelet powers

nd power ratios derived from an analysis of this wave (in the

ame format as Fig. 2 ) assuming m = 3 and a pattern speed of

35.99 °/day, which is appropriate for this resonance. 1 The wave

an clearly be seen as a diagonal streak in the average wavelet

ower, but this signature is somewhat contaminated by signals as-

ociated with other optical depth structures. In particular, the rapid

ptical depth transitions produce power over a broad range of

avelengths, obscuring the wave signal. By comparison, the wave

ignal is much clearer in the power of the average phase-corrected

avelet because the phase corrections add a range of phases to the

ignals from fixed features like sharp edges, and so these signals

artially cancel out when the wavelets are averaged together. The

atio of the two wavelet powers provides a even cleaner picture of

he wave signature in both regions with finite transmission. A faint
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Fig. 5. Parameters for the Mimas 5:2 wave derived from the average phase- 

corrected wavelet in the same format as Fig. 3 . In this case the reconstructed profile 

is derived from the average phase-corrected wavelet data for wavelengths between 

1 and 10 km, and only data where the peak power ratio was above 0.5 are shown 

in the bottom three panels. Note that the resonant radius is off the left edge of the 

plot, in an opaque region. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Wavelet analysis of the Janus 2:1 wave in the same format as Fig. 2 . The sig- 

nature of the Janus 2:1 wave is visible in all three wavelet plots, but in the lower 

two there are “gaps” in the wave signature. These regions correspond to parts of 

the wave that have pattern speeds that deviate from the expected value. The two 

horizontal dotted lines in the bottom panel correspond to the two different reso- 

nant radii. Note that the apparent resonance location of this wave shifts outwards 

as the wave propagates. 
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hint of a signal can also be seen between 101,520 and 101,550 km,

but closer inspection of these data did not show any convincing

evidence of a coherent wave signal in this region (although some

profiles show one or more wave-like peaks). Finally, the bottom

panel shows that these strong ratios only occur for pattern speeds

close to the expected value for the 5:2 resonance. 

Fig. 5 shows the wave profile derived from the average phase-

corrected wavelet (computed by averaging over wavenumbers be-

tween 2 π /1 km and 2 π /10 km), along with the estimates of the

wavenumber, surface mass density and τ n / σ as functions of radius

(only data where the peak power ratio was above 0.5 are plot-

ted for the sake of clarity). Both regions where the wave is clearly

visible exhibit surface mass densities close to 40 g/cm 

2 (see also

Table 2 ). This number might at first seem surprisingly low, since

it is comparable to typical values for the A ring ( Tiscareno et al.,

2007 ), even though the wave occupies regions with optical depths

3–4 times higher than those of the A ring. However, this number

is not much different from the 54 ± 10 g/cm 

2 Lissauer (1985) de-

rived from the Mimas 4:2 bending wave, which lies in a region of

comparable optical depth. 

5.2. Janus 2:1 wave 

The Janus 2:1 wave is the most obvious density wave in the B

ring, and has already been used to estimate the mass density of

the BI region ( Holberg et al., 1982; Esposito et al., 1983 ). Thus it
s not surprising that the wave signature is very clear in the av-

rage wavelet power, as shown in Fig. 6 . However, unlike the Mi-

as 5:2 and Prometheus 7:6 waves considered above, the signa-

ure of the Janus 2:1 wave in the average wavelet power is not a

ontinuous diagonal band, but instead a more jagged pattern. This

ore complex wave structure almost certainly arises from Janus’

nusual orbital properties. Every four years, the semi-major axis

nd mean motion of Janus alternates between one of two values

ue to its gravitational interactions with its co-orbital companion

pimetheus ( Yoder et al., 1983 ). These shifts in the m oon’s position

ause the location of the 2:1 resonance to oscillate between 96,235

nd 96,248 km, and the relevant pattern speed switches between

18.35 °/day and 518.24 °/day. During the time of the observations,

anus was interior to Epimetheus and so the faster pattern speed

as active. However, since the wave propagates away from the

esonance at a finite speed, some parts of the wave were gener-

ted when Janus was exterior to Epimetheus. Interference between

hese different wave segments with different pattern speeds are

hought to be responsible for abrupt “glitches” seen in the wave

rofile ( Porco et al., 2005; Tiscareno et al., 2006 ). 

Given that the nominal resonance location swaps between two

iscrete locations, one might reasonably expect that the pattern
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Table 2 

Estimates of the average normal optical depth and surface mass density derived from waves in the B ring. 

Wave Radial range Mean radius Mean τ n Mean σ Mean τ n / σ

(km) (km) (g/cm 

2 ) (cm 

2 /g) 

96,30 0–96,40 0 96,350 1 .08 ± 0.08 69 .03 ± 5.98 0 .0157 ± 0.0015 

96,475–96,494 96,485 1 .69 ± 0.12 58 .65 ± 7.93 0 .0292 ± 0.0040 

96,521–96,538 96,530 1 .24 ± 0.09 46 .72 ± 5.58 0 .0271 ± 0.0046 

Janus 96,558–96,572 96,565 1 .65 ± 0.10 46 .11 ± 3.67 0 .0361 ± 0.0041 

2:1 96,602–96,640 96,610 1 .95 ± 0.11 47 .03 ± 3.81 0 .0417 ± 0.0036 

96,640–96,656 96,647 1 .89 ± 0.08 44 .84 ± 6.07 0 .0429 ± 0.0064 

96,680–96,692 96,686 1 .97 ± 0.09 46 .69 ± 3.90 0 .0424 ± 0.0040 

Mimas 101,390–101,480 101,435 1 .90 ± 0.27 42 .07 ± 4.77 0 .0456 ± 0.0093 

5:2 101,550–101,600 101,575 1 .40 ± 0.03 39 .10 ± 1.49 0 .0358 ± 0.0015 

108,640–108,669 108,654 3 .36 ± 0.15 64 .95 ± 10.76 0 .0529 ± 0.0078 

Pandora 3:1 108,640–108,699 108,654 4 .15 ± 0.15 67 .24 ± 6.82 0 .0626 ± 0.0094 

108,707–108,719 108,713 4 .68 ± 0.34 71 .60 ± 9.73 0 .0668 ± 0.0118 

115,330–115,379 115,355 1 .68 ± 0.48 67 .71 ± 17.68 0 .0254 ± 0.0061 

Enceladus 115,420–115,461 115,440 3 .72 ± 0.34 70 .27 ± 14.06 0 .0556 ± 0.0151 

3:1 115,557–115,572 115,565 3 .70 ± 0.30 71 .05 ± 4.01 0 .0522 ± 0.0045 

115,642–115,663 115,652 3 .43 ± 0.34 64 .51 ± 5.98 0 .0538 ± 0.0083 

Janus 116,060–116,080 116,070 3 .31 ± 0.51 120 .09 ± 8.42 0 .0277 ± 0.0047 

3:2 116,150–116,220 116,185 3 .14 ± 0.40 141 .02 ± 16.38 0 .0226 ± 0.0042 

Mimas 4:2 116,500–116,750 116,625 1 .80 ± 0.49 54 .00 ± 10.00 a 0 .0334 ± 0.0096 

a From Lissauer (1985) . 

Fig. 7. Different parts of the Janus 2:1 wave have different pattern speeds. In both 

the above plots, the occultation profiles are shown with vertical offsets proportional 

to the phase parameter φλt , computed assuming a given m and pattern speed. In 

the top panel the pattern speed is near the expected value for the Janus 2:1 res- 

onance, but for the bottom one the pattern speed corresponds to a radius 50 km 

further from the planet. For radii less than 96,400 km, the nominal pattern speed 

better organizes the data, while for the region exterior to 96,400 km the slower 

pattern speed does a better job, consistent with the data shown in Fig. 6 . Note the 

transition between these two regions contains an extra narrow dip. 

Fig. 8. Parameters for the Janus 2:1 wave derived from the average phase-corrected 

wavelet assuming a pattern speed close to the expected value for the Janus 2:1 

resonance, in the same format as Fig. 3 . In this case the reconstructed profile is 

derived from the average phase-corrected wavelet data for wavelengths between 1 

and 100 km, and only data where the peak power ratio was above 0.3 are shown 

in the bottom three panels. 
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Fig. 9. Parameters for the Janus 2:1 wave derived from the average phase-corrected 

wavelet assuming a pattern speed 0.4 °/day slower than that predicted for the Janus 

2:1 resonance, in the same format as Fig. 3 . In this case the reconstructed profile is 

derived from the average phase-corrected wavelet data for wavelengths between 1 

and 100 km, and only data where the peak power ratio was above 0.3 are shown 

in the bottom three panels. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10. Wavelet analysis on the Enceladus 3:1 wave in the same format as Fig. 2 . A 

weak wave-like signature can be observed between 115,300 and 115,650 km in the 

ratio plot. The bottom panel demonstrates that this signal only occurs when the 

assumed pattern speed is fairly close to the expected pattern speed of the density 

wave (i.e. where δr is close to zero). 
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speed of the wave would oscillate between two different values.

However, the real situation turns out to be quite different. Fig. 6

shows the power of the average phase-corrected wavelet and the

power ratio assuming a pattern speed of 518.24 °, which corre-

sponds to the expected pattern speed of the Janus 2:1 resonance

when Janus is outside of Epimetheus’ orbit. The signature of the

wave still extends across the same range of radii, but is discontinu-

ous, indicating that some parts of the wave have a different pattern

speed. Surprisingly, these other parts of the wave do not have pat-

tern speeds consistent with the faster rate one would predict for a

pattern generated by a resonance with Janus in its second configu-

ration (interior to Epimetheus’ orbit). Instead, the pattern speed of

the other parts of this wave appear to be slower than Janus’ mean

motion in either configuration. This is most clearly illustrated by

the bottom panel of Fig. 6 , which reveals that the nominal reso-

nance location of the peak power ratio tends to move outwards

with increasing radius, indicating a general decrease in the wave’s

pattern speed. Furthermore, these changes in pattern speed appear

to be discontinuous, with abrupt shifts of order 50 km in δr (cor-

responding to 0.4 °/day in �p ) separated by narrow regions where

the pattern speed returns to its nominal value. 

An examination of the raw profiles confirms these changes in

the wave’s pattern speed. Fig. 7 shows the relevant occultation

profiles, offset vertically be an amount proportional to the phase

parameter φλt with two different assumed pattern speeds (note

that no phase shifts have been applied to these data). If the pat-
ern speed properly organized the data, profiles with similar phase

hifts (and similar vertical offsets) should be aligned with each

ther, and the positions of peaks and troughs should shift system-

tically as the phase changes. In the upper panel of this plot, where

he pattern speed matches that expected for the Janus 2:1 reso-

ance, we find the profiles are reasonably well organized for radii

ess than 96,400 km, but beyond this point there are several pro-

les which should be close in phase but have peaks and troughs

n very different locations. Conversely, if we choose a slower pat-

ern speed, the profiles exterior to 96,400 km line up well but the

ata interior to 96,400 km show inconsistencies. Note that around

6,400 km, there is a “glitch” in the wave profile, where two dips

ccur closer to each other than they do just inside or outside this

egion. This probably represents the edge of one of the coherent

ave segments generated during a time when Janus was at one

articular semi-major axis ( Tiscareno et al., 2006 ). 

We do not yet have a complete explanation for how different

arts of this wave can have such different pattern speeds, but this

trange behavior is almost certainly the result of Janus’ periodic or-

it changes. When Janus’ orbit changes, the radial location where

he wave is generated suddenly moves, giving rise to “glitches” in

he wave profile that propagate slowly outward at the group ve-

ocity v g = πGσ/κ ( Shu et al., 1984; Tiscareno et al., 2006 ). These
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Fig. 11. Wavelet analysis on the Janus 3:2 wave in the same format as Fig. 2 . A 

weak wave-like signature can be observed between 116,030 and 116,220 km in 

the ratio plot. This signal is strongest where δr = 0 , i.e. when the assumed pat- 

tern speed is close to the expected pattern speeds for this density wave (shown as 

two horizontal dotted lines). 
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Fig. 12. Wavelet analysis on the Pandora 3:2 wave in the same format as Fig. 2 . A 

wave-like signature can be observed between 108,600 and 108,700 km in the ratio 

plot. This signal is strongest where δr = 0 , i.e. when the assumed pattern speed is 

close to the expected pattern speed for this density wave. 
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litches interrupt the spiral wave pattern and thus disrupt the

ravitational interactions between different parts of the wave that

llow it to form a coherent spiral pattern with a common pattern

peed, and so might allow the distal portions of the wave to be-

ome partially decoupled from the resonance. In this situation, the

attern speed of the wave might shift away from n (r L ) − κ(r L ) /m

nd towards n (r) − κ(r) /m, where n ( r ) an κ( r ) are the local mean

otion and epicyclic frequency. However, the decoupling from the

esonance cannot be complete, since the pattern speeds never get

s slow as n (r) − κ(r) /m, which would correspond to δr = r − r L in

he bottom panel in Fig. 6 . Furthermore, even though the wave ex-

ibits visible glitches every 50 km or so, not every glitch leads to

 systematic change in the wave’s pattern speed (for example, the

litches at around 96,440 km in Fig. 7 do not appear to separate

wo regions of very different pattern speeds). Clearly, much more

ork will be needed before the dynamics of this unusual wave can

e fully understood. 

Given that this wave is not propagating exactly like a normal

ensity wave, the mass estimates derived from this feature might

e questionable. However, this is the only density wave in the B

ing that has yielded published mass density estimates, so analyz-
ng this wave is still useful, if only for verifying our algorithms.

igs. 8 and 9 show the reconstructed wave and derived parame-

ers for two different assumed pattern speeds, one appropriate for

he resonance and one 0.4 °/day slower (i.e. the same pattern speed

howed in the lower panel of Fig. 7 ). These two pattern speeds

ield quite different reconstructed profiles, as is to be expected

iven that different parts of the wave will be better organized by

ne of these two options than by the other. Interestingly, however,

he pattern’s wavenumber, surface mass density and τ n / σ follow

ery similar trends exterior to 96,400 km (interior to 96,400 km,

he two curves diverge, likely because the slower pattern speed

laces the resonance within the wave, and so Eq. (5) is not ap-

ropriate). This suggests that the mass density estimates are not

ery sensitive to the assumed pattern speed. Furthermore, when

e assume the predicted pattern speed for the resonance, the sur-

ace mass density peaks at around 70 g/cm 

2 , consistent with pre-

ious estimates ( Holberg et al., 1982; Esposito et al., 1983 ). How-

ver, for either pattern speed, the mass density appears to drop

o around 40 g/cm 

2 further from the resonance. A mass density of

0–70 g/cm 

2 yields a group velocity of 13–22 km/year, so during

ach four-year period when Janus has a nearly constant mean mo-

ion, it should produce a wave segment between 50 and 90 km

ide. If we also account for the 13 km shifts in the location of
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Fig. 13. Profiles of the region around the Enceladus 3:1 wave. The black profiles 

are the observed data, offset for clarity and ordered by the predicted wave phase 

φλt . The overlaid green curves are the reconstructed wave signal derived from the 

phase-corrected average wavelet between wavelengths between 5 and 100 km. The 

periodic signatures in the reconstructed profiles have been scaled up by a factor of 

four for the sake of clarity, and each curve has had the wave’s phase adjusted to 

match its predicted value for the relevant profile. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 14. Profiles of the region around the Janus 3:2 wave. The black profiles are the 

observed data, offset for clarity and ordered by the predicted wave phase φλt . The 

overlaid green curves are the reconstructed wave signal derived from the phase- 

corrected average wavelet between wavelengths between 5 and 100 km. The peri- 

odic signatures in the reconstructed profiles have been scaled up by a factor of four 

for the sake of clarity, and each curve has had the wave’s phase adjusted to match 

its predicted value for the relevant profile. 
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the resonances, this is compatible with the observed 50–100 km

widths of the regions between the glitches in the wave profile, and

so the mass density estimates derived from the wavelet analysis do

not appear to be wildly off. 

5.3. Previously unidentified waves 

We consider the remaining potential wave signatures (asso-

ciated with the Enceladus 3:1, Janus 3:2 and Pandora 3:2 res-

onances) as a group because all three of these features occupy

regions of high opacity and large stochastic variations in optical

depth that obscure the relevant wave signals in individual pro-

files. Figs. 10 –12 show the results of the phase-corrected wavelet

analysis for these waves. In all three cases the average wavelet

power shows signal over a wide range of wavenumbers wherever

the transmission is finite. These are due to the stochastic varia-

tions in the ring’s transmission, which are suppressed in the aver-

age phase-corrected wavelet. Indeed, both the power of the aver-

age phase-corrected wavelet and the power ratios reveal potential

density wave signatures. 

The Enceladus 3:1 resonance provides the most compelling ev-

idence for a previously undetected density wave, with the phase-

corrected wavelet power showing a discontinuous diagonal linear

band extending from 115,300 km to 115,650 km and ranging over

wavenumbers between 0.4 km 

−1 and 1.2 km 

−1 (see Fig. 10 ). This
rend is consistent with the expected signal from a density wave,

nd extrapolating this trend inwards would produce an intercept

lose to the expected resonance location around 115,200 km. Fur-

hermore, this signal is only apparent when the assumed pattern

peed approximately matches the expected pattern speed for the

nceladus 3:1 resonance (see bottom panel of Fig. 10 ). Hence it is

easonable to conclude that this is indeed the signature of a den-

ity wave. 

For the Janus 3:2 resonance, the average phase-corrected

avelet contains a region of strong periodic signals at wavenum-

ers around 0.5 km 

−1 near 116,170 km, and a slightly weaker sig-

al at wavenumbers around 0.2 km 

−1 and radii of 116,050 km

see Fig. 11 ). These two regions of enhanced signal follow a similar

iagonal trend as the bands seen in the above density waves, and

xtrapolating this trend inwards would produce an intercept close

o the expected resonance location just interior to 116,0 0 0 km. Fur-

hermore, these signals are only present when the assumed pat-

ern speed is close to the expected pattern speeds of the Janus 3:2

esonance (see bottom panel of Fig. 11 ), consistent with the signa-

ure of the appropriate density wave. Note that the Janus 3:2 res-

nance is comparable in strength to the Janus 2:1 wave discussed

bove, so the comparative weakness of this signal must be due to

ither the ring’s substantially higher optical depth or to interfer-

nce by other fine-scale structure. 

Finally, for the Pandora 3:2 resonance there is a very weak sig-

al between 0.5 km 

−1 and 1.0 km 

−1 and between 108,600 km
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Fig. 15. Profiles of the region around the Pandora 3:2 wave. The black profiles 

are the observed data, offset for clarity and ordered by the predicted wave phase 

φλt . The overlaid green curves are the reconstructed wave signal derived from the 

phase-corrected average wavelet between wavelengths between 5 and 100 km. The 

periodic signatures in the reconstructed profiles have been scaled up by a factor of 

four for the sake of clarity, and each curve has had the wave’s phase adjusted to 

match its predicted value for the relevant profile. 
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Fig. 16. Parameters for the Enceladus 3:1 wave derived from the average phase- 

corrected wavelet, in the same format as Fig. 3 . In this case the reconstructed profile 

is derived from the average phase-corrected wavelet data for wavelengths between 

5 and 100 km, and only data where the peak power ratio was above 0.3 are shown 

in the bottom three panels. 
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nd 108,700 km that could represent a density wave showing

hrough a narrow region of finite optical depth in the B-ring’s core

see Fig. 12 ). Again, these enhancements are only detectable when

he pattern speed is close to the appropriate resonance pattern

peed. Hence even here we have evidence for a wave signature in

he occultation data. 

To illustrate why multiple occultation profiles are essential for

dentifying these very weak wave signals, Figs. 13 –15 show the ob-

erved profiles, sorted by the relevant phase parameter. Overplot-

ed in green on each profile is the signal recovered from the com-

ined phase-corrected wavelet (using wavelengths between 5 km

nd 100 km), which represents the opacity variations that would

e due to the wave signal alone in each profile (including the ap-

ropriate phase shifts). While there are some correlations between

he observed profiles and the recovered wave signal (e.g. the re-

ion around 115,350 km for the Enceladus 3:1 wave and the region

round 108,650 km for the Pandora 3:2 wave), it is very difficult

o identify convincing wave signatures in individual profiles due

o the other opacity variations superimposed on top of the wave.

ence we cannot confirm that these wave signatures are real by

imple inspection of the profiles. Nevertheless, since these wave-

ike signatures only appear when the appropriate pattern speeds

or the relevant resonances are used, it is reasonable to conclude

hat these are real density wave signals. 

Assuming that all these signals are indeed real wave signatures,

e can use the same procedures described in Section 4 above
o obtain reconstructed wave profiles from the average phase-

orrected wavelet (in these cases, we integrate over wavenumbers

etween 2 π /5 km and 2 π /100 km), and then extract estimates of

he patterns’ wavenumber, as well as the inferred surface mass

ensity of the ring. The results of these calculations are shown

n Figs. 16 –18 . For all three regions, we see the wave-like signa-

ure has a variable amplitude, consistent with the patchy signal in

he average phase-corrected wavelet. Nevertheless, where the sig-

al is clear (i.e. where the peak power ratio is greater than 0.3), the

avenumber does show a reasonably monotonic trend with radius.

The mass density and τ n / σ estimates derived from these fea-

ures are also reasonably consistent for each wave. For the Janus

:2 wave, we can see the wave-like signal in two regions. In

he outer region centered around 116,185 km, the wave is con-

istent with a local surface mass density around 140 g/cm 

2 . For

he inner region, the mass density estimates are erratic interior to

16,060 km, but gives stable estimates around 140 g/cm 

2 between

16,060 km and 116,080 km. For the Enceladus 3:1 wave, we have

our discrete regions that yield sensible periodic wave signals, and

ll are consistent with mass densities around 70 g/cm 

2 . A similar

ange of mass densities are derived for the three regions where
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Fig. 17. Parameters for the Janus 3:2 wave derived from the average phase- 

corrected wavelet, in the same format as Fig. 3 . In this case the reconstructed profile 

is derived from the average phase-corrected wavelet data for wavelengths between 

5 and 100 km, and only data where the peak power ratio was above 0.3 are shown 

in the bottom three panels. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 18. Parameters for the Pandora 3:2 wave derived from the average phase- 

corrected wavelet, in the same format as Fig. 3 . In this case the reconstructed profile 

is derived from the average phase-corrected wavelet data for wavelengths between 

5 and 100 km, and only data where the peak power ratio was above 0.3 are shown 

in the bottom three panels. 
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the Pandora 3:2 wave signal is sufficiently strong to detect. Thus

these new mass density estimates seem to be internally consistent

within each wave. 

6. Discussion 

Table 2 and Fig. 19 summarize the mass density estimates de-

rived from this analysis. For each density wave, we derive separate

mass densities from each part of the wave where the signal is

clear, and for the Janus waves we only consider regions where

the pattern speed is close to Janus’ mean motion. We also include

the surface mass density derived from the Mimas 4:2 bending

wave reported by Lissauer (1985) for reference. What is most

remarkable about all these new estimates is that the derived mass

densities are generally quite low, with the Janus 3:2 wave yielding

values around 140 g/cm 

2 and all the other wave signatures giving

between 40 and 70 g/cm 

2 , within a factor of two of the A-ring’s

typical surface mass density. 

Another striking aspect of these measurements is that the B-

ring’s optical depth seems to be largely uncorrelated with its mass

density. For example, the high mass density derived from the Janus
:2 wave does not correspond to the most opaque region. Fur-

hermore, the other five waves yield similar mass densities for re-

ions with optical depths ranging from ∼1.5 to almost 5. Indeed

ig. 20 shows no obvious trend in the mass density versus optical

epth within these waves. This result, while surprising, is consis-

ent with recent analyses of density waves elsewhere in Saturn’s

ings. Tiscareno et al. (2013) found that the sharp rise in optical

epth near the A-ring’s inner edge did not correspond to a marked

ump in mass density, while Baillié et al. (2011) and Hedman and

icholson (2014) showed that even though the C-ring plateaux are

everal times more opaque than the background C ring, these two

egions have nearly the same mass density. Indeed, as shown in

ig. 21 , it appears that rings with a given mass density can have

ptical depths that vary by almost an order of magnitude. Optical

epth therefore cannot be regarded as a reliable proxy for the ring’s

ass density in any part of Saturn’s rings . 

These findings also have implications for the total mass of Sat-

rn’s rings. Recent work has considered the possibility that the

-ring’s high opacity might require extremely high surface mass

ensities ( Robbins et al., 2010; Charnoz et al., 2011; Hedman et al.,

013 ), but these new measurements suggest that this may not be
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Fig. 19. Summary of mass density and opacity estimates of Saturn’s B ring. The 

panels show the optical depth τ n , surface mass density σ , the ratio σ / τ n and its 

reciprocal as functions of radius across the B ring. Note that for a wide range of 

optical depths the surface mass density appears to remain around 40–70 g/cm 

2 . 
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Fig. 20. The B-ring surface mass density σ , σ / τ n and its reciprocal as functions of 

the normal optical depth. Note the different colored points correspond to different 

waves, using the same color codes as Fig. 19 . 
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ustified. Instead, the total mass of the B ring could be quite low,

hich may be consistent with estimates based on the charged-

article populations near the rings ( Cooper et al., 1985 ) 2 and the

igh porosity of the ring particles inferred from thermal infrared

ata ( Reffet, et al., 2015 ). 

The B-ring’s mass is most easily compared to the masses of

imas (the smallest of Saturn’s mid-sized quasi-spherical satel-

ites) and the A ring. The mass of Mimas has been well mea-

ured by its gravitational interactions with other m oons, and is

 M 

= 3 . 7493 ± 0 . 0031 × 10 19 kg ( Jacobson et al., 2006 ). The to-

al mass of the A ring is also fairly well constrained because it

ontains many density waves, and aside from a few narrow gaps,

he ring does not show strong variations in its surface mass den-

ity and optical depth between 122,357 km and its outer edge at

36,780 km. 3 The A ring therefore covers about 1.2 × 10 10 km 

2 ,

nd its average surface mass density is between 35 and 40 g/cm 

2 
2 It should be noted that this work yielded two different estimates of the mass 

ensity. The authors favored the solution with a surface mass density around 

0 g/cm 

2 , but could not exclude another solution with a value of around 350 g/cm 

2 . 
3 Note the classical inner edge of the A ring is at 122,050 km, but Tiscareno 

t al. (2013) showed the ring’s mass density only reaches typical A-ring values at 

22,357 km. 
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1

 Tiscareno et al., 2007 ), and so the A-ring’s total mass is between

 and 5 × 10 18 kg, or 0.11–0.13 M M 

. 

Since the B-ring’s optical depth cannot provide a reliable esti-

ate of its mass density, the limited number of density waves ex-

mined here do not allow us to derive very precise estimates of

he B-ring’s total mass. However, these few measurements do in-

icate that the B-ring’s total mass is substantially less than that of

imas. The B ring covers a surface area of about 1.7 × 10 10 km 

2 , so

n order for the B-ring’s mass to equal the mass of Mimas, it would

ave to have an average surface mass density of about 220 g/cm 

2 ,

r an average τ n / σ less than 0.013 cm 

2 /g. The required mass den-

ity is well above any of our estimates, and the required τ n / σ is

ower than any of our numbers. Indeed, if we neglect the rela-

ively high mass density estimates from the Janus 3:2 wave, then

he remaining data points indicate the B-ring’s mass density is be-

ween 45 and 70 g/cm 

2 . This would imply the B-ring’s total mass is

 − 12 × 10 18 kg or 0.20–0.32 M M 

, which is only two or three times

he A-ring’s mass. Even if we take the Janus 3:2 mass density as

n upper limit, this only yields a mass of 24 × 10 18 kg, or about

.68 M M 

. It therefore appears likely that the B ring’s total mass is

etween one-third and two-thirds of Mimas’ mass, comparable to

arly Voyager-based estimates ( Esposito et al., 1983; Cooper et al.,

985 ). 
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Fig. 21. Plot of the ring’s surface mass density versus normal optical depth for all 

of Saturn’s rings, based on density wave analyses from Lissauer (1985) ; Tiscareno 

et al. (2007) ; Colwell et al. (2009b) ; Baillié et al. (2011) ; Hedman and Nicholson 

(2014) and this work. Note the broad range of optical depths possible for any given 

mass density. 
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Of course, this new estimate of the ring’s total mass is based

on just a few locations in the B ring, and so one could argue that

most of the B-ring’s mass is hidden in the truly opaque parts of the

rings. However, the measurements considered here include regions

with optical depths between 3.5 and 4.5, so these massive regions

would have to be those with opacities above 4 or 5. Note that only

about 27% of the ring’s surface area has an optical depth greater

than 4, and less than 16% has an optical depth above 5, so there

is not much space to hide a large amount of mass. Alternatively,

one could suggest that in high-optical-depth regions waves do not

propagate in accordance with the standard theories, causing the

value of σ derived from Eq. (5) to be biased low. This also seems

to be rather unlikely, however, given the relative consistency in the

mass densities derived from the different parts of each wave. For-

tunately, Cassini will perform experiments at the end of its mission

in 2017 that should provide independent constraints on the ring’s

total mass ( Seal et al., 2009; Spilker et al., 2014 ) that can confirm

or refute the results of this study. 
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