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a b s t r a c t

The leading face of Saturn’s moon Iapetus, Cassini Regio, has an albedo only one tenth that on its trailing
side. The origin of this enigmatic dichotomy has been debated for over 40 years, but with new data, a
clearer picture is emerging. Motivated by Cassini radar and imaging observations, we investigate Soter’s
model of dark exogenous dust striking an originally brighter Iapetus by modeling the dynamics of the
dark dust from the ring of the exterior retrograde satellite Phoebe under the relevant perturbations. In
particular, we study the particles’ probabilities of striking Iapetus, as well as their expected spatial dis-
tribution on the Iapetian surface. We find that, of the long-lived particles ( J 5 lm), most particle sizes
( J 10 lm) are virtually certain to strike Iapetus, and their calculated distribution on the surface matches
up well with Cassini Regio’s extent in its longitudinal span. The satellite’s polar regions are observed to be
bright, presumably because ice is deposited there. Thus, in the latitudinal direction we estimate polar
dust deposition rates to help constrain models of thermal migration invoked to explain the bright poles
(Spencer, J.R., Denk, T. [2010]. Science 327, 432–435). We also analyze dust originating from other irreg-
ular outer moons, determining that a significant fraction of that material will eventually coat Iapetus—
perhaps explaining why the spectrum of Iapetus’ dark material differs somewhat from that of Phoebe.
Finally we track the dust particles that do not strike Iapetus, and find that most land on Titan, with a
smaller fraction hitting Hyperion. As has been previously conjectured, such exogenous dust, coupled with
Hyperion’s chaotic rotation, could produce Hyperion’s roughly isotropic, moderate-albedo surface.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

Over three dozen dark irregular satellites have been discovered
around Saturn using ground-based telescopes (Gladman et al.,
2001; Sheppard et al., 2003, 2006; Jewitt et al., 2005). Numerical
simulations show that these irregular satellites must have under-
gone intense collisional evolution that would have generated large
quantities of dark dust over the age of the Solar System (Nesvorný
et al., 2003; Turrini et al., 2009). Indeed, Bottke et al. (2010) esti-
mate that on the order of 1020 kg of dust (� a thousandth the mass
of the Earth’s Moon) has been generated in the outer saturnian sys-
tem through collisional grinding of these satellites. Furthermore,
the recent discovery (Verbiscer et al., 2009) of a vast dust ring orig-
inating from the largest of the irregulars (Phoebe) shows that these
dust-producing collisional processes are ongoing even today.
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Small dust particles are strongly affected by radiation forces
(Burns et al., 1979); in particular, Poynting–Robertson drag will
cause particles to lose energy and slowly migrate toward their par-
ent planet. One should therefore expect mass transfer from the
dark outer irregular satellites to the generally brighter inner regu-
lar satellites (see Fig. 1). Iapetus is the outermost of the regular sat-
ellites and importantly, is observed to be tidally locked (McCord
et al., 1971). As such, one hemisphere permanently faces the direc-
tion of motion and would plow through the cloud of dark dust as
the cloud evolves inward. Since Phoebe (and most of the other
irregulars) orbits retrograde and would generate dust particles on
retrograde paths, collisions with the prograde Iapetus would occur
at high relative velocities (�7 km/s) and the dust would mostly
coat Iapetus only on its leading side. This model for the exogenous
origin of the dark material on Iapetus was first proposed by Soter
(1974) and seems plausible; when one looks at the observed albe-
do map of Iapetus, one finds that the dark region, Cassini Regio, is
centered precisely around the apex of motion—a difficult fact to ex-
plain for endogenous mechanisms (Denk et al., 2010).

As Denk et al. (2010) point out, however, the extremely sharp
boundaries between bright and dark material cannot be the result
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Fig. 2. Schematic diagram showing the geometry of the important perturbations
acting on dust grains in orbit around Saturn. Vectors are described in the text above.

Fig. 1. This schematic diagram depicts the expected extent of the Phoebe ring (solid
gray), as well as the orbits of both Phoebe (black) and the rest of the irregular
satellites (light gray). The circle at the center represents the main rings, with the E
ring surrounding them. Approximate scale is provided in Saturn radii (Rs).
According to the model of Soter (1974), as the ring of retrograde dust drifts inward
from Phoebe’s semimajor axis (arrows), Iapetus’ leading side sweeps up this
material, darkening its leading side. Figure provided by Matthew S. Tiscareno.
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of simple dust deposition, which would yield more gradual transi-
tions. To explain the striking boundaries, as well as the bright
poles, Spencer and Denk (2010) propose a model of runaway ice
sublimation in which areas initially darkened by dust become
completely blackened. The sublimed ice then settles on the poles
and on the brighter (and therefore colder) trailing side. These
two processes together, exogenous dust deposition coupled with
thermal ice migration, seem the most promising mechanism to
forming Iapetus’ striking global albedo dichotomy.

The recently discovered ‘‘Phoebe Ring’’ (Verbiscer et al., 2009)
represents a snapshot in time of the inexorable process of mass
transfer from the dark outer irregulars onto the inner icy satellites.
The ring thickness implicates Phoebe as the source, showing that
Soter’s mechanism of coating Iapetus is ongoing. We will show be-
low that almost all particles in the Phoebe ring of size J 10 lm
will strike Iapetus; however, particles smaller than �5 lm will
strike Saturn, its main rings, or escape the system within a half-
Saturn orbit (�15 years) due to radiation pressure (Verbiscer
et al., 2009).

Our presentation improves on two previously published works.
Burns et al. (1996) published a short analysis of the dynamics of
dust particles from Phoebe and Tosi et al. (2010) included in their
paper a simplified analysis that included Poynting–Robertson drag
but neglected the important effects of the dominant component of
solar radiation pressure (radial from the Sun), which affects parti-
cles’ eccentricities and can quickly drive small grains out of the
system.

This paper performs a more in-depth analysis, considering all
the important radiation and tidal perturbations from the Sun and
calculating the expected coverage on the Iapetus surface. We also
include the precession of Iapetus’ orbital axis, which extends cov-
erage over the poles.

The paper is organized as follows. Section 2 discusses the
determination of probabilities for dust striking Iapetus from numeri-
cally integrated dust orbits. In Section 3 we present calculated
distributions of dust on the Iapetus surface, comparing them to
the observed distribution and using them to obtain estimates for
polar deposition rates. Section 4 addresses the same process for
the dozens of irregular satellites other than Phoebe, and Section 5
tracks the fate of dust grains that do not strike Iapetus and that in-
stead collide with Hyperion and Titan.
2. Collision probabilities

2.1. Orbital integrations for dust particles

In order to estimate dust particles’ likelihoods of striking Iape-
tus, we first consider the important effects of the perturbations
affecting dust particle dynamics. Most dust particles spend their
lifetimes in a radial range (between the orbits of Phoebe and Iape-
tus) where the dominant perturbations are solar. The important
modifications to these particle orbits therefore result from radia-
tion pressure and solar gravity. Nevertheless, since small particles’
eccentricities can bring them closer to Saturn, we also included the
perturbation from Saturn’s second-order zonal harmonic in our
numerical integrations.

As mentioned in Section 1, particles smaller than �5 lm are so
affected by solar radiation pressure that they are quickly removed
from the system; in this size regime, electromagnetic forces from
the planet’s magnetosphere are negligible relative to the other per-
turbations (Burns et al., 2001). Note that the smallest particles
might not be blown out by radiation pressure; once the particle
size becomes small relative to the incident light’s wavelength,
the dust particles will no longer be able to effectively couple to
the radiation field. Such particles presumably account for a small
fraction of the total mass, and their orbits would decay too slowly
to reach Iapetus—we therefore ignore them.

The equation of motion can be written as

€r ¼ �GMS

r3 r̂þ
SAQ pr

mc
bS � SA

mc2 Q pr½ð _r � bSÞbS þ _r�

� GMSun

a3 rðr2P2ðâ � r̂ÞÞ þ GMSR2
S J2r P2ðŝ � r̂Þ

r3

� �
; ð1Þ

where the terms, in sequence, are due to the dominant saturnian
gravity, solar radiation pressure, Poynting–Robertson drag, the
Sun’s tidal gravity, and Saturn’s J2. G is the gravitational constant,
MS Saturn’s mass, r the dust particle’s distance from Saturn, S the so-
lar flux at the particle’s position, A the particle’s cross-sectional
area, Qpr the grain’s pressure efficiency, m the particle mass, c the
speed of light, a the semi-major axis of Saturn (assumed to be on
a circular orbit about the Sun), RS the radius of Saturn, J2 Saturn’s
second-order zonal harmonic, and P2 the second Legendre polyno-
mial. The vector _r is the particle’s velocity, and the other vectors
can be seen in Fig. 2; r̂ is the direction from Saturn to the particle’s
position, bS is the direction from the Sun to the particle position, â is
the direction from the Sun to Saturn, and ŝ is the direction along
Saturn’s spin axis (perpendicular to the equatorial plane).



262 D. Tamayo et al. / Icarus 215 (2011) 260–278
While commonly considered in a heliocentric context, Poyn-
ting–Robertson drag also causes particles’ orbits around a host pla-
net to decay into the planet on a timescale given by (Burns et al.,
1979):

sPR ¼ 530 years� a2
Sat

bR=G
; ð2Þ

where aSat is Saturn’s semimajor axis in AU (�9.5) and bR/G is the
dimensionless ratio of the radiation force to the Sun’s gravitational
force (in this case approximately 0.36/r, where r is the particle size
in lm). sPR therefore scales linearly with particle size.

Superimposed on this slow orbital decay (timescale �106 years
for spherical 10 lm particles) is a fast oscillation in the eccentricity
(P � 1 Saturn year ’ 30 years) due to both solar radiation pressure
and the Sun’s tidal gravity (Burns et al., 1979; Hamilton and Krivov,
1996). Eventually, dust-particle orbits will cross that of Iapetus as
Poynting–Robertson drag reduces the orbit size and radiation pres-
sure periodically induces large eccentricities. Over time, therefore,
the dark particles will impact Iapetus’ leading side.

As opposed to gravitational accelerations, accelerations due to
radiation forces are mass—and therefore size—dependent. As a re-
sult, we numerically integrate orbits for different-sized particles
using the well-established dust integrator ‘‘dI’’ (see Hamilton,
1993; Hamilton and Krivov, 1996; Hamilton and Krüger, 2008).
This provides a particle’s orbital elements as a function of time
for each particle size.

In any particular history, we choose particles of a given size and
assign them a density (we assume that dust particles would share
Phoebe’s density of 1.6 g/cm3). As discussed in further detail below,
they are then started at various positions along Phoebe’s orbit and
initially move with Phoebe’s velocity. We determine that for our
assumed density, particles smaller than 4 lm are so affected by
radiation pressure that within the first half-Saturn year their
eccentricities reach a value of unity and the grains either collide
with Saturn or its rings, or escape the Saturn system entirely. This
corresponds to �10 particle orbits and a negligible probability of
collision with Iapetus. One should therefore expect only a signifi-
cant contribution to Iapetus from particles J 4 lm in size. Since
dust particles are not actually spherical and will contain some void
space, our assumed density is probably high and our 4 lm likely
represents a lower limit.

On the other extreme, the orbital eccentricities of particles lar-
ger than 500 lm (Poynting–Robertson decay timescale J 50 myrs)
are almost completely unaffected by radiation forces and are dom-
inantly affected by the Sun’s tidal gravitational force, which is
independent of particle size. We therefore run integrations for par-
ticle sizes of 5, 10, 25, 50, 100, and 500 lm. A 25 lm particle’s orbi-
tal element evolution is shown in Fig. 3 with its slow semimajor
axis decay and rapid eccentricity oscillations (P � 30 years). The
bottom panel shows the pericenter distance q. When q crosses a
satellite’s semimajor axis, collisions with that moon become
possible.

A few considerations supply the appropriate initial conditions
for the integrations. All particles leaving Phoebe must have initial
speeds J Phoebe’s escape speed vesc. Since dust-producing impact
events produce a distribution of ejecta velocities with a decaying
tail toward higher speeds, one should expect most particles that
escape Phoebe to have launch speeds near vesc (Farinella et al.,
1993). Therefore, since Phoebe’s escape velocity is much smaller
than its orbital velocity (�0.1 km/s vs. �1.7 km/s), we expect most
dust particles generated in an impact with Phoebe to approxi-
mately share that moon’s orbital elements. This sets the initial con-
ditions for the semimajor axis, eccentricity and inclination
(a = 1.296 � 107 km, e = 0.156, i = 175.2� with respect to Saturn’s
orbital plane about the Sun).
The last three initial conditions—the three angles that deter-
mine the orientation of the orbit (see Fig. 4)—depend on the time
of impact itself. Specifically, they are set by the orientation of
Phoebe’s orbit (X and x), and Phoebe’s position within its orbit
(f, the true anomaly) at the time of impact. This would represent
a formidable phase space to cover for long integrations, but fortu-
nately several considerations limit the phase space considerably.

The shortest timescale for the perturbations involved is the
�30-year period of the Sun’s apparent motion about Saturn. Since
the dust particles’ orbital periods around Saturn are much shorter
than this (�1.5 years), the exact position of Phoebe (f) in its orbit at
the time of impact does little to influence the subsequent evolution
of the orbit’s shape or orientation; thus it can be chosen arbitrarily.

Phoebe’s orbit orientation at the time of impact, however, is
important because it precesses more slowly. Nevertheless, one
can still limit the phase space by inspecting the geometry. Since
the dominant perturbations in this problem are all of solar origin,
the logical plane from which to reference inclinations is Saturn’s
orbital plane (i.e., the plane in which the Sun appears to move in
a Saturnocentric frame). Phoebe’s inclination relative to Saturn’s
orbital plane of 175� means its own orbital plane is almost copla-
nar, albeit in a retrograde sense, with this reference plane.

In the limit of coplanarity, only one angle (rather than both X
and x) is required to specify the orientation of the orbit given
the inclination, i.e., the angle between an arbitrary reference direc-
tion and the orbit’s pericenter. In this case, the physically meaning-
ful reference direction is the one toward the source of
perturbations, the Sun. The orbital evolution of the dust particle
therefore does not depend strongly on X and x independently,
but rather on the combination X–x, which specifies the angle from
the Sun’s direction to pericenter. Note that for a prograde orbit, the
angle from the Sun’s direction to pericenter would be - �X + x,
but since x is measured in the direction of orbital motion, the
appropriate combination for retrograde orbits is X–x.

The approximations discussed above transform an intractable
multidimensional space of initial conditions into a simple one-
dimensional space. The elements a, e, and i are those of Phoebe’s
orbit, and the only other initial condition left to supply is the quan-
tity X �x, with X measured relative to the Sun’s direction at the
time of impact. Since impacts could happen at any point in the pre-
cession cycle, we chose to perform integrations for eight equally-
spaced values of X �x.

We therefore generate, for each particle size, eight sets of a(t),
e(t), and i(t) corresponding to eight equally-spaced initial values
of X �x. Taking the initial values of X �x as equally likely, we
average over the eight sets of outputs, yielding, for each particle
size, a single set of functions a(t), e(t), and i(t). These provide the
inputs for the collision probability calculations. While we exploit
Phoebe’s orbit’s near-alignment with Saturn’s orbital plane to com-
bine X and x for our initial conditions, the numerical integrations
are carried out fully in three dimensions. This allows us to track the
orbital inclination, a crucial input to a 3-D collision probability
calculation.

2.2. Collision probabilities

In order to estimate collision probabilities, we used the formal-
ism developed by Greenberg (1982), as improved by Bottke and
Greenberg (1993). In this formalism, the dust particle’s and Iape-
tus’ semimajor axes, eccentricities and inclinations (a,e, i) are taken
as known while the precession angles that determine the orienta-
tion of the orbits (X and x) are treated as uniformly distributed.
Barring resonances between the orbital periods of the dust parti-
cles with Iapetus, this should be a good assumption over collision
timescales ( J 106 years), which are long compared to the longest
precession timescale (Iapetus’ orbit pole, s � 103 years). This
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Fig. 3. Evolution of a 25 lm particle under the effects of solar perturbations. Top panel shows the particle’s semimajor axis, which starts at Phoebe (a�215RS) and decays on a
timescale �2.5 Myrs. Superimposed on this slow evolution of the semimajor axis is a rapid oscillation in the eccentricity (middle panel) on a timescale �1 Saturn year
� 30 years. The bottom panel shows the particle orbit’s pericenter q, along with the semimajor axis of Iapetus and Titan.

Fig. 4. The three Euler angles that define an orbit’s orientation: i, X and x. (Figure
from Greenberg (1982).)
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assumption was found to agree with the angular distributions from
the numerical integrations.

An alternative strategy could have been to numerically inte-
grate many dust particle orbits and to directly see when and where
on Iapetus they strike. One drawback of such a method is that Iape-
tus’ small size relative to the dust orbits would dictate using extre-
mely small step sizes in the integration. Our approach allowed us
to perform fewer computationally expensive orbit integrations
per particle size in exchange for computationally cheaper collision
probability integrals.

The calculations of Greenberg (1982) are too complicated to
reproduce here. The calculation is performed by first calculating
the values of (Xp,XI,xp,xI) that would lead to the two orbits cross-
ing (‘p’ subscripts refer to the particle and ‘I’ subscripts to Iapetus).
Then the objects’ finite size is taken into account by Taylor-
expanding around these crossing solutions to find the volume in
(Xp,XI,xp,xI) space over which collisions are possible. Finally
one calculates from Keplerian theory the probability that both ob-
jects will simultaneously be close enough to the point of closest
approach for a collision to occur within one object’s orbit. The ratio
of this probability to the orbital period provides a collision fre-
quency. We compared our code to the test cases presented in Bot-
tke and Greenberg (1993) and found it reproduced their results.

Due to the wide disparity between orbital period (�1 year) and
the collision timescale (�106 years), it is impractical to calculate
collision probabilities for every orbit. One can see in Fig. 3, how-
ever, that while the eccentricity is oscillating rapidly, the envelope
that bounds the oscillation changes slowly, on roughly the Poyn-
ting–Robertson timescale (sPR J 1 myrs). In particular, the figure
uses only 104 equally-spaced points in time and is still able to cap-
ture the full behavior. As a result, rather than calculating probabil-
ities every orbit, we did so for 104 timesteps.

Given a, e, i for both Iapetus and dust particle, Greenberg’s for-
malism (1982) provides a collision frequency,

Frequency ¼ Probability of collision within one orbit
Period of orbit

: ð3Þ
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For timesteps Dt� 1/Frequency, one can then straightforwardly
express the collision probability within Dt as

P ¼ Frequency� Dt: ð4Þ

One can then recursively generate a cumulative probability of colli-
sion C, i.e., the probability at time t that the particle has already
struck Iapetus. Starting with C(0) = 0,

CðtiÞ ¼ Cðti�1Þ þ ð1� Cðti�1ÞÞ 	 PðtiÞ: ð5Þ

The probability of two collisions within a single Dt is negligible and
was ignored. P(ti) depends on the orbital elements for Iapetus and
the dust particle at ti. For the dust particle we used a(ti), e(ti), and
i(ti), generated as described above. For Iapetus, we used the present
values of a = 3.561 � 106 km and e = 0.03. Iapetus’ inclination with
respect to Saturn’s orbital plane, however, changes significantly
over time and must be considered more carefully.

To first approximation, the orbit normal precesses uniformly
and at a constant inclination to a vector determined by the pertur-
bations causing the precession. This causes the orbit normal to
sweep out a cone (see Fig. 5). The vector around which orbits pre-
cess defines the local Laplace plane (normal to this vector). At
Phoebe’s orbit, all the dominant perturbations are solar, so the lo-
cal Laplace plane corresponds to the plane in which the Sun ap-
pears to move, Saturn’s orbital plane. Close to Saturn, where the
dominant perturbation is Saturn’s oblateness, the local Laplace
plane is Saturn’s equatorial plane. Iapetus has the unique orbital
property among satellites of existing at a distance where saturnian
and solar perturbations are comparable, and the local Laplace
plane is intermediate, at about 11.5� to Saturn’s orbital plane
(see Ward, 1981).

Because of this misalignment, although Iapetus will precess at
approximately constant inclination to the normal to its local La-
place plane, its inclination relative to our reference plane (Saturn’s
orbital plane) will change as the orbit precesses (see Fig. 5). We
therefore assumed uniform precession and coarsely averaged the
probability calculation over an entire precessional cycle, sampling
Fig. 5. A schematic representation of the changing orientations of Iapetus’ and
Phoebe’s orbits (represented by their respective orbit normals PON = Phoebe Orbit
Normal and ION = Iapetus Orbit Normal). The moons’ orbit normals precess at
constant inclinations (5� and 8� for Phoebe and Iapetus, respectively) to the normal
vector to their local Laplace planes, sweeping out a cone. Phoebe’s Laplace plane
coincides with Saturn’s orbit normal, while Iapetus’ local Laplace plane normal
(ILPN) is inclined about 11� to Saturn’s orbit normal.
more finely when the inclinations of the particle and Iapetus were
antiparallel and the collision probability was changing fastest.

Finally, as mentioned in Section 2.1, we averaged over the eight
equally probable initial conditions that we integrated, yielding an
overall cumulative probability of collision for the given particle
size.

Apart from Iapetus, we also tracked collisions with Hyperion
and Titan, as well as re-impacts into Phoebe. We therefore straight-
forwardly generalized the discussion above to not only update the
cumulative probability of collision with Iapetus at each timestep,
but also those with the other three moons. As is discussed below,
Titan’s large size renders it a sink for any long-lived dust particles
that cross its path; thus, no other moons interior to it would re-
ceive appreciable amounts of dust and such bodies are therefore
not tracked. As mentioned earlier, however, a significant fraction
of the particles smaller than �5 lm whose eccentricities all reach
unity will strike Saturn or its rings within the first half Saturn-year.

2.3. Results

Fig. 6 shows the calculated cumulative collision probability
with Iapetus for 5, 10, and 25 lm grains.

Particles 10 lm and larger, being less affected by radiation
forces, evolve inward via Poynting–Robertson drag so slowly (i.e.,
they execute many Iapetus-crossing orbits before crossing the or-
bits of Hyperion or Titan) that they almost all eventually strike
Iapetus. As stated before, particles smaller than about 4 lm quickly
strike Saturn or escape the Saturn system. Therefore, of the longer-
lived particles, almost all particle sizes are bound for Iapetus—only
a very narrow size range (between about 4 and 10 lm for the cho-
sen density) can miss and end up mostly on Titan, with a substan-
tially smaller fraction striking Hyperion.

We mention that, while almost all particles larger than �10 lm
would eventually strike Iapetus, it takes larger particles longer to
evolve inward and hit the satellite. In particular, for particles in
the geometrical optics limit (the peak wavelength in the solar
spectrum �0.5 lm� 2prdust, satisfied for all particle sizes we con-
sider), the Poynting–Robertson decay timescale grows linearly
with particle size (see Burns et al., 1979). As a reference, assuming
particles share Phoebe’s density of 1.6 g/cm3, 10 lm particles reach
Iapetus in �1 Myr.

As particle sizes increase, one should expect to find a threshold
where particles stop hitting Iapetus when the Poynting–Robertson
decay timescale becomes longer than the timescale for the destruc-
tion of dust grains. Unfortunately, destruction lifetimes for dust in
Fig. 6. Cumulative collision probabilities vs. time for 5, 10 and 25 lm particles.
Particles J 10 lm almost all strike Iapetus, though larger particles take a longer
time to do so.
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the outer Saturn system are not well constrained (cf. Burns et al.,
2001). One mechanism for the destruction of dust grains is through
mutual collisions. One can estimate the mean free time between
particle collisions as

tMF �
P
s
; ð6Þ

where P is the particles’ orbital period and s the ring’s normal opti-
cal depth. Taking the optical depth in the Phoebe ring, s � 2 � 10�8

(Verbiscer et al., 2009), this yields tMF � 100 Myr, the Poynting–
Robertson decay timescale corresponding to 1 mm grains; however,
for each particle size, only collisions with particles of roughly the
same size or larger affect the dynamics. This would act to increase
tMF, but is dependent on the (currently unconstrained) particle size
distribution. On the other hand, dust rings collisionally generated
early in the Solar System likely had higher optical depths (Bottke
et al., 2010), lowering tMF. For this work we chose the maximum
upper-size cutoff imposed by setting the Poynting–Robertson decay
timescale equal to the lifetime of the Solar System. This yields a par-
ticle size of �1 cm. Improved estimates of collisional dust lifetimes
in the Phoebe ring must await further observations.

As the introduction mentions, a large supply of dust has been
available in the outer Saturn system over the course of the Solar
System’s history. The fact that particles J 10 lm are virtually cer-
tain to strike Iapetus strongly implicates collisionally generated
dust as the trigger to Iapetus’ stark albedo dichotomy. An exoge-
nous origin of the dark material explains why the pattern is cen-
tered on the apex of Iapetus’ motion and, as shall be shown in
Section 3, the dynamics predict a wrapping of dark material onto
the trailing side consistent with that observed.
Fig. 7. Global mosaic of Iapetus (from Albers (2008)). Dark Cassini Regio is centered
around the apex of Iapetus’ motion, roughly at 90�W, and extends tens of degrees
beyond 0� and 180�W onto the trailing side. The bright poles (beyond �±60�
latitude) and sharp boundaries between light and dark terrain are likely the result
of thermal ice migration (Spencer and Denk, 2010).
2.4. Titan, the gatekeeper to the inner saturnian system

We now explain the sharp drop in the final fraction of particles
that strike Iapetus between 5 and 10 lm, as seen in Fig. 6. This is
due to the large eccentricities induced by radiation pressure, visi-
ble in Fig. 3. For the smallest particles, the eccentricities are high
enough that before the dust grains’ probabilities of striking Iapetus
near certainty, their orbits begin to cross that of Titan. Saturn’s
largest moon is such a better interceptor of particles that the prob-
ability of striking Iapetus quickly stops increasing and levels off.

There are several reasons why Titan is highly efficient at elimi-
nating dust particles. Most obviously, its sheer size makes its geo-
metrical cross section larger than Iapetus’ by a factor of about 12.
Another reason is that collision rates depend on the objects’ rela-
tive velocity, as this determines how frequently the objects can
potentially encounter each other (see discussion following Eq.
(32)). Relative velocities between dust particles and Titan are sub-
stantially higher than those with Iapetus simply because in order
to reach the further-in Titan, particles generally have to be on very
eccentric orbits (e = 0.7–0.9), and will encounter Titan close to
periapse.

One might have expected slow relative velocities to lead to en-
hanced collision probabilities due to strong gravitational focusing
for slow encounters. In fact, gravitational focusing plays little role
in this problem because the moon orbits are prograde while the
dust orbits are retrograde, resulting in high relative velocities com-
pared to the satellites’ escape velocities (vesc = 0.572 km/s for Iape-
tus, vesc = 2.639 km/s for Titan). For typical encounter velocities,
Iapetus’ gravitational cross-section is about 0.5% greater than its
geometrical cross-section ([10% for Titan).

Though we account for gravitational enhancements to the colli-
sion cross section, in our orbit integrations we ignore close encoun-
ters with Titan (and all other satellites) on subsequent orbital
paths. For typical relative velocities, the maximum scattering angle
from a close encounter is �10�. The corresponding angle for Iape-
tus is �0.5�.

We postpone our discussion of the total amount of material that
strikes Titan and the smaller Hyperion, along with its implications,
until Section 5.

3. Coverage

Since much of the dust previously orbiting in the outer satur-
nian system will eventually strike Iapetus, we ask where on Iapetus
those particles would have landed. In particular, can the dynamics
match the extent of Iapetus’ dark side, Cassini Regio? The emplace-
ment of dust could then trigger the thermal migration of ice
thought to give Iapetus the striking appearance it has today (Spen-
cer and Denk, 2010).

Cassini Regio extends beyond Iapetus’ leading side by tens of
degrees onto the trailing side along the equator (see Fig. 7). As
Burns et al. (1996) have suggested, dust eccentricities naturally ex-
plain the longitudinal extension of the dark material onto the trail-
ing side.

If orbits were perfectly circular, dust particles would only strike
Iapetus head-on, as both objects would be moving perfectly azi-
muthally in opposite directions; thus, only the leading face would
be darkened since, as discussed at the end of Section 2.4, the
encounter velocities make gravitational focusing negligible.

When particles have eccentric orbits, however, particle veloci-
ties are no longer perfectly azimuthal, and the radial components
allow particles to strike the moon further along the equator (see
Fig. 8). Eccentricities induced by radiation pressure therefore pro-
vide a natural mechanism for extending dust coverage onto the
trailing side.

However, just as eccentricities act to extend coverage longitudi-
nally, dust-orbit inclinations and Iapetus’ varying orbital tilt should
extend coverage latitudinally over the poles (Burns et al., 1996, and
see Fig. 5). Images of Iapetus, however, reveal bright, icy poles.

As previously mentioned, thermal ice migration provides a
mechanism for brightening the poles (Spencer and Denk, 2010).
Icy patches on Iapetus darkened by exogenous dust increase in
temperature as a result of their lowered albedo. Sublimation rates,
which depend exponentially on temperature (e.g., Vyazovkin and
Wight, 1997), thereby increase sharply. This liberates bright ice
and leaves behind an even darker surface. The further darkened
surface’s temperature rises further, and the cycle repeats in a
self-accelerating process until a lag deposit forms with thickness
of order the thermal skin depth Spencer and Denk (2010). The re-
sult is that warm, darkened areas become extremely dark and ice-



Fig. 8. Iapetus is depicted as the circle moving on a prograde orbit, while the dust
moves on retrograde orbits. The white lines separate Iapetus’ leading and trailing
sides. When orbits are circular (left), dust will solely darken the leading side, while
the radial velocities of eccentric orbits allow dark material to reach part of the
trailing side.
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free, while the sublimed ice settles on the coldest areas of the
moon—the trailing side and the poles.

The distribution of dark material on the surface therefore holds
several insights into ongoing processes on Iapetus as well as to the
past and present prevalence of dark dust in the outer saturnian
system. Unfortunately, it is difficult to observationally determine
the dark layer’s depth. Bright-floored craters from small impactors
that punctured through the dark layer constrain the layer to being
much thinner than the crater’s depth �10 m (Denk et al., 2010),
while radar measurements (Ostro et al., 2006) imply Cassini Regio
is on the order of decimeters deep.

Given the above background, we wish to calculate the probabil-
ity distribution for where on Iapetus dust would strike for three
reasons:

(a) One can convert a probability distribution to a depth distri-
bution (Section 3.2) and compare the resulting global map to
the observed Iapetus surface. Such a comparison tests the
hypothesis that Iapetus is darkened by dust from Phoebe
and can provide depths in areas where observations are
not available.

(b) Calculated polar deposition rates of dust yield an estimate of
the minimum sublimation rate required to overwhelm dust
deposition and keep the poles bright.

(c) A global depth distribution provides the total volume of dark
material on Iapetus. This volume, coupled with the collision
probabilities of dust calculated in Section 2, provides a probe
of the total amount of dust collisionally generated in the
outer saturnian system over its history (cf. Bottke et al.,
2010).

We subdivide this problem by first calculating the collision
probability distribution over the surface of Iapetus in Section 3.1.
Then 3.2 converts this probability distribution to a depth distribu-
tion, and 3.3 estimates the sublimation rates required to keep the
poles bright. We postpone discussion of point (c) to Section 5.
Fig. 9. The orbits capable of striking Iapetus are well approximated by a uniform
disk of parallel trajectories, shown on left. Probabilities are then simply propor-
tional to the projected area, given by dAcosw. The apex of motion is at the leftmost
point on the semicircle.
3.1. Collision probabilities as a function of latitude and longitude

We now find the probability per unit area for particles striking
Iapetus at latitude h and longitude /. Note that we can quickly
determine the rough shape such a distribution should take in the
limit of circular, uninclined orbits (a good approximation for large
particles). In this limit, dust particles strike Iapetus’ leading side
head-on. Also, since aI
 RI, we can approximate the orbits of Iape-
tus-striking particles as parallel straight lines. Finally, in this
approximation, our assumed uniform distribution in the variables
X and x for both orbits (see Section 2.2) translates into a uni-
formly distributed bundle of quasi-parallel trajectories capable of
striking Iapetus. In such a uniform field, the probability of an im-
pact in a given area element simply is proportional to its projected
area, given by dAcosw, where w is the angle between Iapetus’
velocity vector and the outward normal vector to the area element.
Equivalently, w is the angular distance from the apex of motion
(see Fig. 9, in which Iapetus is moving to the left). In this simple
case then, the probability per unit area is a simple function of w,

Pðh;/Þ / cos w: ð7Þ

This approximation is good over most of the leading hemi-
sphere, though it is clearly incapable of describing the extension
of the dark material onto the trailing side and of quantifying prob-
abilities in the interesting transition region from the dark to the
light terrains. As described in Section 2.4, wrapping onto the trail-
ing hemisphere cannot be the result of Iapetus’ negligible gravita-
tional focusing of retrograde particles (the maximum deflection of
a retrograde particle by Iapetus’ gravity is �1�). Such extension is,
however, a natural consequence of dust particles on eccentric or-
bits (see Fig. 8). We therefore now calculate the probability distri-
bution in the more general case of eccentric, inclined particles.

Following Greenberg’s formalism (1982), we express the proba-
bility distribution function (pdf) as an integral over all the uni-
formly distributed angles (XI,xI,Xp,xp), where the ‘I’ subscripts
refer to Iapetus, and the ‘p’ subscripts to the dust particle. Fig. 4
shows the geometry of an arbitrary orbit’s three angular orbital
elements i, X and x.

As Greenberg (1982) notes, however, the problem’s geometry
does not depend on the values of XI and Xp independently—the
only geometrically meaningful quantity is their difference DX. Fur-
thermore, an important simplification can be made by approximat-
ing Iapetus’ orbit as circular (its actual eccentricity = 0.03 and for
circular dust orbits would lead to extensions of only �1� onto
the trailing side). This obviates the need to specify xI, the position
of pericenter in Iapetus’ orbit. These two considerations reduce the
phase space dimensionality from (XI,xI,xp,Xp) to (xp,DX), so
that

qðh;/Þ ¼
Z

qðh;/;xp;DXÞdxp dDX; ð8Þ
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where the integral spans the region in (xp,DX) space in which col-
lisions occur. q(h,/,xp,DX) can further be expressed in terms of the
conditional pdf q(h,/) given the set (xp,DX) multiplied by the
probability density for (xp,DX),

qðh;/;xp;DXÞ ¼ qðh;/jxp;DXÞqðxp;DXÞ; ð9Þ

so

qðh;/Þ ¼
Z

qðh;/jxp;DXÞqðxp;DXÞdxp dDX: ð10Þ

This simplifies the problem because q(xp,DX), the probability of
striking Iapetus (anywhere) given xp and DX, is already available
(Greenberg, 1982). The problem is then reduced to finding q(h,/
jxp,DX).

While analytically correct, Eq. (10) is a formidable integral to
compute numerically due to the scale separation in the problem.
The orbit is so large compared to the satellite that a minute change
in xp or DX shifts the location of impact drastically. This sensitiv-
ity of q(h,/jxp,DX) dictates extremely fine stepsizes in the inte-
gration. When combined with the fact that the calculation must
be done for 104 separate timesteps, eight initial conditions and
six particle sizes, the scale separation indicates a brute force ap-
proach will be cumbersome at best.

However, this approach considers each orbital orientation indi-
vidually. The scale separation let us consider well-defined groups of
orientations. Consider an orientation where the orbits cross ex-
actly, i.e., the particle would pass through the center of Iapetus.
There is a range in DX and xp around this orbital orientation
where the orbits no longer exactly cross but are still close enough
that the particle impacts Iapetus (Fig. 10).

As previously argued, the facts that aI
 RI and that gravita-
tional focusing is negligible mean that, near impact, we can
approximate these orbits as a uniformly distributed disk of parallel
trajectories. This approach allows one to coarsen stepsizes while
retaining the symmetries in the problem and maintaining the fidel-
ity of the final distribution.

With these considerations, the problem of calculating the distri-
bution function is more tractable. Our approach will be to first find
the latitude and longitude for exactly crossing orbits, and then to
find how the disk of parallel orbits around the central orbit maps
onto the spherical surface of Iapetus.

Given a particular DX, one can combine it with the inclinations
to determine the orientation of the orbital planes relative to each
other (see Fig. 2 in Greenberg (1982)). The relative inclination i0

is given by spherical trigonometry,

cos i0 ¼ cos iI cos ip þ sin iI sin ip cos DX: ð11Þ
Fig. 10. Orbits can only cross along the line that marks the intersection of both
orbital planes (the line of nodes). Iapetus is depicted at one of the nodes, with its
size greatly exaggerated. For the particle orbits, there is a range in the angle from
the node to pericenter (xp) Dxp where collisions with Iapetus are possible.
Similarly there is a collisional range in DX, the angle that rotates the line of nodes
in the plane (not shown).
Within the particle’s orbital plane, xp sets the orientation of the or-
bit. Having approximated Iapetus’ orbit as circular, we do not have
to consider the satellite’s orientation within its orbital plane. From
Fig. 10, it is clear that most particle-orbit orientations do not result
in a crossing. Furthermore, if the two orbits are to cross, they must
do so at either of the two nodes where Iapetus’ orbit pierces the mu-
tual line of nodes.

The facts that the orbits must cross at a node, and that those
respective points on the orbits must therefore be equidistant from
Saturn sets the possible values of xp (note that this would not be
the case if both orbits were substantially non-circular). The angle
from pericenter to the ascending node is, by definition, �xp. From
the equation for an ellipse, we therefore have the condition,

aI ¼
ap 1� e2

p

� �
1þ ep cosð�xpÞ

: ð12Þ

Rearranging,

cos xp ¼
1
ep

ap 1� e2
p

� �
aI

� 1

24 35: ð13Þ

Since cosine is an even function, Eq. (13) gives two solutions ±xp,
reflecting the ellipse’s symmetry across its long axis. Similarly, an-
other pair of solutions are present at the descending node, located
at an angle of 180 �xp from pericenter. In general, therefore, four
orientations yield crossing orbits for a given DX (see Fig. 1 in
Wetherill (1967)).

The imposed circularity of Iapetus’ orbit means that these four
orbits will strike symmetrically about the equator and about the
longitude that corresponds to the apex of motion (this occurs be-
cause the satellite rotates synchronously). In other words, if we de-
fine the longitude in the direction of motion as 0�, the four exactly-
crossing orbits will strike at (±h, ±/). These can later be adjusted to
conform with the conventional longitude in the direction of mo-
tion—the zero-longitude meridians are currently under revision
for Saturn’s satellites (Roatsch et al., 2009). Given a DX, one there-
fore only has to compute (h,/) for one of the four orientations and
then straightforwardly substitute for the other three. Here we
choose to consider collisions at the ascending node.

The relevant vector to consider is the relative velocity vector in
a coordinate system centered on the ascending node (see Fig. 11).

The spherical angles that define the direction of the particle’s
relative velocity vector in this system determine the location of im-
pact on the Iapetus surface. The relative velocity vector is given by

~vrel ¼ ~vp �~vI: ð14Þ

Having approximated Iapetus’ orbit as circular, ~vI is always azi-
muthal. ~vI can therefore be simply written in terms of the uniform
circular velocity,

~vI ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
GMSat

aI

s 0
1
0

0B@
1CA: ð15Þ

~vp is given in the particle’s orbital plane in cylindrical coordinates
by Hamilton (1993),

~v0p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

GMSat

ap 1� e2
p

� �vuut ep sin f
1þ ep cos f

0

0B@
1CA: ð16Þ

Since we are interested in the particle’s velocity at the ascending
node in particular, we plug in f = �xp (see Fig. 11). At the ascending
node, the unit vectors r and r0 align, but the remaining unit vectors
are misaligned by the relative inclination i0. We therefore rotate ~vp

by an angle �i0 around the r axis (see Fig. 11), yielding



Fig. 11. Iapetus’ circular orbit is executed in the lighter horizontal plane, while the
particle’s orbit is carried out in the inclined darker plane, with the two crossing at
the particle orbit’s ascending node. We choose to work in a cylindrical coordinate
system centered at the ascending node where the z direction is Iapetus’ orbit
normal. For simplicity, we first express the particle’s velocity in its own orbital
plane, where z0 is the orbit normal. The relative inclination i0 and argument of
pericenter xp are also depicted.
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~vp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

GMSat

ap 1� e2
p

� �vuut �ep sin xp

cos i0ð1þ ep cos xpÞ
sin i0ð1þ ep cos xpÞ

0B@
1CA: ð17Þ

The relative velocity vector in Eq. (14) can then be obtained from
Eqs. (15) and (17), plugging in for cosxp from Eq. (13). The latitude
h and longitude / on Iapetus where the particle strikes are then gi-
ven by,

h ¼ Lat ¼ �tan�1 v rel
zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v rel
x

� �2 þ v rel
y

� �2
r

0BB@
1CCA; ð18Þ

/ ¼ Long ¼ tan�1 v rel
y

v rel
x

 !
� 180�: ð19Þ

The symmetry described earlier can then be used to find the lati-
tudes and longitudes for the other three orientations. We have thus
determined the location where particles on the four possible cross-
ing orbits (for a given DX) would impact. The last piece is to include
the disk of parallel trajectories around these crossing orbits that can
still impact Iapetus (see Fig. 10).

As mentioned earlier, the scale separation in the problem allows
us to consider all the orbits that can strike Iapetus close to the
crossing orbit as parallel lines with a uniform probability distribu-
tion. The situation is analogous to the one presented at the begin-
ning of the section, except with the w = 0 direction now interpreted
as the incoming trajectory at latitude and longitude h and /,
respectively. The probability is again proportional to the projected
area, so normalizing the probability distribution we obtain

PðwÞ ¼ cos w

pR2
I

; ð20Þ

which falls to 0 as w reaches 90� like it should. Obviously this only ap-
plies to the hemisphere facing the disk—for wherever w > 90�,
P(w) = 0. Again, this would not be the case with substantial gravita-
tional focusing, but as a result of the high relative velocities due to
dust orbits being retrograde, gravitational focusing is negligible (Sec-
tion 2.4). The probability P(w) can then be straightforwardly con-
verted to a probability per dh and d/ for substitution into Eq. (10).

This provides a prescription for numerically computing q(h,/),
the probability density function that we originally set out to find,
as a function of latitude and longitude . Cycling over DX, at each
step, we identify the four crossing orbits and their associated prob-
abilities within the interval, using Greenberg (1982). Then, for each
of the four crossing orbits, we ‘‘spread’’ the respective probability
across the hemisphere defined by the crossing orbit through the
distribution in Eq. (20).

Note that, since q(h,/) depends implicitly on particle eccentric-
ities (cf. Eq. (17)), it will also be a function of particle size. We can
write this explicitly, and straightforwardly convert q(h,/) to a
probability per unit area, by defining Pðr; h;/Þ ¼ qðr; h;/Þ=
cosðhÞR2

I . We choose to use P(r,h,/), the normalized probability
per unit area, in subsequent calculations.

3.2. Calculating depths

Since radiation pressure produces different orbital histories and
is particle-size dependent, different particle sizes have different
pdfs. Fig. 12 shows the probability density functions for 5, 10, 50
and 500 lm particles, with each contour representing a successive
10-fold decay from the peak value at the apex of motion at the left-
most point of each figure.

The figure shows that smaller particles extend farther onto the
trailing side near the equator. This is due to their higher eccentric-
ities, as discussed at the beginning of Section 3 (see Fig. 8). The dis-
tributions for particles J 50 lm quickly converge to the large-
particle limiting distribution, depicted for 500 lm particles. The
eccentricities of these larger particles are too low to cause them
to significantly wrap around the equator onto the trailing side;
however, the coverage over the poles is dominated by the preces-
sion of Iapetus’ orbit, which is independent of particle size.

We now use such probability density distributions P(r,h,/) to
estimate the depth of dust as a function of position on Iapetus’ sur-
face. The volume of dust particles within dr of size r that lands
within an area A on Iapetus at latitude h and longitude / can be ex-
pressed as

Volume ðr; h;/Þ ¼ NðrÞ � Pðr; h;/Þ � A� VðrÞ; ð21Þ

where N(r) is the number of dust particles within dr of radius r gen-
erated in the outer saturnian system and V(r) is the volume of a
spherical particle of radius r. Unfortunately, the current (or past)
particle size distribution N(r) is not well constrained observation-
ally. We therefore consider a variety of exponents for distributions
of the form,

NðrÞ ¼ Dr�b dr; ð22Þ

where D is a normalization constant, and b is the (negative) power
law index of the particle size-frequency distribution. Finally, the
depth can be estimated (to within a packing efficiency factor) as
the volume over an area element divided by the area of the surface
element.

The final integration over the range of particle sizes to find the
total dust depth is complicated by the fact that larger particles,
being less affected by Poynting–Robertson drag, take longer to
reach Iapetus from Phoebe. We can consider two limiting cases:

(a) Most of the debris in the outer saturnian system was gener-
ated early in the Solar System’s history (i.e., the mass contri-
bution from the Phoebe ring is negligible). In this limiting
case, all the particles with Iapetus-collision timescales (and



Fig. 12. Moving from the top-left figure clockwise, probability density functions for 5, 10, 500 and 50 lm particles. Plots represent equatorial views where the vertical line in
the center represents the boundary between leading and trailing sides. As such, the apex of motion is at the leftmost point on each figure. Contours represent successive 10-
fold decays from the peak value at the apex of motion, down to 10�7 of the apex value. Dot-dashed lines are drawn every 10� in longitude.
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destruction lifetimes) smaller than the age of the Solar Sys-
tem will have had time to impact Iapetus and collision time-
scales across different particle sizes are irrelevant.

(b) The mass in the outer saturnian system has been generated
at a constant rate over its history. In this case where parti-
cles are continuously resupplied, smaller particles that
decay inward faster will have a larger effect than they would
have in the first case.

We begin by considering case a) where we investigate all parti-
cles with collision timescales sC smaller than the age of the Solar
System on an ‘‘even footing.’’ Since dust particles’ semimajor axes
decay exponentially through Poynting–Robertson drag on a time-
scale sPR, and since the ratio of Phoebe’s to Iapetus’ semimajor axes
is �3.6, particles that strike Iapetus do so on roughly a single e-
folding timescale, i.e., sC � sPR. The P–R timescale is given by Eq.
(2). This implies that the largest dust size to consider is �1 cm,
with corresponding sPR � 1 Gyr.

Integrating over all particle sizes,

Depthðh;/Þ /
Z rmax

rmin

r3�b � Pðr; h;/Þdr: ð23Þ

For rmin, we use the smallest size of long-lived particles from
Phoebe, approximately 5 lm (see Section 2.1). At the other limit,
we use rmax � 1 cm. Should lifetimes from catastrophic collisions
between particles or other processes (see Burns et al., 2001) be low-
er than �1 Gyr, rmax must be considered more carefully.

We now address case (b), where particles are continuously
resupplied. In this circumstance we can consider each particle size
to fall onto Iapetus at a characteristic rate,
Rateðr; h;/Þ ¼ Volumeðr; h;/Þ
sC

; ð24Þ

where sC is the characteristic collision timescale and is �sPR. We can
express the depth then as

Depthðr; h;/Þ / Rateðr; h;/Þ � t
A

; ð25Þ

where t is the interval over which dust has been accumulating.
From Eq. (2), we find that sC / r, so plugging in for the volume as
was done in the first case, we find that

Depthðh;/Þ /
Z rmax

rmin

r2�b � Pðr; h;/Þdr: ð26Þ

A comparison between Eqs. (23) and (26) shows that a constant
rate of dust production simply acts to steepen the effective power-
law index, because small particles will arrive at Iapetus more
quickly than large ones. The effective power-law index will be
intermediate between the limiting cases of Eqs. (23) and (26),
and the depth can therefore be generally expressed as

Depthðh;/Þ /
Z rmax

rmin

r3�ðbþcÞ � Pðr; h;/Þdr; ð27Þ

where c is a number between 0 and 1 that parametrizes the con-
stancy of dust production over the age of the Solar System. A c of
0 and 1 would therefore, respectively, correspond to cases (a) and
(b) introduced at the beginning of this Section 3.2.

The constant of proportionality in Eq. (27) is a priori highly
uncertain. An important, though poorly constrained, quantity is
the time by which Iapetus had become tidally locked to Saturn.
Iapetus’ dichotomy could not have formed prior to this time, as a
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non-synchronously rotating Iapetus would receive dust equally on
all sides. Furthermore, the thermal models required to explain its
sharp albedo boundaries and bright poles require Iapetus’ slow
79 day synchronous period Spencer and Denk (2010). Castillo-Rog-
ez et al. (2007) estimate tidal locking occurred between 200 Myr
and 1 Gyr after formation. Moreover, Bottke et al. (2010) argue that
most of the dust in the outer Saturn system should have been gen-
erated in the first few 100 Myr. Case (a) reflects a situation where
most of the dust in the outer Saturn system was generated early
and Iapetus was able to quickly achieve synchronous rotation so
that this dust mass arrived after locking. If, on the other hand,
the timescale for tidal evolution is long (�1 Gyr), one might expect
the production of the relevant dust to be fairly constant—case (b)—
since any initial flurry of dust (should there have been one) would
have arrived too soon. Despite these uncertainties, one can still
normalize the depths over the surface a posteriori through a mea-
surement of depth at a particular position (h,/).

In studying Iapetus with the Cassini radar instrument, Black
et al. (2004) found little hemispheric asymmetry in albedo at a
wavelength of 13 cm, while Ostro et al. (2006) observed a strong
dichotomy at 2 cm wavelength. Ostro et al. (2006) interpret these
results as implying contamination of ice with dark material to a
depth of one to several decimeters. The latter’s measurement on
the leading side of Iapetus was centered on (66�W,+39�N), but
the beam size was comparable to the angular size of the satellite
(beam/R = 1.36).

While this measurement is imprecise, it does set the order of
magnitude of the dark material’s depth. Fig. 13 shows depth con-
tours for three different choices of effective power law index,
beff � b + c in (25), assuming a peak depth of dust at the apex of mo-
tion (extreme left of each figure) of 0.5 m. Fig. 14 provides depths
Fig. 13. Depth contours representing 10-fold decays from the peak value (at the extrem
motion (extreme left of each figure) of 0.5 m. Plots represent equatorial views where the v
Dash-dotted lines are drawn every 10� in longitude.
following the equator and meridian passing through the apex of
motion at �90�W for the same cases.

The top graph in Fig. 14 shows that one should expect extension
of dark material �20–30� onto the trailing side for all expected
particle-size distributions. Only small particles ([25 lm in size),
having more eccentric orbits, can significantly reach onto the trail-
ing side. As a result, the shallowest effective power-law index
(beff = 3), having fewer small particles, yields a spatial distribution
that extends onto the trailing side significantly less.

The bottom graph shows the extension over the poles. Far from
Saturn, solar torques dominate torques from Saturn’s oblateness
and cause orbits’ angular momentum vectors to precess, keeping
the inclination roughly constant. Because the inclination is set by
initial conditions (i.e., Phoebe’s orbital inclination), and is indepen-
dent of particle size, the graphs for all three power-law indices
overlap. The extension over the poles (‘‘latitudes’’ > ±90� along
the meridian onto the trailing side) is due to both particle-orbit
inclinations and Iapetus’ orbital precession.

One should be careful in distinguishing measured depths of
dark material (through radar or otherwise) from depths of dust
accumulated over Iapetus’ history. If the model of dust deposition
and subsequent thermal ice migration is correct, the depth of dark
material would be the sum of the contributions from exogenous
dust and from the native lag deposit (see discussion in Section
3). As long as the depth measured is substantially larger than the
expected depth of the lag deposit, the distinction is minor.
Fig. 13 assumes a peak depth of dust of 50 cm—with no impact-gar-
dening, this would imply an actual depth of dark material about
20% greater (with a 10 cm lag deposit). Should improved measure-
ments of the peak dust depth become available, the contours on
these maps could be straightforwardly rescaled.
e left of the figure) for beff = b + c = 3, 4 and 5, assuming a peak depth at the apex of
ertical line in the center represents the boundary between leading and trailing sides.
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Fig. 14. Top graph shows depth vs. longitude along the equator for beff = b + c = 3 (solid), beff = 4 (dashed), beff = 5 (dash-dotted). Bottom graph shows depth vs. latitude along
the meridian passing through the apex of motion (longitude �90�W). The concept of latitude has been extended beyond ±90� along the corresponding meridian on the trailing
side of Iapetus to show the extension of dark material over the poles.
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The additional lag-deposit depths are not included in our mod-
eling; however, since exogenous dust acts as the trigger to thermal
ice migration, the maps above should be good tracers (at low lati-
tudes) of which areas will be dark and which will be light. We can
therefore attempt to predict the boundary of Cassini Regio.

While the figures show a rapid fall-off in depth on the trailing
side, maps of Iapetus show no gradation in albedo. Areas initially
darkened by infalling dust and receiving strong insolation become
almost completely blackened. As a result, the equatorial regions of
the leading side appear uniformly dark, while dust-free areas of the
trailing side and the colder poles, where the ice that sublimated at
lower latitudes settles, appear about ten times brighter.

Thus, if one ignores the contours, the plots above argue for a
blackened leading side extending between 20� and 30� in longitude
onto the trailing side for 3 < beff < 5. In fact, this holds true for all
beff > 3 as shown in Fig. 15. At low latitudes, this matches maps
of Iapetus’ albedo well (see Fig. 7). Deposition of exogenous dust
4
β γ

Fig. 15. The extension in longitude onto the trailing side, chosen as the longitude at
which the depth falls below 10�5 the peak value, for different values of beff = b + c.
The discrete steps are the result of the resolution of the calculation—2� in longitude.
therefore neatly explains the boundaries of the dark material at
low latitudes for the entire range of likely power-law indices
(accordingly, Spencer and Denk (2010) model explains the sharp
boundaries in albedo as well as the bright poles).

If indeed Iapetus was initially darkened by dust from the outer
saturnian system, the extension onto the trailing side seems to ex-
clude the shallowest power-law indices in the particle size distri-
bution, b + c < 3. While it is encouraging that all beff > 3 are
consistent with the observed distribution, the small slope in
Fig. 15 for beff > 3 renders the longitudinal coverage on Iapetus a
comparatively poor indicator of the responsible particle size
distribution.

Fig. 16 shows the distribution for b = 3.5, the power-law index
for an idealized infinite collisional cascade (Burns et al., 2001). It
assumes a constant supply of particles (c = 1) and artificially ac-
counts for thermal ice migration by brightening the poles down
to the observed latitude of �±60� and by completely darkening
areas with depths greater than 5 lm.

As previously mentioned, 5 lm particles are the smallest
Phoebe-generated particles that would strike Iapetus; therefore,
this boundary for the anticipated depth is roughly where one
should expect to transition from uniform darkness to the stochastic
dalmatian patterns observed in the closest Cassini flyby of Iapetus
(Denk et al., 2010). This seems consistent with a visual inspection
of maps (Fig. 7 and see also Blackburn et al., 2010) and images of
Iapetus by Cassini like the one shown alongside in Fig. 16.

An important difference between the modeled surface and the
observed distribution is that the theoretically derived dark terrain
is concave, in the sense that if one follows a meridian on the
boundary, one sees that the dark material extends further in longi-
tude at higher latitudes. Cassini Regio is convex, as can be clearly
seen in Fig. 7, which uses a simple cylindrical projection where
meridians appear as vertical lines. Since temperatures should drop
smoothly as one moves from equator to pole, perhaps the discrep-
ancy results from thermal ice migration. Indeed, such models
(Spencer and Denk, 2010) are able to reproduce this concavity.

Apart from the long-known albedo dichotomy on Iapetus, Denk
et al. (2010) recently detected a new color dichotomy on Iapetus in
which the leading side of Iapetus is substantially redder than the



Fig. 16. Model of the Iapetus surface assuming a peak depth of 50 cm, b = 3.5 and c = 1. All areas with depths >5 lm have been uniformly darkened and the poles beyond ±60�
latitude brightened to artificially account for thermal ice migration. On the right is an image taken by Cassini at roughly the same orientation for visual comparison (obtained
from the Planetary Photojournal—PIA08273).
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trailing side. The color dichotomy seems to extend farther pole-
ward, and transitions more gradually onto the trailing side. Per-
haps, as Denk et al. (2010) point out, the color dichotomy more
faithfully traces where the dust landed while the albedo dichotomy
reflects thermal ice migration’s modification of the initial pattern
of dust deposition. Further work is needed to ascertain quantitative
agreement between observations of the color dichotomy and theo-
retical models like those presented here.

3.3. How much sublimation is required to paint the poles bright?

Substantial amounts of dust should have struck Iapetus at high
latitudes; however, the poles appear bright (Fig. 7). If the preceding
section is correct, this means that bright, sublimed ice from lower
latitudes must be settling on the polar regions faster than dark dust
is landing on them. Our collisional flux then provides an opportu-
nity to constrain sublimation rates.

We found in the previous section that the distribution at the
boundary between the leading and trailing sides depends on the
underlying particle size distribution of dust; however, farther from
the boundaries, as argued at the beginning of Section 3.1, the depth
(at low latitudes) should scale approximately as cos w independent
of the particle size distribution, where w is the angular distance
from the apex (cf. Eq. (20)).

Therefore, following the meridian that passes through the apex
of motion (longitude �90�), at a latitude of 60� the depth should be
roughly half that at the apex (cos60� = 1/2). This point in the polar
region would receive more dust than any other point at the same
latitude as it has the minimum angular distance from the apex.
The fact that this point in the polar region with maximum dust flux
appears bright provides the strongest constraint on the minimum
sublimation rate required to keep the poles bright. Assuming a
peak depth of dust at the apex of 50 cm as done in the previous
section based on radar measurements (Ostro et al., 2006), this im-
plies an average rate for the minimum polar dust deposition of
�25 cm/5 Gyr or �50 lm/Myr.

It is possible, however, that the average rate of deposition
would not match the rate of sublimation. Maybe in the past (when
deposition rates of dust in the outer saturnian system were likely
higher, Bottke et al., 2010), the poles of Iapetus were dark. Perhaps
only recently did deposition of ice exceed that of dust and hide evi-
dence of past dark poles. In that case the rate of ice sublimation re-
quired to keep the poles bright would be lower than the average
dust deposition rate. Dark-ringed craters in the polar terrains could
support such a conjecture, but current observations are unable to
distinguish between these two general possibilities.
Therefore, given only the observation that Iapetus’ poles are
bright today, we now try to roughly constrain the current sublima-
tion rate. We can estimate the deposition rate of the material com-
ing from the Phoebe ring using its measured optical depth.

For lack of better information, we assume that the entire vol-
ume of the ring has the same particle size distribution. In this case,
the rate of dust deposition at a latitude of 60� along the meridian
passing through the apex (longitude �90�W) can be directly ob-
tained from Eqs. (24), (21), (22) and (2),
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where Vd is the volume of the disk and P(r,60�,90�) is the probabil-
ity per unit area for dust striking at the longitude corresponding to
the apex (�90�W) and a latitude of 60�. In pursuing an order of
magnitude estimate, we take all particle sizes in the Phoebe ring
(i.e., J 5 lm) to have probability �1 of striking Iapetus (cf.
Fig. 6). Furthermore, we consider the depth distribution to be sim-
ply proportional to cos w (Fig. 9), with depths of 0 on the trailing
side. For the integrated probability to yield unity,
P(r,60�,90�) � 3 � 10�7 km�2.

We estimate Vd as the volume of a disk 300 RS in radius and 40
RS thick (as done by Verbiscer et al. (2009)), or �2 � 1021 km3. This
yields

Rateð60
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The final integral here is provided by the definition of the nor-
mal optical depth,

s ¼
Z lmax

lmin

Z rmax

rmin

nðr; lÞQ extrðrÞdr dl; ð30Þ

where Qext = Qabs + Qscat. Following Verbiscer et al. (2009), we take
values of Qabs = 0.8 and Qscat = 0.2. They estimate s � 2 � 10�8. Mak-
ing again the simplifying assumption that the number density does
not depend on the distance along the line of sight l (trivializing the
integration over l),

2� 10�8

40RSp
¼
Z rmax

rmin

Dr2�b dr: ð31Þ

If we are interested in the rate of deposition due to the material
currently seen in the Phoebe ring (i.e., if we take the same limits of
integration), the integral can then be plugged into Eq. (29), yielding
a rate of dust deposition at the leading edge of the polar region of
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�50 lm/Myr, which is of the same order as the average deposition
rate calculated earlier. This estimate also agrees with that given by
Verbiscer et al. (2009) of �40 lm/Myr.

In either event, Iapetus must today be actively depositing on the
order of tens of lm per Myr of sublimed ice onto the poles in order
to keep them bright. This ice could originate from either the lead-
ing or trailing side. In Cassini Regio, with daytime temperatures of
130 K, ice will sublime over extremely short timescales—about
1000 lm in 8000 years (Spencer and Denk, 2010). Very quickly, a
dark layer thicker than the thermal skin depth will form, making
it difficult for further ice to sublimate. In this case, the rate of im-
pact gardening, which brings fresh ice to the surface, will deter-
mine the rate of sublimation from Cassini Regio. Unfortunately,
impact gardening depths on Iapetus are not well constrained
(Spencer and Denk, 2010).

The temperature on the brighter trailing side indicates a subli-
mation rate of about 100 lm/Myr (Spencer and Denk, 2010). Given
that the area of the trailing side at latitudes <60� is comparable to
that of both polar regions combined, this sublimation rate seems
capable of overwhelming polar dust deposition. Further data on
the Phoebe ring will help further constrain the required sublima-
tion rates, and improved modeling of the surface processes on
Iapetus will ultimately dictate the consistency of these two
pictures.
4. Dust from other irregular satellites

A long-standing objection to Soter’s model of dust infall from
Phoebe has been that Cassini Regio’s spectrum differs from that
of Phoebe (e.g., Tholen and Zellner, 1983; Cruikshank et al., 1983;
Buratti et al., 2002). One possible resolution is that the surface
compositions are in fact similar, but other effects such as Rayleigh
scattering (Clark et al., 2008), cause the spectra to differ. Another
possibility is that Iapetus has also been coated by dust from the
irregular satellites other than Phoebe (Buratti et al., 2005; Tosi
et al., 2010). Grav et al. (2003) and Buratti et al. (2005) find that
many of these new irregular satellites have a reddish color similar
enough to that of Hyperion and Cassini Regio to suggest a link be-
tween them.

Unlike the regular satellites (ignoring Iapetus) that move on
low-eccentricity orbits close to Saturn’s equatorial plane, the irreg-
ulars have widely varying inclinations and eccentricities. This im-
plies a violent collisional history between irregular satellites as
differing precession rates would have led to crossing orbits and
consequent collisions (Nesvorný et al., 2003). By modeling this pro-
cess of collisional grinding numerically, Bottke et al. (2010) esti-
mate that �1020 kg of dust should have been generated in the
outer Saturn system, particularly early in the Solar System’s
lifetime.

We therefore explore the likelihood that debris from these
other irregular satellites would collide with Iapetus. Fig. 17 shows
the probability that 10 lm grains will strike Iapetus if they start
with the orbits of the various irregular satellites known today,
plotted against both today’s value of the parent-satellite orbit’s
inclination and eccentricity. The orbits of the current irregular sat-
ellites are not chosen to be necessarily representative of their or-
bits over the course of the Solar System’s history—the irregular
satellites seen today are likely the fragments of past satellites
and are subject to increasingly strong gravitational perturbations
from the Sun the further out in Saturn’s Hill sphere they reside
(Nesvorný et al., 2003; Turrini et al., 2008; Bottke et al., 2010).
Rather, we chose the current orbits as a way of sampling the orbital
phase space of irregular satellites.

The efficiency with which material is supplied to Iapetus differs
markedly between the prograde (plus signs) and retrograde (dia-
mond) satellites (Fig. 17). This can be understood through a simple
particle-in-a-box estimate of the collision timescale, where the
irregular-satellite and dust-particle orbits are taken to precess
around the same axis (normal to Saturn’s orbital plane):

Tcol � pðsin2 ip þ sin2 iIÞ
1
2

aI

RI

� �2 Ur

U

� �
Torb; ð32Þ

where the p subscript refers to the dust particle, ip and iI are incli-
nations measured relative to Saturn’s orbital plane, RI is Iapetus’ ra-
dius and aI its semimajor axis; U is the relative speed between the
two objects, and Ur is the radial component of the relative velocity;
finally, Torb is the dust particle’s orbital period (Öpik, 1951; Hamil-
ton and Burns, 1994). Iapetus’ orbit does not quite precess around
the normal vector to Saturn’s orbital plane, but rather around an
axis (the normal to its local Laplace plane, see Fig. 5) �11� away
(Ward, 1981); however, for our rough estimate this can be ignored.

Qualitatively, one should expect Tcol to decrease as ip ap-
proaches 0� (or 180�). As ip approaches coplanarity, the phase space
that the particle must explore before ‘‘finding’’ Iapetus is reduced.
One should also expect prograde particles to have a substantially
decreased chance of striking Iapetus compared to retrograde parti-
cles, as retrograde particles have a much larger relative velocity U
than prograde particles. This occurs because for larger relative
velocities, when one particle is passing through the node where
collisions are possible, the other particle can initially be at a wider
range of positions in its orbit and still reach the node ‘‘in time.’’

For prograde particles with low inclinations, the azimuthal
component of U is mostly subtracted out so Ur/U is roughly 1,
and nearly independent of the particle eccentricities (Hamilton
and Burns, 1994). For retrograde particles, on the other hand, the
azimuthal component of U dominates so Ur/U will be small and will
increase with orbital eccentricity, which determines the departure
of the dust orbit from being purely azimuthal. One should there-
fore expect that for retrograde particles, those with inclinations
closest to coplanarity and with low eccentricities will have the
shortest collision timescale and the highest collision probability
(see Fig. 17).

We can also investigate this more quantitatively. The ratio Ur/U
can be obtained from Eq. (15) and (15), yielding

Ur

U
¼ 1þ a2ð1þ a2 � 2a cos i0Þ

e2 � ða2 � 1Þ2

" #�1
2

; ð33Þ

where i0 is the mutual inclination between the particle’s and Iape-
tus’ orbits, e is the particle’s eccentricity, and

a2 ¼ apð1� e2Þ
aI

: ð34Þ

We note that while particle orbits will perform small oscillations in
their inclinations around their parent body’s inclination, particle
eccentricities will be substantially larger than those of the parent
bodies due to radiation pressure. In this section we therefore take
ip � isatellite and select characteristic eccentricities from our numeri-
cal integrations. It is nevertheless generally true that source satel-
lites with more eccentric orbits will yield particle orbits with
higher eccentricities.

Since particles can only collide with Iapetus when their orbit’s
pericenter is smaller than aI and their apocenter is greater than
aI, a2 ranges between 1 � e and 1 + e. Furthermore, from Eq. (11),
i0 varies between ip � iI and ip + iI. Taking i0 � ip and a � 1 as charac-
teristic values, and expanding cos i0 to leading order,

Ur

U
¼ 1þ ip

e

� �2
" #�1

2

: ð35Þ



Fig. 18. Numerically computed probabilities for 10-lm dust particles striking
Iapetus as a function of parent (retrograde) satellite orbital inclination and
eccentricity. Probabilities range from darkest (Suttungr = 0.9 and S/
2007_S2 = 0.89) to lightest (Narvi = 0.22). Collision probability increases as the
inclination approaches coplanarity (180�) and as the eccentricity decreases.

Fig. 17. Collision probability with Iapetus for 10 lm grains that start with the orbits of today’s irregular satellites. Plus signs represent prograde irregulars, while open
diamonds are retrograde. Inclinations are measured relative to Saturn’s orbital plane. The asterisk represents Phoebe, and the boxed diamond Ymir (of importance below).
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Since sin2 iI� sin2 ip for Saturn’s prograde irregular satellites
(35� < ip < 50�), we can approximate the first term in parentheses
in Eq. (32) as simply sin ip � ip. Therefore,

Tcol � ip 1þ ip

e

� �2
" #�1

2

ðprogradeÞ: ð36Þ

Over the range of prograde inclinations and the range of character-
istic particle eccentricities found in our numerical integrations
(0.3 [ e [ 0.6), Tcol varies by a factor between �0.3 and 0.45. This
approximation agrees with the values from Eq. (prograde) to within
25% over the range of characteristic values for e, ip and ap for dust
from the prograde satellites, and matches the small spread
([50%) in collision probability for the prograde satellites (plus
signs) in Fig. 17.

For the retrograde satellites, again taking i0 � ip and a � 1, and
noting that p � ip is small so that cos ip � �1 + (p � ip)2/2,

Tcol � ðp� ipÞ 1þ 4
e2 1� ðp� ipÞ2

4

 !" #�1
2

: ð37Þ

Thus, since (p � ip)2/4� 1 for the retrograde satellites and 4/e2
 1
for the range of characteristic eccentricities ( J 0.3),

Tcol � ðp� ipÞ
e
2
ðretrogradeÞ: ð38Þ

This agrees with the values from Eq. (38) to within 20% over the
range of characteristic values of e, ip and ap for dust from the retro-
grade satellites. It also shows why the retrogrades have much high-
er collision probabilities. For the range of dust inclinations and
eccentricities, the prograde to retrograde ratio of Tcol using Eqs.
(36) and (38) is always greater than unity and [25.

Eq. (38) means that low-eccentricity moons (those that yield
lower eccentricity particles) with inclinations close to 180� will
have the shortest collision timescales, and therefore the largest
collision probabilities with Iapetus. Fig. 18 shows the same proba-
bilities as Fig. 17, but in two dimensions so as to separate the
dependence on inclination and eccentricity. Darker squares repre-
sent larger collision probabilities. Thus one can see following rows
of constant eccentricity that the probability increases as the incli-
nation approaches 180�, whereas following columns of constant
inclination, the probability decreases with increasing eccentricity.
Tosi et al. (2010) find similar trends using a different method of
evaluating collision probabilities. The two low-eccentricity, high-
inclination moons on the bottom right of the plot with the highest
probabilities are Suttungr and S/2007_S2.
4.1. Dust generation efficiencies

While the previous section addressed the likelihood of particles
from different irregulars striking Iapetus once they are ejected, one
must still determine the relative dust yield from the various satel-
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lites to infer the dominant sources of dust for Iapetus. Dust will be
generated both in collisional break-up between the outer irregular
satellites (Bottke et al., 2010) and in micrometeoroid bombard-
ment from outside the saturnian system (Burns et al., 1999). In
both cases, the effectiveness of a satellite as a dust source is deter-
mined by the competition between a larger satellite radius raising
the collision cross section and a larger satellite mass increasing the
escape velocity (thus inhibiting dust from leaving the satellite).

Burns et al. (1999) investigate this relationship in the Jovian
system. For small moons, where gravity is not important, the rate
at which mass is supplied to the ring by a satellite of radius Ri is
simply proportional to R2

i ; however, beyond an optimum satellite
size Ropt that depends on regolith properties, the dust production
rate becomes almost flat, decreasing as R�1=4

i . Burns et al. (1999)
estimate that this optimum size should be about 5–10 km in the
Jovian system. Assuming similar results for the Saturn system, this
implies that Phoebe (R � 100 km) should produce no more (in fact
slightly less) dust than any �5–10 km irregular satellite. Fig. 19
shows the impact probabilities calculated in the previous section
for each irregular satellite weighted by the Ri dependent terms in
the dust-generation efficiency factor of Burns et al. (1999), assum-
ing an optimum satellite size Ropt of 10 km.

Fig. 19 shows that Ymir (Ri = 9 km) should be roughly as impor-
tant a contributor of dust to Iapetus as Phoebe (Ri = 107 km),
though the summed contribution from the remaining moons is
greater than that of either Ymir or Phoebe. This might help lessen
the contradiction that the spectrum of Cassini Regio does not seem
to match that of Phoebe (Buratti et al., 2005; Tosi et al., 2010).

But if Phoebe is not the dominant source of dust in the outer
saturnian system, why then is the only prominent dust ring gener-
ated by the irregular satellites associated with Phoebe? Satellites
should generate dust rings of height 2asin i, so one might expect
to see a nested series of rings of differing heights. This is analogous
to the dust bands observed in the zodiacal cloud, where the dimen-
sions of the bands give away the orbital elements of the object that
produced them (Dermott et al., 1984).

Perhaps the fact that Phoebe’s orbit has the smallest semimajor
axis and lowest inclination among the irregular satellites squeezes
its modest share of dust into a more compact volume, yielding a
higher optical depth than other satellite rings. The line-of-sight
optical depth of a ring generated by satellite j, sj � njrjLj where nj
Fig. 19. Dust supplied to Iapetus from each of the irregular satellites relative to the
contribution from Phoebe, plotted vs. satellite radius. The relative contribution is
calculated as the product of the collision probability for the particular satellite
(Section 4) and the radius-dependent terms in the dust-generation efficiency factor
of Burns et al. (1999), assuming an optimum satellite size of 10 km. Prograde
satellites are represented by plus signs, and retrograde moons by open diamonds.
Ymir is plotted as a boxed diamond (Ri = 9 km) and has the largest contribution.
is the number density, rj is the average particle cross-section and
Lj is the distance along the line of sight. Focusing only on the
parameters involving the satellites (as opposed to dust properties),
and taking Lj � aj, sj �Mjaj/Vj, where Vj is the volume of the ring
associated with satellite j and Mj is the mass of dust within it. Vj

should be proportional to a3
j sin ij, yielding

sj �
Mj

a2
j sin ij

: ð39Þ

The mass Mj carries the same weighting factor used in Fig. 19.
The optical depth therefore carries an additional factor of

a2
j sin ij

� ��1
. Fig. 20 plots the weighting factor in Eq. (39) relative

to that for Phoebe vs. the expected ring height that would be pro-
duced by the particular moon (2asini) in Saturn radii.

The simple estimates illustrated in Figs. 19 and 20 suggest that
irregular satellites other than Phoebe could contribute substantial
amounts of dust to Iapetus, while the Phoebe ring (due to its com-
pactness) would be the most prominent dust ring generated by the
irregulars. Perhaps in observations of the Phoebe ring, the flux
from the various much taller, low-optical depth rings has been
interpreted as part of the background. One might still, however, ex-
pect to be able to identify a dust ring associated with Ymir; it
would be �3 times taller, and have �1/4 the line-of-sight optical
depth of Phoebe’s structure.

The fact that no other dust rings have yet been detected could
be used to argue that other factors enhance Phoebe’s dust produc-
tion in the outer Saturn system. One possibility is that Phoebe’s po-
sition as the innermost irregular satellite increases its collision
frequency with other irregulars. Numerical studies (Nesvorný
et al., 2003) suggest that Phoebe alone among the saturnian irreg-
ulars likely suffered collisions with several now absent irregulars;
while below the detection threshold of today’s telescopes, the ejec-
ta from these events would be excellent suppliers of debris. As
such, there might be an increased amount of unseen collisional
debris ([1 km) sharing Phoebe’s orbital elements, which, for a
steep enough size distribution, could contribute significantly to
the Phoebe ring. A more certain assessment will have to await fur-
ther observations of the Phoebe ring and searches for separate dust
bands. Our studies assume that Phoebe is the dominant dust
source in the outer Saturn system. Should evidence to the contrary
Fig. 20. Estimated line-of-sight optical depth of rings created by the irregular
satellites relative to the optical depth of the Phoebe ring, plotted vs. the height of
the ring that the satellite would produce in Saturn radii. Phoebe (asterisk) generates
the ring of highest optical depth with a thickness of �40 RS, followed by Ymir
(boxed diamond), which should produce a �110 RS-tall ring. Plus signs denote
regular satellites, open diamonds irregular moons.
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arise, further work would be required to assess the relative contri-
butions to Iapetus, Hyperion and Titan.
Fig. 21. Average dust depth on Hyperion (in mm) vs. power-law index b, for the
limiting cases of c = 0 (bottom curve) and 1 (top curve).
5. Implications beyond Iapetus

5.1. Iapetus as a tracer of the initial dust mass at Saturn

Bottke et al. (2010) argue that most of their estimated 1020 kg of
collisionally generated dust in the outer Saturn system was created
within a few hundred Myr of the capture of the irregular satellites.
In this case, the whole range of particle sizes we considered should
have had time to reach Iapetus, corresponding to the c � 0 case
discussed in Section 3.2. In this circumstance, since particles
roughly larger than 10 lm are almost certain to strike Iapetus,
we should expect all the dust mass in sizes J 10 lm to be part
of Cassini Regio.

Unfortunately, as Bottke et al. (2010) point out, 1020 kg would
generate a dark layer on Iapetus that is kilometers thick. Taking
the depth on the leading side to fall off as cos w, we can estimate
the volume of dust on Iapetus as

VIap � pR2dapex � 850
dapex

50 cm

� �
km3

; ð40Þ

where dapex is the peak depth of dust at the apex (not including any
lag deposit from sublimation). Assuming 100% transfer efficiency
(all particles J 10 lm), this would imply an initial dust mass
�1015 kg.

The transfer efficiency could be reduced with a sufficiently
steep size distribution (one that would cause essentially all of
the dust mass to be in sizes [5 lm). These small particles would
then be quickly eliminated from the system through radiation
pressure and avoid Iapetus; unfortunately, the requisite power-
law index is implausibly steep ( J 5.5).

The two results might also be reconciled if Iapetus achieved
synchronous rotation much later ( J 1 Gyr after formation). In this
case, the dark material would have been localized to the leading
side only after the bulk of the influx had occurred. Such a scenario
could help explain why even the bright hemisphere of Iapetus is
darker than the surfaces of the other large icy satellites; however,
it also poses the problem of why the masses of dust that would
have blanketed Iapetus at all longitudes prior to synchronous rota-
tion did not cause blackening everywhere when thermal migration
(Spencer and Denk, 2010) kicked in.

It seems for now that, unless the depth estimate derived from
radar measurements (Ostro et al., 2006) is grossly in error, the
amount of dark material on Iapetus implicates an initial dust mass
in the outer saturnian system about five orders of magnitude lower
than that of Bottke et al. (2010). While the presence of ammonia
could make a thicker layer of dark material appear shallow (Ostro
et al., 2006), the discovery of small bright-floored craters close to
the boundary of Cassini Regio support the idea of a thin dark de-
posit (Denk et al., 2010).

5.2. Hyperion

During Cassini’s close fly-by, Cruikshank et al. (2007) and Tho-
mas et al. (2007) found Hyperion to be segregated into a low-albe-
do unit mostly filling the bottoms of cup-like craters and a more
widespread high-albedo unit. Furthermore, the spectra of the dark
material show similarities to the material making up Cassini Regio,
suggesting a common source (Cruikshank et al., 2007; Buratti et al.,
2005).

Burns et al. (1996), in their dynamical study of the fate of
Phoebe dust, had already argued that Hyperion should receive a
significant fraction of Phoebe dust grains. In their calculations,
however, they considered collisions with Iapetus, Hyperion and Ti-
tan sequentially, when in fact—because of radiation-pressure-in-
duced orbital eccentricities—dust grains can reach all three
moons nearly simultaneously. As a result, Hyperion will receive a
much-reduced fraction of the grains (�0.004 for both 5- and 10-
lm grains vs. 0.18 according to Burns et al. (1996)). Furthermore,
no grains J 10 lm reach Hyperion. The conclusion, however, is
the same—Hyperion’s surface layers should contain some dark
material from Phoebe and the other irregular satellites. Further-
more, since Hyperion is chaotically rotating rather than tidally
locked, an isotropic distribution of dust is expected (Burns et al.,
1996).

We estimate the volume of material striking Hyperion relative
to the volume hitting Iapetus as

VHyp

VIap
�
R 10lm

5lm r3�ðbþcÞPHðrÞdrR 1cm
10lm r3�ðbþcÞ dr

; ð41Þ

where PH(r) is the probability for a particle of size r striking Hype-
rion (derived from our numerical simulations discussed in Section
2), VIap is given in Eq. (40), and we have approximated the probabil-
ity of particles striking Iapetus as a step function at r = 10 lm.

Calculated dust depths on Hyperion for 2 < b < 4 in the limiting
cases of c = 0 and 1 (cf. Section 3.2) are given in Fig. 21 assuming
isotropic coating and a spherical target of radius 135 km.

These extremely shallow depths of [1 cm render it plausible
that Hyperion might not be uniformly covered in dust, though
the mechanism for segregating dark material to the bottoms of
Hyperion’s ubiquitous sharp-edged craters as is observed remains
unclear (Cruikshank et al., 2007). Constraints on the particle size
distribution in the Phoebe ring from future observations may nar-
row estimates of the material delivered to Hyperion.

5.3. Titan

As discussed in Section 2.4, Titan’s much larger cross-section
causes it to efficiently sweep up almost everything that crosses
its orbit. The slow inward migration of dust particles J 10 lm
gives Iapetus enough time to collect most of them before they be-
come Titan-crossing; our numerical simulations of Section 2, how-
ever, indicate that �70% of 5 lm particles strike Titan (and that
smaller particles are so affected by radiation pressure that they
either strike Saturn in the first half-Saturn year or escape the sys-
tem). As in the case with Iapetus, particles will strike Titan on its
leading side; however, its atmosphere will distribute material
around the entire moon and will fragment particles upon entry.

Using Cassini’s measurements, Porco et al. (2005) report a de-
tached haze layer at 500-km altitude on Titan. Since the sedimen-
tation time in this layer is short, some process must continually
replenish particles. Two hypotheses have been proposed (Tomasko



Fig. 22. Dust flux into the Titan atmosphere at 500 km altitude (in g cm�2 s�1) vs.
power-law index b for the limiting case of c = 1.
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and West, 2009): the layer either represents a condensation region
at a local temperature minimum (Liang et al., 2007) or occurs
where aerosols produced at higher altitudes settle (Lavvas et al.,
2009).

While this haze layer is likely due to the above-mentioned
atmospheric effects, we can explore whether exogenous dust-infall
might also be a significant contributor. We therefore derive the
volume of particles striking Titan as we did for Hyperion (Eq.
(41)) assuming a present rate of dust production that is constant
in time (c = 1). Fig. 22 shows the results, expressed as a mass flux
computed �500 km above the Titan surface (i.e., R = 3100 km).

The calculated mass flux falls well short of the estimated 2.7–
4.6 � 10�14 g cm�2 s�1 (Lavvas et al., 2009) required to replenish
particles. Fortunately, the mechanisms listed above seem sufficient
for explaining the haze layer (R.A. West, personal communication,
2010).
6. Conclusion

Our results show that out of the dust particles collisionally gen-
erated at Phoebe that are long-lived (grains J 5 lm), most larger
than �10 lm will strike Iapetus due to modifications of their orbits
by perturbations from the Sun. The latter include Poynting–Robert-
son drag, solar radiation pressure and the Sun’s tidal gravity in the
Saturn system.

Our computed dust coverage on the Iapetus surface matches up
well with the newly discovered color dichotomy on Iapetus that
extends up to the poles (Denk et al., 2010). The calculated distribu-
tion also traces the shape of Cassini Regio well in the longitudinal
direction, but realistic thermal modeling is required to explain
both the bright poles and the sharp boundaries between bright
and dark material.

Our orbital calculations for 10 lm particles show that dust
launched from other retrograde outer irregular satellites can have
comparable likelihoods of striking Iapetus to those of dust
launched from Phoebe. We argue this can contribute to the differ-
ing spectra between Phoebe and Iapetus; however, the question of
how much dust was generated by Phoebe relative to the other
irregular satellites is still unclear.

By tracking the dust that strikes Hyperion, we find that just a
veneer should have been laid down on its surface ([1 cm on aver-
age). This picture may be consistent with the observation that the
surface is not uniformly coated. Cruikshank et al. (2007) and Tho-
mas et al. (2007) find the dark material to be predominantly at the
bottoms of Hyperion’s ubiquitous cup-like craters. As opposed to
Iapetus, which is tidally locked, Hyperion rotates chaotically,
which can explain the presence of dark material throughout the
surface.
We determine that effectively all long-lived dust particles that
avoid Iapetus (i.e., a fraction of those between �5 and 10 lm)
are swept up by Titan. While these constitute a considerable mass
flux into the Titan atmosphere, they are insufficient to account for
the satellite’s detached haze layer.
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