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a b s t r a c t 

We have conducted a comprehensive survey of 22 sharp-edged ringlets and gaps in the Cassini Division 

of Saturn’s rings, making use of nearly 200 high-SNR stellar and radio occultation chords obtained by 

the Cassini VIMS, UVIS, and RSS instruments between 2005 and 2013. We measure eccentricities from 

as small as ae = 80 m to nearly 30 km, free normal modes with amplitudes from ∼ 0 . 1 to 4 . 1 km, and 

detectable inclinations as small as a sin i = 0 . 2 km. Throughout the entire region, the Mimas 2.1 ILR (inner 

Lindblad resonance) produces systematic forced m = 2 distortions that quantitatively match the expected 

amplitudes, phases, and pattern speed. The narrow Russell, Jeffreys, Kuiper, Bessel, and Barnard gaps are 

simplest, and do not contain dense ringlets. Their outer edges are generally quite sharp and four of them 

are circular to within ∼0.25 km, whereas most of the inner gap edges have significant eccentricities. 

Three gaps are more complex, containing one or more isolated ringlets. First among these is the 361 km- 

wide Huygens gap, containing two ringlets. The wider Huygens ringlet has nearly identical eccentricities 

on the two edges, in addition to OLR-type (outer Lindblad resonance) normal modes on the inner edge 

and ILR-type modes on the outer edge. A secondary m = 1 (eccentric) mode is present on the outer 

edge of the ringlet, with a pattern speed similar to that of the B ring’s outer edge. Variations in the 

ringlet’s width are complex, but are statistically consistent with the expected magnitudes resulting from 

the random superposition of the multiple normal modes on the two edges. Also present in the Huygens 

gap is the very narrow so-called Strange ringlet, with a substantial eccentricity and inclination, as well as 

both ILR- and OLR-type normal modes. The 100 km-wide Herschel gap’s inner edge is highly eccentric, 

with at least seven ILR-type normal modes. The outer gap edge is also eccentric, and hosts four OLR- 

type normal modes, and a secondary m = 1 mode with a pattern speed quite close to that of the B 

ring’s outer edge. The Herschel ringlet itself is eccentric and inclined, but neither the pericenters nor 

the nodes are well-aligned. The third of the complex gaps is the 241 km-wide Laplace gap, containing 

the Laplace ringlet. Both gap edges are eccentric, with very similar pericenter longitudes and apsidal 

precession rates, in spite of their large radial separation. The Laplace ringlet has eccentric edges and an 

abundance of normal modes. Like the Herschel ringlet, the Laplace ringlet does not precess rigidly and 

does not conform to the usual dynamical picture of an eccentric ringlet. Normal modes are abundant 

in the Cassini Division. Consistently, we find free ILR-type normal modes ( m > 0) at the outer edges of 

ringlets and the inner edges of gaps, and free OLR-type normal modes ( m ≤ 0) at inner ringlet edges 

and outer edges of gaps, as expected from the resonant cavity model of normal modes. We estimate the 

surface density of ring features from the resonance locations of the normal modes. The Cassini Division 

exhibits apsidal precession rates that are anomalously large, compared to the predicted values based on 

Saturn’s zonal gravity field. The overall radial trend matches the secular contribution expected from the 

nearby B ring, assuming a surface mass density of � = 100 gm cm 

−2 . However, the outer edges of the 
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1. Introduction 

Conventionally, Saturn’s main ring system is subdivided into

three components: the A, B and C rings, in order of decreasing

radius. The Cassini Division lies between the brighter A and B

rings, at approximately 1.97 Saturn radii ( 1 R S = 60 , 330 km), and

is ∼4500 km wide. Its normal optical depth averages ∼0.1 ( Colwell

et al., 2009b; Cuzzi et al., 1984 ), comparable to broad areas of the

C ring, which it strongly resembles in structure and in its spec-

tral and particle properties. As first revealed in Voyager images

( Smith et al., 1982 ), the Cassini Division is a highly complex region,

with eight distinct gaps that in turn contain at least seven narrow

ringlets. Most of these features have now been given official names

by the IAU, as indicated in Fig. 1 . Starting at the outer edge of the

B ring—which is controlled and strongly perturbed by the Mimas

2:1 inner Lindblad resonance ( Goldreich and Tremaine, 1978; Porco

et al., 1984 )—we find the 361 km-wide Huygens gap, the Herschel

gap (95 km), the Russell gap (38 km), the Jeffreys gap (37 km), the

Kuiper gap (4.6 km), the Laplace gap (241 km), the Bessel gap (12.5

km) and the Barnard gap (12.4 km). The Huygens, Herschel and

Laplace gaps contain a total of four narrow, dense ringlets that are

visibly noncircular. While the Huygens ringlet was named at the

time of the Voyager encounters, those in the Herschel and Laplace

gaps have previously been informally referred to as the 1.960 R S 

and 1.990 R S ringlets ( Nicholson et al., 1990 ), based on their mean

distances from Saturn’s center. We shall simply refer to them as

the Herschel and Laplace ringlets. A fourth ringlet, identified as R6

by Colwell et al. (2009b ) in their list of Cassini Division ringlets

and gaps, but informally dubbed the Strange ringlet, inhabits the

outer part of the Huygens gap, and was first identified in Cassini

images. In addition to these relatively prominent ringlets, Cassini

images have revealed the presence of at least three more tenuous

ringlets within the Huygens, Jeffreys and Laplace gaps ( Porco et al.,

2005 ). 

There are relatively few previous kinematic studies of these fea-

tures, prior to the advent of Cassini data. Lissauer et al. (1981) pro-

posed that each gap might contain a small satellite, which would

prevent the gap from collapsing by counteracting the viscous

torque in the rings. Cassini images have so far failed to reveal any

Moons within the Cassini Division, although the validity of this

general concept was later confirmed by the discovery of two such

Moons in the outer A ring: Pan, which orbits within the Encke gap

( Showalter, 1991 ) and Daphnis, which occupies a similar place in

the Keeler gap ( Porco et al., 2005 ). It is perhaps significant that

both of these gaps lie much closer to the Roche limit for icy bod-

ies than does the Cassini Division. 

Besides the outer edge of the B ring, the most obviously non-

circular feature in the Cassini Division seen in Voyager images was

the nearby Huygens ringlet. This feature was studied by Porco

(1983) and Turtle et al. (1991) , and although no completely sat-

isfactory model was obtained, it was established that the ringlet’s

perturbations have both m = 1 (i.e., keplerian) and m = 2 compo-

nents. The latter were assumed to be driven by the nearby Mimas

resonance. These studies were updated using early Cassini images

by Spitale and Porco (2006) , and in a more extensive recent study

by Spitale and Hahn (2016) , based on nearly a decade of Cassini ISS

data. 
b  
 the outer edge of the Laplace ringlet, have conspicuously large residuals,

ssion rates by more than 0 . 03 ◦ d −1 . These patterns are probably the result

ial, but at present we cannot account for them in detail. 

© 2016 Elsevier Inc. All rights reserved.

Marouf and Tyler (1986) , using the single radio occultation

rofile returned by Voyager 1, examined the wavelike structures

n the regions on either side of the Herschel gap, interpreting

hese as satellite wakes analogous to the recently-discovered Pan

akes in the A ring ( Showalter et al., 1986 ). However, Flynn and

uzzi (1989) found that these structures are axisymmetric and

ore likely permanent features of the rings. The latter also ex-

mined the edges of the Huygens and Herschel gaps in multiple

oyager images, concluding that the inner edge of the latter is

ccentric. 

Nicholson et al. (1990) , in their study of the radius scale of the

ings using Voyager radio and stellar occultation data, first noted

hat the ringlets in the Herschel and Laplace gaps were also noncir-

ular and that the same was probably true of what they referred to

s the 1.994 R S ringlet (now considered to be the region between

he Bessel and Barnard gaps; see Fig. 1 ). With only two occultation

uts, however, they were unable to estimate the ringlets’ shapes or

ccentricities. 

Hedman et al. (2010) carried out the first systematic studies of

he Cassini Division using Cassini data, measuring the radii of all

ight gap edges in a set of 41 stellar occultation profiles from the

IMS instrument. French et al. (2010) performed a similar analysis

ith a set of 10 radio occultation profiles from the RSS experiment.

heir principal results, as summarized in Table 3 of Hedman et al.

2010) , were as follows: 

• The outer edges of the Russell, Jeffreys, Kuiper, Barnard and

(possibly) Bessel and Herschel gaps are circular to within ∼1

km. 
• In addition to the Huygens ringlet, the inner edges of the Her-

schel, Russell, Jeffreys, Kuiper, Laplace and Bessel gaps, as well

as the outer edges of the Laplace ringlet and gap, are elliptical,

with apsidal precession rates that match those calculated from

Saturn’s zonal gravity harmonics. 
• The inner edge of the Barnard gap is also noncircular, but is

not well fit by a precessing m = 1 model. Instead, it appears

to exhibit an m = 5 perturbation, perhaps forced by the nearby

Prometheus 5:4 ILR. 
• The inner edge of the Laplace ringlet, both edges of the Her-

schel ringlet and the outer edge of the Huygens gap are mea-

surably noncircular, but were not satisfactorily fit by any of the

models they considered. 

In the present paper we update these results and re-examine

he edges of all the gaps and optically-thick ringlets within the

assini Division, using a comprehensive set of Cassini data from

adio occultation (RSS) and stellar occultation (UVIS and VIMS) ex-

eriments carried out between 2005 and 2013. This is the third in

 series of papers based on essentially the same data sets, using

 standard data analysis protocol and an identical suite of orbit-

tting software. In Paper I ( Nicholson et al., 2014a ) we studied a

ingle feature, the outer edge of the B ring, characterizing its com-

lex response to the strong Mimas 2:1 Lindblad resonance and also

dentifying a rich set of normal modes that further perturb the

dge. In Paper II ( Nicholson et al., 2014b ) we studied the inner-

ost of Saturn’s main rings, the C ring, with particular attention to

he Colombo, Maxwell, Bond and Dawes gaps and their associated

arrow ringlets. In addition to several edges that are perturbed

y resonances with distant satellites and others that are freely
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Fig. 1. Prominent ringlets and gaps in the Cassini Division, shown in an optical depth profile from the Cassini RSS egress occultation on rev 7. 
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recessing, we again identified numerous ringlet and gap edges

ith multiple normal modes. Paper IV (in preparation) will present

n absolute radius scale for Saturn’s rings, based on a comprehen-

ive analysis of all available Cassini occultation data. 

In Section 2 we briefly review the data sets used in this

tudy, and summarize our measurement techniques and orbit-

tting procedure. Our main results are presented in Sections 3 –

. In Section 3 we discuss the five simple gaps—those without

ense embedded ringlets—which are found to have many aspects

n common. The remaining three gaps are discussed individually

n Sections 4 –6 : first, the broad Huygens gap containing the nar-

ow, relatively opaque Huygens and Strange (or R6) ringlets; then

he Herschel gap with its wider but less-dense ringlet; and fi-

ally the Laplace gap and its ringlet. (We do not discuss the three

enuous ringlets in the Cassini Division identified by Porco et al.

2005) , and designated as R5, R8 and R9 by Colwell et al. (2009b ),

s these features are generally not visible in occultation profiles.)

ection 7 summarizes the large number of normal modes identi-

ed in the Cassini Division, and attempts to extract some com-

on aspects of these features, while in Section 8 we review the

ignatures of resonant forcing. Section 9 is devoted to the numer-

us features that appear to be well described—at least in part—as

reely-precessing ellipses, exploring the radial trends in their ec-

entricities and apsidal precession rates and revisiting the three-

ody resonance model of Hedman et al. (2010) . Our conclusions

re summarized in Section 10 . 

Historically, there is some ambiguity concerning the true status

f the Bessel and Barnard gaps. Nicholson et al. (1990) considered

hem to be parts of a single gap, and referred to the intervening

aterial as the 1.994 R S ringlet. In their review of ring structure,

olwell et al. (2009b ) referred to this region as the R11 ringlet.

ut this supposed ringlet is almost as wide as the gap in which

t resides and—unlike the Huygens and Laplace ringlets—-it is not

ubstantially more opaque than the surrounding material. This sit-

ation led the IAU to redesignate this region as two discrete gaps.
 i  
imilar arguments might suggest that the Herschel gap and ringlet

hould also be reclassified as a pair of nearby gaps—we will ex-

lore the evidence in more detail below. Although we have chosen

o follow the official IAU-approved nomenclature here, it should be

ept in mind that future studies might lead to a reclassification of

ome of these features. 

. Observations and ring orbit determination 

For this study, we made use of an extensive set of high-SNR

assini ring occultation observations from the RSS, VIMS, and UVIS

nstruments, restricting our attention to high-SNR events with spa-

ial resolution of 1 km or better that include at least four fidu-

ial circular features, used to establish an accurate absolute ra-

ius scale for each event. We excluded stellar occultations of bi-

ary stars, as well as several distant occultations where the large

pacecraft range to the rings made it difficult to establish the event

eometry with sufficient accuracy. In the end, our results incorpo-

ate over 10,0 0 0 individual ring measurements from 34 ingress or

gress RSS radio occultations between May 2005 and January 2010,

nd 160 separate ingress or egress UVIS/VIMS occultations between

uly 2005 and September 2013. All of the data used in this study

re publicly available from the NASA Planetary Data System Rings

ode ( http://http://pds-rings.seti.org/ ). 

As described in detail in French et al. (2010) , for each oc-

ultation we first constructed a geometry-independent “pseudo-

ntensity” profile to represent the normalized intensity I that

ould be measured when viewing the ring at normal incidence

i.e., sin B = 1 , where B is the incidence angle to the ring plane),

ssuming a classical many-particles-thick model for ring vertical

tructure: 

(r ′ ) = e −τ (r ′ ) , (1)

here τ is the normal optical depth and r ′ represents the nom-

nal ring plane radius, uncorrected for trajectory errors or ring

http://http://pds-rings.seti.org/
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Fig. 2. Optical depth profiles for the Russell gap region, derived from selected VIMS 

stellar occultation profiles. The profiles are offset vertically by a constant amount, 

and arranged (and labeled) in order of increasing true anomaly of the eccentric 

inner edge. Vertical dotted lines indicate the mean radii of the inner and outer gap 

edges, based on our orbital fits. 
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1 Throughout this paper, we will refer to a number of figures that are accessible 

in the online Supplemental Material (SM). 
inclination. To preserve the convention that increasing optical

depth increases vertically on a plot, we invert the curve using the

auxiliary function 

F(r ′ ) = 1 − I(r ′ ) = 1 − e −τ (r ′ ) , (2)

and fit a logistic model function to each sharp edge profile using 

F m 

(r ′ ) = F 0 + 

F 1 

1 + e ±(r ′ −r ′ 
1 / 2 

) /σ
, (3)

with the mid-point r ′ 
1 / 2 

of the feature defined to be where

F m 

(r ′ ) = F 0 + F 1 / 2 . For unresolved narrow ringlets, we fitted

Gaussian, Lorentzian, or Voigt profiles, depending on the detailed

shape of the feature. VIMS occultation observations include regu-

lar data gaps, associated with instrumental background measure-

ments, and we took care to exclude individual VIMS ring events

when data gaps affected the fitted ring location. 

With a complete set of ring edge measurements in hand, we

next established the ring plane radius scale and pole direction us-

ing a set of 67 quasi-circular, equatorial ring features with well-

determined orbits and extensive high quality observations, with

post-fit rms errors for each ring of < 0.22 km. (All of these fea-

tures lie within the C ring, the B ring, and the Cassini Division;

no sharp-edged circular features are present in the A ring that

meet this stringent circularity condition.) We used a well-tested

ring fitting code (RINGFIT) written in IDL that makes use of the

NAIF SPICE toolkit ( Acton, 1996 ) and the Cassini Navigation Team’s

reconstructed spacecraft trajectory kernels. Comparison of the or-

bit fit with those of a completely independent code (R. Jacobson,

personal communication) give nearly identical results and formal

errors: calculated ring orbital radii agree to better than 1 m. The a

priori errors of the spacecraft ephemerides are of order 1 km; we

fitted for the best along-track timing corrections for each ingress or

egress occultation, which greatly reduced the post-fit rms errors.

For each of a small number of occultations, we fitted an additional

first-order correction term to compensate for remaining system-

atic residuals as a function of orbital radius, after the along-track

timing correction had been applied. For several ring features with

rather broad edges, we solved for a systematic radius correction—

typically, of order a few hundred meters—to the RSS observations

to compensate for the 1-km resolution of the diffraction-corrected

data, compared to the higher spatial resolution of the VIMS and

UVIS data used in this study. 

The final geometric solution for the ephemeris corrections,

orbital elements of the 67 circular features, and pole di-

rection included 8245 data points, with a post-fit rms er-

ror per degree of freedom of just 0.14 km. We used a

simple linear model to account for the precession of Sat-

urn’s pole, with a final solution (and formal errors) for the

pole in J20 0 0 coordinates of αP = 40 . 579408 ± 0 . 0 0 0 062 ◦, δP =
83 . 537218 ± 0 . 0 0 0 0 09 ◦, ˙ αP = −0 . 034978 ± 0 . 004062 ◦ cy −1 , and
˙ δP = −0 . 003191 ± 0 . 000480 ◦ cy −1 , for an epoch of 2008 January 1

12:00 UTC (JED 2454467.0). The corresponding position angle of

the direction of polar precession is 129.02 ± 4.58 ° at a rate of

0.005068 ± 0.000525 ° cy −1 , or a 10% formal uncertainty in the

pole precession rate based on this fit to Cassini data only. For-

mal errors in the semimajor axes of the circular features are quite

small: of order 0.025 km; a more realistic estimate that accounts

for possible systematic errors and incorporates historical occulta-

tion data from Voyager 1 and 2 (see French et al., 2010 ), the 28 Sgr

stellar occultation of 1989 July 3 ( French et al., 1993 ), and two HST

occultations ( Bosh, 1994; Elliot et al., 1993 ) is 0.25 km. Additional

details of the adopted absolute radius scale and its uncertainty, and

tighter constraints on the pole precession rate using all historical

observations, will be provided in Paper IV of this series. All ring

orbit fits presented in this paper are based on this geometric solu-

tion. 
Fig. SM-1 1 shows representative profiles of the 22 Cassini Di-

ision ringlet and gap edges that are the focus of the present

tudy, from a single diffraction-corrected RSS occultation profile

rocessed at 1 km resolution and sampled at 0.25 km. 

Our least-squares orbit fitting program uses a common kine-

atic model for all ringlet and gap edges. We summarize the es-

ential points below; additional details are provided in Paper II.

he basic model is of a precessing, inclined keplerian ellipse, spec-

fied by: 

(λ, t) = 

a (1 − e 2 ) 

1 + e cos f 
, (4)

here the true anomaly f = λ − � = λ − � 0 − ˙ � (t − t 0 ) . Here, r,

and t are the radius, inertial longitude and time (at ring inter-

ept) of the observation, a and e are the ring edge’s semimajor axis

nd eccentricity, ϖ and ˙ � are its longitude of periapse and apsidal

recession rate, and t 0 is the epoch of the fit. For most features, we

ssume that the ring edge lies in Saturn’s mean equatorial plane.

or inclined features, we include three additional parameters: i (in-

lination relative to the mean ring plane), 	 (longitude of the
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Fig. 3. Optical depth profiles for the Jeffreys gap region, derived from selected VIMS 

stellar occultation profiles. The profiles are offset vertically by a constant amount, 

and arranged (and labeled) in order of increasing true anomaly of the eccentric 

inner edge. Vertical dotted lines indicate the mean radii of the inner and outer gap 

edges, based on our orbital fits. 
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Fig. 4. Optical depth profiles for the Kuiper gap region, derived from selected VIMS 

stellar occultation profiles. The profiles are offset vertically by a constant amount, 

and arranged (and labeled) in order of increasing true anomaly of the eccentric 

inner edge. Vertical dotted lines indicate the mean radii of the inner and outer gap 

edges, based on our orbital fits. 
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z  
scending node) and 

˙ 	 (nodal regression rate), and compute the

ntercept point of the ray from the spacecraft to the Earth or star

ith the specified inclined ring plane. The zero-point for the iner-

ial longitudes λ, ϖ0 and 	0 (as well as δm 

and εm 

below) is the

scending node of Saturn’s equator on the Earth’s equator of J20 0 0.

ll of our models use a common epoch of 2008 January 1, 12:00

TC = JED 2454467.0, as in Papers I and II. 

We also allow for other possible modes of radial distortion,

ach of which is specified by 

r(λ, t) = −A m 

cos (mθ ) , (5)

here 

= λ − 	p (t − t 0 ) − δm 

(6) 

nd m is the number of radial minima and maxima in the pat-

ern. This expression describes free or normal modes of oscillation,

here A m 

is the mode’s radial amplitude, δm 

is the longitude of

ne of the m radial minima, at t = t 0 , and the pattern speed 	P is

ts angular rotation rate in inertial space, expected to be close to

hat of a Lindblad resonance located at the ring’s semimajor axis

 Borderies and Longaretti, 1987; French et al., 1991 ), as given by

q. (7) . We take as an a priori estimate 

p � [(m − 1) n + ˙ � s ec ] /m, (7)
here the mean motion n and apsidal precession rate ˙ � s ec —given

y Eqs. (8) and (3) , respectively, of Paper II—are evaluated at the

emimajor axis of the edge. A positive value of m corresponds to

n ILR-type (inner Lindblad resonance) normal mode, while a neg-

tive value of m corresponds to an OLR-type (outer Lindblad res-

nance) normal mode. We expect to find the former at the outer

dges of ringlets (OER) or the inner edges of gaps (IEG), and the

atter at the inner edges of ringlets (IER) or the outer edges of gaps

OEG). In either case, 	P is positive. For each mode, the additional

t parameters are A m 

, 	P and δm 

. We note that an m = 1 ILR-type

ode is equivalent, at least to first order in e , to a precessing kep-

erian ellipse with A 1 = ae, 	p = ˙ � s ec and δ1 = � 0 , the longitude

f pericenter at t = 0 . Below, we will find examples of ring features

hat contain more than one m = 1 mode simultaneously. 

Equation (5) can also be used to describe radial perturbations

orced by a Lindblad resonance with an external satellite, in which

ase the pattern speed, m -value, and phase are all determined by

he satellite’s orbital parameters, and Eq. (7) now serves to specify

mplicitly the exact resonance location a res . 

Our model also includes terms describing possible vertical os-

illations, using an equation of the form: 

(λ, t) = B m 

sin (mθ ) , (8)
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Table 1 

Orbital elements of five simple Casssini Division gaps. 

ID Feature a (km) m ae (km) ϖ0 ( °) a ˙ � ( ◦/d) � ˙ � ( ◦/d) �a ˙ � (km) 

N rms (km) a sin i (km) 	0 ( °) ˙ 	( ◦/d) � ˙ 	( ◦/d) �a ˙ 	 (km) 

A m (km) δm ( °) 	p ( °/d) �	p ( °/d) �a p (km) 

123 Russell Gap IEG 118589.92 ± 0.02 1 7.60 ± 0.03 236.73 ± 0.25 4.90922 ± 0.0 0 028 0 .00376 −25.40 ± 1.87 

157 0.25 [0.0 0 0] b 

2 0.23 ± 0.03 165.64 ± 4.19 376.94996 ± 0.00492 0 .01784 −3.69 ± 1.02 

2 Mimas 0.51 ± 0.03 80.23 ± 1.89 381.98584 ± 0.00212 0 .00234 −0.48 ± 0.44 

3 0.25 ± 0.03 92.19 ± 2.46 500.95134 ± 0.00286 0 .01022 −1.60 ± 0.45 

13 Russell Gap OEG 118628.40 ± 0.01 1 0.11 ± 0.01 73.68 ± 6.47 4.90829 ± 0.00644 0 .00851 −57.61 ± 43.56 

160 0.09 [0.0 0 0] b 

2 Mimas 0.47 ± 0.01 78.01 ± 0.73 381.98525 ± 0.0 0 080 0 .00175 −0.36 ± 0.17 

120 Jeffreys Gap IEG 118929.63 ± 0.02 1 3.26 ± 0.02 333.51 ± 0.47 4.85753 ± 0.0 0 049 0 .00201 −13.77 ± 3.35 

93 0.13 1 0.17 ± 0.01 292.09 ± 3.43 −4.82576 ± 0.00907 −0 .00164 −11.37 ± 62.74 

2 Mimas 0.44 ± 0.02 75.98 ± 1.64 381.99151 ± 0.00181 0 .00801 −1.67 ± 0.38 

15 Jeffreys Gap OEG 118966.70 ± 0.01 1 0.08 ± 0.01 114.89 ± 11.68 4.80910 ± 0.01146 −0 .04101 281.19 ± 78.54 

162 0.12 [0.0 0 0] b 

2 Mimas 0.37 ± 0.01 74.90 ± 1.18 381.98629 ± 0.00120 0 .00279 −0.58 ± 0.25 

119 Kuiper Gap IEG 119401.67 ± 0.01 1 0.93 ± 0.02 19.55 ± 1.32 4.79845 ± 0.00164 0 .01125 −78.45 ± 11.45 

137 0.16 1 0.18 ± 0.01 226.51 ± 3.73 −4.78025 ± 0.010 0 0 −0 .02376 −167.37 ± 70.47 

2 Mimas 0.25 ± 0.02 79.87 ± 2.53 381.98534 ± 0.00298 0 .00184 −0.39 ± 0.63 

118 Kuiper Gap OEG 119406.30 ± 0.01 1 0.10 ± 0.02 220.24 ± 9.59 4.75654 ± 0.01096 −0 .030 0 0 209.20 ± 76.43 

157 0.13 [0.0 0 0] b 

2 Mimas 0.29 ± 0.02 79.03 ± 1.75 381.98449 ± 0.00188 0 .0 0 099 −0.21 ± 0.40 

127 Bessel Gap IEG 120231.17 ± 0.04 1 1.78 ± 0.05 263.16 ± 1.76 4.68450 ± 0.00214 0 .01438 −103.50 ± 15.40 

170 0.44 [0.0 0 0] b 

2 Mimas 0.29 ± 0.05 73.47 ± 5.32 381.97875 ± 0.00648 −0 .00475 1.02 ± 1.39 

8 0.36 ± 0.05 10.70 ± 1.10 642.50158 ± 0.00133 0 .00838 −1.04 ± 0.16 

11 Bessel Gap OEG 120243.71 ± 0.02 1 0.64 ± 0.03 206.45 ± 2.58 4.68565 ± 0.00302 0 .01727 −124.40 ± 21.74 

169 0.23 [0.0 0 0] b 

0 0.20 ± 0.03 350.38 ± 8.45 728.80164 ± 0.00982 −0 .02595 2.87 ± 1.08 

2 Mimas 0.23 ± 0.03 76.05 ± 3.64 381.98984 ± 0.00410 0 .00634 −1.36 ± 0.88 

−1 0.14 ± 0.03 302.43 ± 11.28 1462.27575 ± 0.01320 −0 .04746 2.60 ± 0.72 

10 Barnard Gap IEG 120303.69 ± 0.05 1 0.44 ± 0.06 200.07 ± 8.92 4.68212 ± 0.01267 0 .02205 −159.22 ± 91.46 

161 0.43 [0.0 0 0] b 

2 0.61 ± 0.07 44.12 ± 3.25 368.82370 ± 0.00399 0 .02142 −4.60 ± 0.86 

2 Mimas 0.25 ± 0.07 67.07 ± 7.39 381.99503 ± 0.00842 0 .01153 −2.48 ± 1.81 

3 1.31 ± 0.06 108.47 ± 1.02 490.20424 ± 0.00150 0 .02111 −3.42 ± 0.24 

4 1.64 ± 0.07 46.00 ± 0.57 550.89054 ± 0.0 0 084 0 .01698 −2.46 ± 0.12 

5 1.36 ± 0.06 27.61 ± 0.57 587.28565 ± 0.0 0 088 −0 .00216 0.29 ± 0.12 

6 0.59 ± 0.07 24.56 ± 1.01 611.58228 ± 0.00179 0 .01830 −2.39 ± 0.23 

7 0.55 ± 0.06 46.93 ± 0.95 628.91493 ± 0.00130 0 .01082 −1.37 ± 0.17 

8 0.30 ± 0.07 10.41 ± 1.59 641.92788 ± 0.00251 0 .01868 −2.32 ± 0.31 

9 0.71 ± 0.07 8.38 ± 0.55 652.04071 ± 0.0 0 065 0 .01644 −2.01 ± 0.08 

10 0.42 ± 0.06 1.75 ± 0.98 660.13055 ± 0.00128 0 .01422 −1.72 ± 0.15 

13 0.36 ± 0.06 26.84 ± 0.86 676.93190 ± 0.00124 0 .0 090 0 −1.06 ± 0.15 

9 Barnard Gap OEG 120316.04 ± 0.01 1 0.23 ± 0.01 166.62 ± 3.44 4.66313 ± 0.00365 0 .00477 −34.47 ± 26.40 

161 0.11 [0.0 0 0] b 

2 Mimas 0.22 ± 0.01 79.36 ± 1.83 381.98624 ± 0.00202 0 .00274 −0.59 ± 0.43 

5 0.19 ± 0.01 58.97 ± 0.87 587.28403 ± 0.00103 0 .08724 −11.84 ± 0.14 

a The epoch is UTC 2008 January 1, 12:00:00. 
b Quantities in square brackets were held fixed during orbit determination. 
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with 

θ = λ − 	p (t − t 0 ) − εm 

. (9)

Again, this expression can accommodate either free or resonantly-

forced modes, as appropriate. B m 

and εm 

are the mode’s vertical

amplitude and phase, respectively, and in this case the pattern

speed 	P is expected to be close to that of a vertical resonance

located at the particles’ orbit. We therefore take as an a priori

estimate 

	p � [(m − 1) n + 

˙ 	s ec ] /m, (10)

where ˙ 	s ec is the nodal regression rate as given by Eq. (4) of Pa-

per II. In this expression, a positive value of m corresponds to an

IVR-type normal mode, or to a forced perturbation at a satellite

IVR. Note that an m = 1 mode is equivalent, to first order in i , to

an inclined keplerian orbit with B m 

= a sin i, 	p = 

˙ 	s ec (the nodal

regression rate) and ε1 = 	0 (the longitude of the ascending node

at t = 0 ). 
Although in-plane perturbations manifest themselves directly as

adial offsets with respect to a keplerian model, out-of-plane per-

urbations must be handled differently. In such cases, the apparent

adial offset of the ring depends on the vertical displacement z , on

he elevation B ∗ of the line of sight to the star (or to the Earth, in

he case of a radio occultation) with respect to the ring plane, and

n the longitude of observation λ. Denoting the inertial longitude

f the line of sight to the star (or Earth) as λ∗, then the apparent

adial displacement of the ring segment in the occultation profile

s given by Nicholson et al. (1990) and Jerousek et al. (2011) : 

r = − z cos φ

tan B ∗
, (11)

here φ = λ − λ∗. For vertically-perturbed rings, we add the above

erm to our ring model, where z ( λ, t ) is given by Eq. (8) . 

The quality of the observational data, coupled with the ex-

remely high accuracy of the fitted orbit models, makes it possi-

le in some instances to fit for systematic radial distortions ae or

 m 

as small as � 0.1 km, and for inclinations a sin i as small as
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Fig. 5. Optical depth profiles for the region containing the Bessel (left) and Barnard 

(right) gaps, derived from selected VIMS stellar occultation profiles. The profiles are 

offset vertically by a constant amount, and arranged (and labeled) in order of in- 

creasing true anomaly of the eccentric inner edge of the Barnard gap. Vertical dot- 

ted lines indicate the mean radii of the gap edges, based on our orbital fits. 
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 0.05 km. To test for the robustness of these results, and to es-

ablish realistic uncertainties on the non-circularity and inclination

f nominally circular and equatorial features, we have developed

 pattern-scanning technique in which we specify a range of ex-

ected pattern speeds for a suspected radial distortion, inclination,

r warp in the ring plane, and determine the amplitude and rms

esiduals of the best fitting distortion at each pattern speed. To be

onsidered real, the overall best fit (lowest rms residuals) must be

ubstantially better than all other fits, and the best-fitting pattern

peed must be near to the theoretically expected value. For a dis-

ortion forced by an external satellite, an additional requirement

s that the phase of the distortion be consistent with the mean

ongitude of the satellite. In cases where no such best fit exists,

he typical amplitude of the fitted mode over the range of scanned

attern speed is used to estimate an upper limit to the mode in

uestion. 

In our orbit fits, we will make use of several quantities to

ompare the fitted and predicted apsidal and nodal precession

ates. We let � ˙ � specify the difference between the fitted pre-

ession rate and the calculated value at the fitted semimajor axis,

nd define �a ˙ � 

= � ˙ � / (d ˙ � /da ) as the corresponding amount

y which the fitted semimajor axis would have to be shifted to

atch the observed value of ˙ � . Similarly, the corresponding dif-

erence between the fitted nodal rate and the calculated value

s � ˙ 	, and �a ˙ 	 = � ˙ 	/ (d ˙ 	/da ) is the corresponding amount by

hich the fitted semimajor axis would have to be shifted to match

he observed value of ˙ 	. For normal modes, we define �	p to

e the difference between the fitted value of 	P and that pre-

icted by Eq. (7) . The corresponding radial offset is given by �a p =
	p / (d	p /da ) . 

. Simple gaps in the Cassini Division 

We begin our survey with the five narrow gaps in the Cassini

ivision that do not contain dense ringlets: the Russell, Jeffreys,

uiper, Bessel and Barnard gaps. In Figs. 2 –5 we show sample ra-

ial profiles of each of these features, selected from the highest-

uality VIMS occultation data. The individual profiles in each fig-

re are sorted by the true anomaly f of the more eccentric edge,

o as to illustrate any nonzero eccentricity. As a general observa-

ion, we note first that at 30 0–50 0 m resolution, all 10 edges ap-

ear quite sharp. However, the outer edges of these simple gaps

sually show greater contrast and are thus more easily measured

han are the inner edges. The only exception to this generalization

s the Barnard gap, whose inner edge is much more prominent. A

econd feature common to most of these gaps is a broad bump in

ptical depth located between 5 and 15 km exterior to the outer

ap edge. This bump is most prominent for the Jeffreys gap, but

bsent for the Bessel gap. (A similar feature is seen exterior to the

aplace gap in Fig. 22 below.) 

Our own fits to the edges of these five gaps largely corroborate

he findings of Hedman et al. (2010) and French et al. (2010) . In

articular, we confirm that the outer edges of the Russell, Jeffreys,

uiper and Barnard gaps are circular to within ∼0.25 km; these are

n fact the only features in the Cassini Division that have survived

n our list of circular fiducial features used to define the ring plane

adius scale and pole direction. 2 For the inner edges of these gaps

nd the outer edge of the Bessel gap, precessing keplerian ellipse

i.e., m = 1 ) models provide generally satisfactory fits, although in

lmost all cases we find evidence for additional normal modes. The
2 As discussed further in Section 8.1 , almost all of the sharp edges in the Cassini 

ivision also show an m = 2 signature due to forcing by the very strong Mimas 2:1 

LR at the outer edge of the B ring. But for the purpose of selecting reference fea- 

ures we will generally ignore this additional perturbation, although it is of course 

ncluded in our fits and in the tables of fit parameters. 

 

p  

k  

n  

t  

M  
nner edge of the Barnard gap is again unusual, inasmuch as it has

 very small eccentricity and is instead dominated by no less than

hree normal modes of comparable strength with m = 3 , 4 and 5. 

In the discussion below, the reader is referred to Table 1 , which

ontains our best-fitting orbital elements for all of the simple

assini Division gap edges. For each measured edge, we list, for

eference, the feature ID number (an extension of the numbering

cheme given in French et al., 1993 ), the mean radius a , the num-

er of data fitted N and the post-fit rms residual. For each compo-

ent of the fit, we also list the value of m ; the amplitude ae, a sin i

r A m 

; the phase ϖ0 , 	0 or δm 

; the pattern speed, ˙ � , ˙ 	 or 	P ;

he departures of these rates from their predicted values; and the

orresponding offsets in semimajor axis, �a ˙ � 

, �a ˙ 	, and �a p , as

efined previously. 

.1. The Russell gap 

The Russell gap may be considered the type example of a sim-

le Cassini Division gap, with an eccentric inner edge ( ae = 7 . 6

m) and a circular outer edge ( ae < 0.1 km). The only other sig-

ificant perturbations are m = 2 modes, attributed to the effect of

he Mimas 2:1 ILR, with amplitudes of ∼0.50 km. (These so-called

imas modes appear on almost all sharp edges in the Cassini
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Fig. 6. Barnard IEG (inner edge of gap) normal mode scans for m = 3 , 4 and 5. The vertical dashed lines indicate the predicted pattern speeds for the three modes. 
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Division, and are discussed as a group in Section 8 .) There are very

weak m = 2 and 3 ILR-type modes on the inner edge, but no de-

tectable inclination is seen on either edge ( a sin i < 0.1 km). Post-

fit rms residuals are 0.25 and 0.09 km for inner and outer edges,

respectively. The mean width of the Russell gap is 38.5 km, and a

series of radial profiles is shown in Fig. 2 . 

3.2. The Jeffreys gap 

A similar story holds for the Jeffreys gap, which sports a some-

what less eccentric inner edge ( ae = 3 . 4 km) and a circular outer

edge. The only other significant perturbations are the m = 2 Mi-

mas modes, with slightly smaller amplitudes of ∼0.35 km, ow-

ing to their greater radial separation from the resonance location.

Again, no detectable inclination is seen on either edge. Post-fit rms

residuals are 0.14 and 0.12 km for the inner and outer edges, re-

spectively. The mean width of the Jeffreys gap is 37.1 km, almost

the same as that of the Russell gap, and a series of radial profiles

is shown in Fig. 3 . The sharp peaks in four of the profiles in this

plot are due to a very narrow, discontinuous or clumpy ringlet at

a radius of ∼118, 958 km. We have not attempted to measure this

feature, designated as R8, which is also visible in Cassini images

( Colwell et al., 2009b ). 

3.3. The Kuiper gap 

The Kuiper gap is exceptionally narrow, with a width that aver-

ages only 4.6 km. Indeed, it is only barely resolved in some Cassini
ccultations, and not at all in ground-based occultations of bright

tars such as 28 Sgr ( French et al., 1993; Nicholson et al., 20 0 0 ).

ut in all other respects it resembles the much wider Russell and

effreys gaps, with an eccentric inner edge ( ae = 0 . 9 km) and a

ircular outer edge ( ae < 0.1 km). The usual Mimas modes have

mplitudes of ∼0.27 km. There is a possible inclination on the in-

er edge with a sin i = 0 . 18 km, but no other detectable normal

odes. Post-fit rms residuals are 0.16 and 0.13 km for inner and

uter edges, respectively. A series of radial profiles is shown in

ig. 4 . 

.4. The Bessel gap 

In most respects the Bessel gap is similar to the Russell, Jef-

reys and Kuiper gaps, with an eccentric inner edge ( ae = 1 . 8 km).

owever, in this case the outer edge is not quite circular, with

n m = 1 amplitude of ae = 0 . 6 km. Note that the pericenters of

he two edges are misaligned by 57 °, although they may well

e precessing at the same rate, given the fit uncertainties (see

able 1 ). The only other significant perturbations are the m = 2

imas modes, with amplitudes of ∼0.25 km, a weak m = 8 ILR-

ype mode on the inner edge, and two even weaker OLR-type

odes ( m = 0 and m = −8 ) on the outer edge. Again, no de-

ectable inclination is seen on either edge. Post-fit rms residu-

ls are 0.44 and 0.23 km for inner and outer edges, respectively.

he mean width of the Bessel gap is 12.5 km, and a series of ra-

ial profiles covering both Bessel and Barnard gaps is shown in

ig. 5 . 
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Fig. 7. Residuals of Barnard IEG vs phase for m = 3 , 4 and 5. The fitted amplitudes are 1.31, 1.64, and 1.36 km, respectively. For each plot, all other fitted modes have been 

subtracted from the measurements. 
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Fig. 8. A gallery of m = 1 models for the five simple gaps in the Cassini Division and their residuals, plotted vs true anomaly. Other normal modes, when present, have been 

removed. Fitted amplitudes are listed in Table 1 . 
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Fig. 9. Normal modes for the Russell and Jeffreys gaps. Inner edges of gaps (IEG) are shown on the left, and outer edges of gaps (OEG) on the right. Modes are coded by 

color: free eccentric modes ( m = 1 ) are green, other free modes are red, and modes forced by an external satellite (in this case, the m = 2 mode forced by Mimas) are violet. 

(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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.5. The Barnard gap 

As already noted above, the Barnard gap differs in several ways

rom its siblings. Its prominent inner edge shows no less than 11

istinct normal modes, with 1 ≤ m ≤ 13, of which the m = 1 mode

as the nearly smallest amplitude! The largest are the m = 3 , 4

nd 5 ILR-type modes, with amplitudes of 1 . 3 − −1 . 7 km. The

uter edge, however, is almost circular, a characteristic it shares

ith most of the other simple gaps. 

In Fig. 6 we present normal mode scans of the inner gap edge

or m = 3 , 4 and 5. Each of these scans begins with a common

eference fit that includes only the m = 1 mode, and whose rms

esidual is 2.3 km; in each case the rms residual is reduced to ∼1.9

m. The final least-squares fit, with all 11 normal modes included,

as a post-fit rms residual of 0.43 km (see Table 1 ). Fig. 7 shows

he pattern of residuals as a function of longitude for each of the

 = 3 , 4 and 5 modes, after removing the contributions from all

ther modes. 

By comparison with the inner edge, the outer edge of the

arnard gap is relatively simple: we find small m = 1 and 5 ILR-

ype modes, with amplitudes of ∼0.2 km, and a Mimas signature

f comparable size. Post-fit rms residuals are a very small 0.11 km.

he mean width of the Barnard gap is 12.4 km, essentially identical

o that of the Bessel gap. 

Although the sheer number of modes detected on the inner

dge of the Barnard gap is unprecedented, the presence of the

 = 5 mode on both edges is very likely due to the proximity of

he Prometheus 5:4 ILR at 120304.0 km. Indeed, the best-fit pat-

ern speeds closely match the mean motion of Prometheus, as ex-
 o  
ected for a first-order Lindblad resonance. We will examine the

greement of the amplitude and phase with that predicted for this

esonance in Section 8.2 . 

.6. Summary 

In Fig. 8 we present a gallery of our elliptical model fits to the

0 simple gap edges, displayed where feasible at a common ver-

ical scale so as to facilitate comparisons. In each case we plot

he measured radius variations vs true anomaly, after removal of

ny other significant perturbations with m � = 1. Note the near-

ircularity of the outer edges of the Russell, Jeffreys, Kuiper and

arnard gaps, which we use as reference features in our recon-

truction of the geometry for each occultation. None of these gap

dges has a significant inclination ( a sin i < 0.2 km). We defer

dditional discussion of the eccentricities and precession rates to

ection 9 below. 

Figs. 9 and 10 summarize the normal modes detected on the

dges of the Russell, Jeffreys, Bessel and Barnard gaps, based on

he fits reported in Table 1 . We discuss the normal mode charac-

eristics as a group in Section 7 . 

We return now to the issue raised in Section 1 as to whether

he Bessel and Barnard gaps are better considered as two nearby

imple gaps, or as a single complex gap containing a rather broad,

solated ringlet. In favor of the former hypothesis, we observe that

1) the putative 1.994 R S ringlet is hardly more dense than the sur-

ounding regions (unlike the Huygens and Laplace ringlets, or the

itan and Maxwell ringlets in the C ring); and (2) the pericenters

f its inner and outer edges differ by 38 ± 22 °, unlike most other
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Fig. 10. Normal modes for the Bessel and Barnard gaps. Modes are coded by color: free eccentric modes ( m = 1 ) are green, other free modes are red, and modes forced by 

an external satellite are violet (Mimas, for m = 2 , and the Prometheus 5:4 ILR for the m = 5 modes for the Barnard IEG and OEG). (For interpretation of the references to 

color in this figure legend, the reader is referred to the web version of this article.) 
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eccentric ringlets. In favor of the latter we note that (1) the outer

edge of the Bessel gap lacks the bump in optical depth seen ex-

terior to most other simple gaps; (2) this same edge is definitely

eccentric, unlike all other outer edges of simple gaps but like most

narrow ringlet edges; and (3) the inner edge of the Barnard gap is

unusually well-defined. None of these items of evidence seems to

be definitive, however, and indeed there is no agreed-upon defini-

tion of a ringlet in this context. 

4. The Huygens gap 

We turn next to what we may refer to as complex gaps: i.e.,

those containing one or more isolated ringlets. This group includes

the Huygens, Herschel and Laplace gaps. We begin with the Huy-

gens gap, which is bordered on its inner edge by the outer edge of

the B ring. The latter was discussed in detail by Spitale and Porco

(2010) and Nicholson et al. (2014a ), and we will not repeat their

results here. In summary, the shape of this highly-noncircular fea-

ture is dominated by perturbations due to the Mimas 2:1 ILR, one

of the strongest satellite resonances in Saturn’s rings, but the edge

also exhibits normal modes with m = 1 , 2, 3, 4 and 5. The forced

and free m = 2 components are each ∼35 km in amplitude and

beat against one another with a period of 5.4 years, so that the in-

stantaneous amplitude of the m = 2 signature varies from as little

as a few km to as much as 70 km ( Nicholson et al., 2014a ). The

amplitudes of the other modes range from 6 to 20 km, with m = 1

being the largest. 

The Huygens gap is 361 km wide and is host to two narrow

and relatively opaque ringlets, known as the Huygens and (infor-
ally) Strange ringlets. (The latter was designated R6 by Colwell

t al., 2009b , but has not yet been given an official designation by

he IAU.) We will first discuss the ringlets, and then the outer edge

f the gap. Perhaps not surprisingly, our fits show that the entire

uygens gap region is subject to strong direct perturbations from

he Mimas 2:1 resonance, probably combined with indirect pertur-

ations from the large and variable m = 2 distortion of the B ring

dge. 

.1. Huygens ringlet 

In Fig. 11 we present a series of optical depth profiles of the

uygens ringlet, arranged by increasing true anomaly. Both edges

re quite sharp, and the optical depth profile is U-shaped, with

 broad minimum near the ringlet’s centerline. Its mean width is

18 km. As previously reported by Porco (1983) and Turtle et al.

1991) , on the basis of Voyager observations, and confirmed by

edman et al. (2010) , this ringlet is well-described to first order

s a precessing keplerian ellipse, similar to the Titan and Maxwell

inglets in the C ring, or the uranian ε ring. In Fig. 12 , we plot

he radii of both edges of the Huygens ringlet as a function of true

nomaly f . The pericenters of inner and outer edges are aligned

o within 5 °, and their independently-fitted precession rates are

qual to within the fit uncertainties. Unlike all other known eccen-

ric rings, however, the edges of the Huygens ringlet have almost

dentical eccentricities. As a result, the width of the ringlet is es-

entially independent of f . The fitted amplitudes are ∼28.3 km and

iffer by less than 1 km. 
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Table 2 

Huygens Ringlet, Huygens Gap, and Strange Ringlet (R6) orbital elements. 

ID Feature a (km) m ae (km) ϖ0 ( °) a ˙ � ( ◦/d) � ˙ � ( ◦/d) �a ˙ � (km) 

N rms (km) a sin i (km) 	0 ( °) ˙ 	( ◦/d) � ˙ 	( ◦/d) �a ˙ 	 (km) 

A m (km) δm ( °) 	p ( °/d) �	p ( °/d) �a p (km) 

54 Huygens Ringlet IER 117805.55 ± 0.11 1 27.81 ± 0.16 137.53 ± 0.36 5.02872 ± 0.0 0 039 0 .00536 −35.15 ± 2.56 

178 1.30 1 0.59 ± 0.10 115.57 ± 8.12 −4.98852 ± 0.01787 0 .00170 11.27 ± 118.31 

2 Mimas 2.09 ± 0.16 81.56 ± 2.39 381.98744 ± 0.00250 0 .00394 −0.80 ± 0.51 

−10 0.74 ± 0.17 14.73 ± 1.23 831.59967 ± 0.00132 −0 .03113 2.93 ± 0.12 

−5 0.85 ± 0.16 43.95 ± 2.38 906.74404 ± 0.00252 −0 .03291 2.84 ± 0.22 

−4 1.85 ± 0.17 32.20 ± 1.32 944.31186 ± 0.00135 −0 .03818 3.17 ± 0.11 

−3 1.20 ± 0.17 84.52 ± 2.73 1006.92419 ± 0.00291 −0 .04765 3.71 ± 0.23 

−2 1.12 ± 0.16 168.38 ± 4.40 1132.15800 ± 0.00515 −0 .05744 3.98 ± 0.36 

53 Huygens Ringlet OER 117823.65 ± 0.12 1 28.03 ± 0.17 141.77 ± 0.38 5.02587 ± 0.0 0 042 0 .00528 −34.60 ± 2.78 

183 1.50 1 0.58 ± 0.11 96.86 ± 8.97 −4.97462 ± 0.01895 0 .01288 85.31 ± 125.53 

2 1.54 ± 0.17 105.43 ± 3.62 380.68870 ± 0.00393 0 .02379 −4.84 ± 0.80 

2 Mimas 1.84 ± 0.17 71.33 ± 2.93 381.98878 ± 0.00313 0 .00528 −1.07 ± 0.64 

5 0.71 ± 0.17 26.40 ± 3.00 606.07903 ± 0.00319 0 .02733 −3.52 ± 0.41 

53 Huygens Ringlet OER 117823.68 ± 0.08 1 29.72 ± 0.83 135.22 ± 1.16 5.03028 ± 0.0 0 096 0 .00969 −63.51 ± 6.27 

183 0.97 1 0.51 ± 0.07 99.91 ± 6.94 −5.01183 ± 0.01649 −0 .02435 −161.32 ± 109.28 

1 3.89 ± 0.83 247.39 ± 9.03 5.08186 ± 0.00698 0 .06160 −403.89 ± 45.73 

2 2.02 ± 0.12 101.38 ± 1.85 380.69456 ± 0.00197 0 .02981 −6.07 ± 0.40 

2 Mimas 1.78 ± 0.11 75.55 ± 2.04 381.98465 ± 0.00226 0 .00115 −0.23 ± 0.46 

5 0.55 ± 0.11 23.13 ± 2.57 606.07959 ± 0.00281 0 .02814 −3.62 ± 0.36 

560 Strange Ringlet (R6) IER 117907.04 ± 0.15 1 7.63 ± 0.21 153.21 ± 1.73 5.00570 ± 0.00184 −0 .00219 14.43 ± 12.12 

167 1.63 1 7.44 ± 0.16 117.20 ± 0.91 −4.97620 ± 0.00166 −0 .00128 −8.49 ± 11.05 

0 2.42 ± 0.20 9.73 ± 5.24 750.48932 ± 0.00555 −0 .00685 0.72 ± 0.58 

2 3.75 ± 0.21 105.79 ± 1.67 380.25154 ± 0.00179 −0 .00411 0.84 ± 0.37 

2 Mimas 1.29 ± 0.20 75.92 ± 5.16 381.97024 ± 0.00576 −0 .01326 2.70 ± 1.17 

3 2.49 ± 0.21 37.53 ± 1.62 505.33539 ± 0.00177 −0 .00295 0.45 ± 0.27 

5 1.06 ± 0.20 29.00 ± 2.57 605.39489 ± 0.00258 −0 .00961 1.24 ± 0.33 

100 Strange Ringlet (R6) COR 117907.73 ± 0.14 1 7.53 ± 0.20 154.38 ± 1.74 5.00549 ± 0.00185 −0 .00230 15.12 ± 12.19 

179 1.60 1 7.15 ± 0.16 117.70 ± 0.97 −4.97991 ± 0.00198 −0 .00509 −33.84 ± 13.20 

0 2.47 ± 0.20 22.66 ± 5.22 750.47404 ± 0.00550 −0 .01557 1.64 ± 0.58 

2 3.79 ± 0.20 104.82 ± 1.75 380.25159 ± 0.00184 −0 .0 0 067 0.14 ± 0.38 

2 Mimas 1.52 ± 0.20 73.00 ± 4.44 381.97443 ± 0.00493 −0 .00907 1.85 ± 1.01 

3 2.33 ± 0.21 31.24 ± 1.71 505.33606 ± 0.00181 0 .00219 −0.34 ± 0.28 

5 1.05 ± 0.20 26.78 ± 2.46 605.39733 ± 0.00272 −0 .00181 0.23 ± 0.35 

−3 0.86 ± 0.20 15.26 ± 5.50 1005.65070 ± 0.00564 −0 .00957 0.75 ± 0.44 

−2 0.96 ± 0.21 46.53 ± 6.56 1130.72302 ± 0.00651 −0 .01885 1.31 ± 0.45 

−1 0.59 ± 0.21 2.39 ± 22.71 1505.95636 ± 0.02229 −0 .03032 1.58 ± 1.16 

561 Strange Ringlet (R6) OER 117908.77 ± 0.17 1 7.40 ± 0.24 153.83 ± 2.10 5.00735 ± 0.00220 −0 .0 0 028 1.86 ± 14.48 

180 1.99 1 7.39 ± 0.17 120.60 ± 0.99 −4.97938 ± 0.00187 −0 .00472 −31.38 ± 12.44 

0 2.56 ± 0.24 19.83 ± 5.94 750.47956 ± 0.00607 −0 .0 0 019 0.02 ± 0.64 

2 4.13 ± 0.23 106.14 ± 1.83 380.25204 ± 0.00186 0 .00486 −0.99 ± 0.38 

2 Mimas 1.55 ± 0.24 77.43 ± 4.85 381.96666 ± 0.00512 −0 .01684 3.44 ± 1.04 

3 2.60 ± 0.25 33.24 ± 1.80 505.33449 ± 0.00182 0 .00736 −1.13 ± 0.28 

−1 1.14 ± 0.24 352.19 ± 13.97 1505.96783 ± 0.01326 0 .00102 −0.05 ± 0.69 

20 Huygens Gap OEG 117930.90 ± 0.04 1 2.20 ± 0.06 248.91 ± 1.55 5.03383 ± 0.00174 0 .02956 −194.63 ± 11.46 

176 0.45 1 0.44 ± 0.03 245.71 ± 4.15 −4.98428 ± 0.00947 −0 .01295 −86.15 ± 62.98 

0 1.82 ± 0.05 143.90 ± 1.86 750.25152 ± 0.00226 −0 .01801 1.90 ± 0.24 

2 Mimas 1.34 ± 0.05 76.17 ± 1.27 381.98394 ± 0.00148 0 .0 0 044 −0.09 ± 0.30 

−4 0.35 ± 0.06 45.35 ± 2.42 942.82225 ± 0.00269 −0 .01859 1.55 ± 0.22 

−3 0.40 ± 0.06 84.75 ± 2.84 1005.34998 ± 0.00299 −0 .01332 1.04 ± 0.23 

−1 0.82 ± 0.05 66.96 ± 4.26 1505.51227 ± 0.00470 −0 .03071 1.60 ± 0.25 

a The epoch is UTC 2008 January 1, 12:00:00. 
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inclinations 
As noted by Turtle et al. (1991) , however, a purely elliptical

odel provides a relatively poor fit to the Huygens ringlet. Fur-

her investigation reveals, as anticipated, a substantial m = 2 sig-

ature attributable to the Mimas resonance, with an amplitude of

.9 km on the inner edge and 1.7 km on the outer edge. In ad-

ition, we find OLR-type normal modes with m = −2 , −3 , −4 , −5 ,

nd −10 on the inner edge, and ILR-type modes with m = 2 and

 on the outer edge. These modes range in amplitude from 0.7 to

.8 km. (The forced and free m = 2 modes on the outer edge are

eadily distinguished by their different pattern speeds of 381.985

nd 380 . 695 ◦ d 

−1 , respectively) 

We also see evidence for a possible secondary m = 1 mode for

he Huygens OER, as indicated in the normal mode scan shown

n Fig. 13 . The corresponding post-fit rms is reduced from 1.50 to

.97 km by the inclusion of this second mode, which has an am-

litude of 3.9 km and an apse rate ˙ � = 5 . 082 ◦ d 

−1 , considerably
aster than that of the primary m = 1 mode. We speculate that this

econd m = 1 mode may be forced by the B ring itself, which has a

early identical fitted m = 1 pattern speed of 5 . 0835 ± 0 . 0019 ◦ d 

−1 

 Nicholson et al., 2014a ), although the exact forcing mechanism re-

ains to be explored quantitatively. Fit parameters are listed in

able 2 , while Fig. 14 shows the forced m = 2 modes on the inner

nd outer edges. 

Finally, and equally surprisingly, we find evidence that the

uygens ringlet has a small but significant inclination. Fits to

oth edges yield vertical amplitudes, a sin i � 0.6 km, with

ery similar nodal longitudes at epoch. The fitted nodal re-

ression rates are also equal to within their uncertainties, at

4 . 99 ± 0 . 02 ◦ d 

−1 , and very close to the rate predicted us-

ng Saturn’s zonal gravity harmonics. Fig. 15 shows node rate

cans that demonstrate the statistical significance of the fitted
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Table 3 

Orbital elements of Herschel Ringlet and Gap. 

ID Feature a (km) m ae (km) ϖ0 ( °) a ˙ � ( ◦/d) � ˙ � ( ◦/d) �a ˙ � (km) 

N rms (km) a sin i (km) 	0 ( °) ˙ 	( ◦/d) � ˙ 	( ◦/d) �a ˙ 	 (km) 

A m (km) δm ( °) 	p ( °/d) �	p ( °/d) �a p (km) 

19 Herschel Gap IEG 118188.42 ± 0.04 1 8.27 ± 0.06 347.32 ± 0.41 4.97362 ± 0.0 0 045 0 .00826 −54.96 ± 2.98 

173 0.41 1 0.34 ± 0.03 279.55 ± 4.80 −4.95092 ± 0.01091 −0 .01809 −121.61 ± 73.32 

2 1.34 ± 0.06 95.16 ± 1.20 378.89248 ± 0.00138 0 .01218 −2.50 ± 0.28 

2 Mimas 0.89 ± 0.06 82.69 ± 1.86 381.98160 ± 0.00239 −0 .00190 0.39 ± 0.49 

3 0.71 ± 0.05 5.26 ± 1.51 503.53264 ± 0.00181 0 .01392 −2.16 ± 0.28 

4 0.35 ± 0.05 89.58 ± 2.32 565.85131 ± 0.00276 0 .01337 −1.85 ± 0.38 

5 0.36 ± 0.06 71.76 ± 1.77 603.24143 ± 0.00197 0 .01197 −1.55 ± 0.26 

6 0.37 ± 0.06 4.74 ± 1.50 628.16426 ± 0.00190 0 .00711 −0.89 ± 0.24 

7 0.37 ± 0.05 45.09 ± 1.26 645.97255 ± 0.00159 0 .00991 −1.20 ± 0.19 

8 0.34 ± 0.05 31.40 ± 1.24 659.32551 ± 0.00169 0 .00876 −1.04 ± 0.20 

10 0.25 ± 0.05 24.43 ± 1.40 678.02618 ± 0.00174 0 .01366 −1.58 ± 0.20 

18 Herschel Ringlet (R7) IER 118234.30 ± 0.02 1 1.49 ± 0.03 172.81 ± 1.26 4.96229 ± 0.00140 0 .00382 −25.44 ± 9.36 

171 0.26 1 1.49 ± 0.02 274.14 ± 0.64 −4.92970 ± 0.00144 −0 .00370 −24.90 ± 9.68 

0 0.32 ± 0.03 237.88 ± 5.66 747.36440 ± 0.00607 −0 .03297 3.49 ± 0.64 

2 Mimas 0.69 ± 0.03 79.00 ± 1.36 381.98129 ± 0.00157 −0 .00221 0.45 ± 0.32 

17 Herschel Ringlet (R7) OER 118263.25 ± 0.04 1 1.76 ± 0.05 264.77 ± 1.78 4.95659 ± 0.00178 0 .00247 −16.47 ± 11.87 

147 0.35 1 2.12 ± 0.03 294.58 ± 0.77 −4.93101 ± 0.00192 −0 .00930 −62.71 ± 12.91 

2 0.37 ± 0.05 6.80 ± 3.98 378.53785 ± 0.00484 0 .02192 −4.50 ± 1.00 

2 Mimas 0.72 ± 0.05 77.59 ± 2.30 381.98303 ± 0.00231 −0 .0 0 047 0.10 ± 0.47 

3 0.32 ± 0.05 32.76 ± 3.08 503.04880 ± 0.00336 0 .01216 −1.89 ± 0.52 

4 0.20 ± 0.05 76.13 ± 3.75 565.30770 ± 0.00401 0 .01070 −1.48 ± 0.56 

5 0.22 ± 0.05 54.38 ± 2.73 602.66098 ± 0.00297 0 .00776 −1.01 ± 0.39 

16 Herschel Gap OEG 118283.52 ± 0.01 1 0.24 ± 0.02 127.45 ± 5.24 4.94609 ± 0.00553 −0 .0 050 0 33.37 ± 36.92 

176 0.15 1 0.25 ± 0.01 57.07 ± 2.62 −4.92430 ± 0.00506 −0 .00560 −37.78 ± 34.15 

0 1.27 ± 0.02 232.50 ± 0.88 746.91637 ± 0.0 0 097 −0 .01679 1.78 ± 0.10 

2 Mimas 0.67 ± 0.02 76.01 ± 0.86 381.98441 ± 0.0 0 099 0 .0 0 091 −0.19 ± 0.20 

−3 0.11 ± 0.02 96.61 ± 3.35 10 0 0.83562 ± 0.00412 −0 .02601 2.05 ± 0.32 

−2 0.11 ± 0.02 144.86 ± 5.60 1125.34236 ± 0.00677 −0 .00813 0.57 ± 0.47 

−1 0.23 ± 0.02 197.18 ± 4.64 1498.79019 ± 0.00551 −0 .02688 1.41 ± 0.29 

16 Herschel Gap OEG 118283.51 ± 0.01 1 0.28 ± 0.02 113.47 ± 3.70 4.94653 ± 0.00467 −0 .00456 30.41 ± 31.15 

176 0.11 1 0.24 ± 0.01 58.29 ± 2.06 −4.92546 ± 0.00389 −0 .00676 −45.61 ± 26.23 

0 1.27 ± 0.01 233.42 ± 0.68 746.91625 ± 0.0 0 074 −0 .01697 1.80 ± 0.08 

1 0.18 ± 0.02 244.98 ± 5.78 5.08901 ± 0.00736 0 .13826 −923.00 ± 49.17 

2 Mimas 0.68 ± 0.01 77.00 ± 0.63 381.98423 ± 0.0 0 074 0 .0 0 073 −0.15 ± 0.15 

−3 0.07 ± 0.01 90.70 ± 3.66 10 0 0.84253 ± 0.00472 −0 .01917 1.51 ± 0.37 

−2 0.11 ± 0.01 147.75 ± 3.90 1125.33982 ± 0.00487 −0 .01076 0.75 ± 0.34 

−1 0.25 ± 0.02 196.49 ± 3.22 1498.79145 ± 0.00387 −0 .02574 1.35 ± 0.20 

a The epoch is UTC 2008 January 1, 12:00:00. 
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In a complementary study based on Cassini ISS images, Spitale

and Hahn (2016) determined best-fitting keplerian models for each

ringlet edge, and searched for evidence of additional free and

forced normal modes. For the m = 1 (keplerian) mode, they found

ae = 28 . 32 and 28.52 km for the inner and outer edges (assum-

ing a common pattern speed of 5.02691 ° d 

−1 ) very similar to our

corresponding values of 27.81 and 29.72 km. They identified m = 2

Mimas modes on the two edges with amplitudes of 1.62 and 1.20

km, assuming a pattern speed of 381.9842 ° d 

−1 , roughly consistent

with our results of 2.09 and 1.78 km. They found only one other

mode: a free m = 2 mode on the outer ringlet edge with A 2 = 2 . 22

km; our corresponding result is A 2 = 1 . 54 km for our orbit model

including only a single m = 1 mode, and A 2 = 2 . 02 km for the or-

bit fit described previously that included a second simultaneous

m = 1 mode with a slightly different apsidal precession rate (i.e.,

pattern speed). By virtue of the very high spatial resolution of

the occultation data compared to the imaging data, we were able

to identify an additional 5 OLR-type modes on the Huygens IER

and an m = 5 ILR-type mode on the Huygens OER—see Table 2 for

details. 

Despite the nearly identical eccentricities of its inner and outer

edges, the Huygens ringlet exhibits substantial variations in its ra-

dial width. These are readily visible in Fig. 11 , and are plotted vs

true anomaly and the mean radius of the ringlet in Fig. SM-2 . Ob-

served widths vary from 11–28 km, but there is no apparent corre-

lation with true anomaly or mean ringlet radius. Instead, it appears
hat most of the observed width variations in the occultation data

an be accounted for by the combined effect of the various normal

odes on each edge identified above. As indicated by the dashed

ines in the upper panel of Fig. SM-2, the combined amplitudes of

ll modes other than m = 1 or the m = 2 Mimas modes (both of

hich are nearly identical on the inner and outer ring edges, and

o do not contribute to width variations) amount to ± 6.4 km on

he inner edge and ± 6.5 km on the outer edge, or ± 12.9 km in

he width. As further evidence in support of this assertion, we note

hat the rms residuals of our fits to the individual ringlet edges are

nly 1.30 and 0.97 km, respectively, indicating that we can suc-

essfully model each edge independently, despite the large scat-

er in Fig. SM-2. However, this conclusion seems to disagree with

he results of Spitale and Porco (2006) , who in a preliminary study

f the Huygens ringlet in Cassini images found what appeared to

e substantial temporal variations in the Huygens ringlet’s mean

idth. This is difficult to reconcile with the fits presented here.

e have tried subdividing our dataset by year of acquisition, but

nd no obvious changes in the mean width or in its range of

ariation. 

In a recent investigation, Spitale and Hahn (2016) propose that

he Huygens ringlet contains two large objects (features A and B)

hat systematically perturb the inner edge of the ringlet. They as-

ociate the larger of these, feature A, with a proposed embedded

atellite with a diameter of ∼3.6 km that produces IER radial dis-

ortions of about 10 km over a longitudinal extent of about 20 ° (as
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Fig. 11. Optical depth profiles for the Huygens ringlet. Profiles are derived from se- 

lected VIMS stellar occultation profiles, offset vertically by a constant amount, and 

arranged (and labeled) in order of increasing true anomaly of the ringlet’s midline. 

Vertical dotted lines indicate the mean radii of the ringlet edges, based on our or- 

bital fits. 
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stimated from their Fig. 11 ). In contrast, the largest individual de-

iations of the occultation data from our models for the inner and

uter edges are far below 10 km: +4 . 4 and −1 . 4 km, respectively.

n Fig. SM-3 , we plot the residuals of our model fits to each edge

s a function of mean anomaly, and mark the locations of the puta-

ive features A and B at the locations for these features estimated

rom Fig. 19 of Spitale and Hahn (2016) . If these are long-lasting

eatures on the inner edge orbiting at the local Keplerian rate, we

ould expect to see a cluster of larger residuals at these locations

n our occultation. No such pattern of residuals is seen. Our alter-

ative suggestion is that the occultation data did indeed sample

he regions near features A and B, but that the structures observed

n the ISS images represent radial deviations associated with the

ER-type normal modes at longitudes and at moments when they

appen to be largely in phase. 

Without knowing the exact time of the imaging observations,

nd in light of the very fast pattern speeds of these modes, it is

ot possible to calculate the actual ring shape for the ISS observa-

ions based on the normal modes we have identified. Instead, as a

lausibility argument, we show in Fig. SM-4 three separate repre-

entations of the instantaneous shape of the Huygens ringlet, based

n random phases of the m = −10 , −5 , −4 , −3 , and −2 OLR modes

n the inner edge of the ringlet, and the m = 2 and 5 ILR modes
n the outer edge of the ringlet. (For simplicity, we ignore the m =
 and the forced m = 2 Mimas modes, which are in phase for both

dges.) To our eyes, these three simulations qualitatively resemble

he ISS observations shown in Fig. 11 of Spitale and Hahn (2016) ,

nd in particular the features that they label as A and B seem

uite consistent in character with the inner ringlet edge deviations

marked by arrows in Fig. SM-4) resulting from the coaddition of

ormal modes that we have positively identified as present in the

ccultation data. 

Of course, this interpretation requires that the long-term coher-

nce of the two features and their apparent motion at the keple-

ian rate, as asserted by Spitale and Hahn (2016) , be coincidental or

llusory—future Cassini ISS observations of the Huygens ringlet that

onfirm or refute the persistence of features A and B and their pat-

ern speeds are likely to provide the best test of these two compet-

ng proposals. Perhaps the most secure statement about our results

s that they do not provide independent or supporting evidence for

he proposed existence of embedded satellites within the Huygens

inglet. 

.2. R6: The Strange ringlet 

Between the Huygens ringlet and the outer edge of the Huy-

ens gap lies an opaque, very narrow feature designated R6 by

olwell et al. (2009b ) but informally known as the Strange ringlet.

ample profiles of this ringlet are shown in Fig. 16 , arranged by

rue anomaly (see fit below). While not apparent in these particu-

ar profiles, which were mostly obtained at a rather steep elevation

ngle to the ring plane of B = 62 . 3 ◦, in some Cassini images as well

s some low-elevation occultations the Strange ringlet appears not

o lie within the Huygens gap at all, but is superimposed on the

ing material exterior to the Huygens gap. A mild example of this

s the α Sco ingress profile for rev 13 in Fig. 16 , which was ob-

ained at B = 32 . 5 ◦ and shows the ringlet right at the outer edge

f the gap. This curious circumstance is most easily accounted for

y a nonzero inclination, combined with a low viewing angle with

espect to the ring plane. 

Because of its suspected inclination, we used our spectral scan-

ing program to search for a vertical distortion with m = 1 and a

lausible nodal regression rate, after first fitting a simple precess-

ng keplerian ellipse to the data, with the results shown in Fig. SM-

 . Here we plot the vertical amplitude and post-fit residuals for the

inglet’s centerline as a function of the assumed nodal precession

ate, ˙ 	. We find a strong signal at ˙ 	 = −4 . 960 ◦ d 

−1 , very close to

he predicted value of ˙ 	s ec = −4 . 9745 ◦ d 

−1 at the ringlet’s mean

adius of 117907.7 km, with a vertical amplitude of ∼7.5 km. The

mportance of a nonzero inclination in accounting for the Strange

inglet’s apparent radial excursions is reinforced by the fact that

he largest deviations in our data set from a simple equatorial ke-

lerian ellipse occur for the low-elevation RSS occultations on revs

7–64 and range from −40 to +30 km (see Eq. (8) ). The inclination

robably also explains why this ringlet was seen in the Voyager PPS

tellar occultation data ( Esposito et al., 1983 ), but not in the Voy-

ger radio occultation profile, which was obtained at a very low

levation of 5.6 ° ( Tyler et al., 1983 ). 

Our orbital fits to the Strange ringlet include separate fits for

he inner and outer ring edges, where clearly measurable, as well

s fits of the ringlet’s center radius (COR = center of ringlet),

ecause of the possibility that the ringlet might not be resolved

n some occultations. The best fit for the COR, given in Table 2 ,

hows a substantial eccentricity ( ae = 7 . 5 ± 0 . 2 km) and inclination

 a sin i = 7 . 1 ± 0 . 2 km), as well as a plethora of statistically sig-

ificant normal modes. In order of decreasing amplitude, we find

 = 2 , 0, and 3, with amplitudes from 3.8 to 2.3 km. There is also

n m = 2 Mimas mode with an amplitude of 1.5 km. In Fig. 17 we

lot the fit residuals for each of these modes, where the abscissa
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Fig. 12. The measured radii of the Huygens ringlet inner and outer edges, plotted as a function of longitude relative to the periapse longitude of the inner ring edge. The 

fitted m = 1 amplitudes are 27.7 km (IER) and 27.8 km (OER); other normal modes have not been subtracted (see Table 2 ). Note the phase offset of the outer edge relative 

to the inner edge of �λ = � OER − � IER = 4 . 2 ◦ . 

Table 4 

Orbital elements of Laplace Ringlet and Gap. 

ID Feature a (km) m ae (km) ϖ0 ( °) a ˙ � ( ◦/d) � ˙ � ( ◦/d) �a ˙ � (km) 

N rms (km) a sin i (km) 	0 ( °) ˙ 	( ◦/d) � ˙ 	( ◦/d) �a ˙ 	 (km) 

A m (km) δm ( °) 	p ( °/d) �	p ( °/d) �a p (km) 

115 Laplace Gap IEG 119844.78 ± 0.03 1 3.25 ± 0.04 310.11 ± 0.73 4.72673 ± 0.0 0 087 0 .00254 −17.99 ± 6.19 

112 0.26 1 0.25 ± 0.02 10.17 ± 4.59 −4.69233 ± 0.00863 0 .00179 12.80 ± 61.81 

2 Mimas 0.29 ± 0.04 82.70 ± 4.17 381.98579 ± 0.00499 0 .00229 −0.49 ± 1.06 

14 Laplace Ringlet IER 120036.53 ± 0.02 1 1.19 ± 0.02 236.12 ± 1.34 4.71250 ± 0.00139 0 .01524 −108.87 ± 9.90 

168 0.20 [0.0 0 0] b 

0 2.22 ± 0.03 160.05 ± 0.68 730.64946 ± 0.0 0 072 −0 .05715 6.29 ± 0.08 

2 Mimas 0.27 ± 0.03 75.51 ± 2.90 381.98821 ± 0.00304 0 .00471 −1.01 ± 0.65 

−4 0.13 ± 0.02 19.39 ± 2.76 918.04749 ± 0.00343 −0 .03268 2.84 ± 0.30 

−2 0.74 ± 0.02 141.40 ± 1.03 1100.71164 ± 0.00122 −0 .04519 3.28 ± 0.09 

−1 0.61 ± 0.02 193.60 ± 2.47 1466.03143 ± 0.00272 −0 .07870 4.30 ± 0.15 

12 Laplace Ringlet OER 120077.75 ± 0.01 1 2.79 ± 0.02 51.49 ± 0.36 4.72457 ± 0.0 0 040 0 .03307 −236.69 ± 2.83 

174 0.14 [0.0 0 0] b 

2 0.62 ± 0.02 86.10 ± 0.82 369.88543 ± 0.0 0 099 0 .02822 −6.03 ± 0.21 

2 Mimas 0.22 ± 0.02 78.01 ± 2.38 381.98827 ± 0.00254 0 .00477 −1.02 ± 0.54 

3 0.42 ± 0.02 34.20 ± 0.82 491.60221 ± 0.00101 0 .02298 −3.71 ± 0.16 

4 0.25 ± 0.02 46.96 ± 0.97 552.46291 ± 0.00136 0 .02267 −3.26 ± 0.20 

6 0.12 ± 0.02 16.13 ± 1.37 613.31846 ± 0.00148 0 .01720 −2.23 ± 0.19 

114 Laplace Gap OEG 120085.65 ± 0.01 1 1.34 ± 0.01 308.73 ± 0.54 4.71707 ± 0.0 0 058 0 .02668 −190.99 ± 4.18 

172 0.10 [0.0 0 0] b 

2 Mimas 0.22 ± 0.01 76.33 ± 1.62 381.98649 ± 0.00165 0 .00299 −0.64 ± 0.35 

a The epoch is UTC 2008 January 1, 12:00:00. 
b Quantities in square brackets were held fixed during orbit determination. 
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is the appropriate argument, θ = m (λ − 	P t − δm 

) for each case.

The rms residual for the final fit remains rather large at 1.60 km,

suggesting that the Strange ringlet probably harbors additional per-

turbations, as yet unidentified. (If we neglect the inclination, our

best fit has an unsatisfactory rms residual of 8.4 km.) In a separate

fit to the IER, we find normal modes m = 0 , 2 , 3 and 5, and for the

OER there is a combination of both ILR- and OLR-type modes with

m = −1 , 0 , 2 , and 3; both the IER and OER also show clear m = 2

Mimas modes. 
There is no obvious pattern in the varying widths shown by

he Strange ringlet in Fig. 16 , which range from ∼1 to ∼3.5 km.

he corresponding width-radius relationship is shown in Fig. SM-

 . Note from Table 2 that the inner edge of the ringlet nominally

as larger eccentricity than outer edge! The difference in the fitted

mplitudes of the m = 2 modes on the inner and outer edges con-

ributes a systematic ∼0.4 km m = 2 pattern to the width of the

inglet, but this is a small fraction of the overall width variations,

hich remain unexplained. 
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Fig. 13. Huygens OER normal mode scan for secondary m = 1 mode. Note the zero 

amplitude at the nominal pattern speed for the appropriate radius of the gap edge, 

confirming that the best-fitting single m = 1 eccentric model has already been re- 

moved. (When the pattern speeds and amplitudes of both m = 1 modes are allowed 

to be fitted simultaneously, the amplitude of the subsidiary m = 1 mode increases 

to 3.9 km—see Table 2 .). 
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.3. Huygens gap outer edge 

The outer edge of the Huygens gap harbors a significant m = 2

ignature, rotating at a pattern speed very close to the mean mo-

ion of Mimas, as also found for the Huygens and Strange ringlets.

n this case, the amplitude is 1.3 km. But this is not the dominant

erturbation on this edge. Unlike the simple gaps with their gen-

rally circular outer edges, we find a strong signature of a freely-

recessing keplerian ellipse (i.e., an m = 1 distortion) with ae = 2 . 2

m, which is visible (with some difficulty) at the right in Fig. 16 . 

Second in importance is an m = 0 normal mode, with an am-

litude of 1.8 km. A search for other modes yields evidence for

dditional OLR-type modes with m = −1 , −3 and −4 and ampli-

udes of 0.3–0.8 km (see Table 2 ). There is also a small but sig-

ificant inclination with a sin i = 0 . 45 ± 0 . 03 km. It is surprising

o find an m = 1 ILR-type mode on the outer edge of a gap, and

e note that the fitted apsidal precession rate for this mode of

˙  = 5 . 035 ± 0 . 002 ◦ d 

−1 is significantly faster (by 0 . 03 ◦ d 

−1 ) than

he expected value at this distance. It may be the result of a forced

esponse to the nearby eccentric Huygens ringlet, although the

recise mechanism remains to be explored. The pattern speeds for

he other normal modes are all very close to their predicted values,

ith 0.9 < �a p < 2.7 km. The postfit rms residual is an acceptable
.43 km, but considerably larger than the typical uncertainty in the

dge measurements themselves or their computed absolute radii. 

.4. Summary 

Several things stand out when we compare our orbital fits for

he Huygens and Strange ringlets and for the outer edge of the gap

herein they reside. Most notable are the nonzero inclinations we

ave found for all three features, especially for the Strange ringlet.

t might be suspected that the smaller vertical amplitudes we have

ound for the Huygens ringlet and gap edge represent inclinations

orced by the nearby Strange ringlet, but in this case we would ex-

ect to find matching precession rates and aligned (or anti-aligned)

odes for all three features. While the fitted precession rates are

rguably equal to within their uncertainties, and the nodes of the

wo ringlets are indeed quite similar, the node of the gap’s outer

dge is ∼130 ° away from that of the Strange ringlet. Also intriguing

re the fitted apsidal precession rates ˙ � , and their deviations from

he predicted values, � ˙ � , listed in Table 2 . These appear to form

art of a larger pattern of anomalous precession rates found in the

omplex gaps, and will be discussed as a group in Section 9 below.

In Fig. 18 we show the distribution of normal mode amplitudes

or all four measured features in the Huygens gap, in the same for-

at as Figs. 9 and 10 above. 
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Fig. 15. Huygens ringlet IER and OER node rate scans. Both inner and outer edges show similar inclinations, with fitted a sin i � 0.5 km, and nearly identical nodal regression 

rates that are close to the predicted values at the center of the ringlet. 
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5. The Herschel gap 

Moving outwards from the Huygens gap, we come to the ∼100

km-wide Herschel gap with its eponymous ringlet, as illustrated

in Fig. 19 . Most striking here is the eccentricity of the gap’s in-

ner edge, which is readily apparent in the figure, compared with

the near-circularity of its outer edge. Upon closer inspection one

sees that the ringlet, too, has noncircular edges, though perhaps

not simple ellipses. These observations are borne out by our orbital

fits, which show that the inner gap edge exhibits one of the largest

eccentricities in the Cassini Division, with ae = 8 . 3 km. Indeed, the

ellipticity of this feature was originally noted by Flynn and Cuzzi

(1989) , using relatively low-resolution Voyager images. Also de-

tected on the gap’s inner edge are a plethora of ILR-type modes

with m = 2 , 3 , 4 , 5 , 7 , 8 and 10 and amplitudes of 0.2–1.3 km, a

forced m = 2 Mimas mode of 0.89 km amplitude, and a probable

inclination with a sin i = 0 . 34 km (see Table 3 ). The outer gap edge

also proves to be measurably noncircular, dominated by an m = 0

mode with an amplitude of 1.27 km, with a forced Mimas mode

of amplitude 0.67 km and a weak m = 1 eccentric mode ( ae = 0 . 24

km). This edge also shows a small inclination ( a sin i = 0 . 25 km) as

well as three other very weak OLR-type modes ( m = −1 , −2 , and

−3 ) with amplitudes of 0.1–0.2 km. Post-fit rms residuals are 0.41

and 0.15 km for the inner and outer gap edges, respectively. The

mean width of the Herschel gap is 95.1 km. 

When searching for signatures of additional normal modes, we

identified a potential secondary m = 1 mode on the outer edge

of the Herschel gap. Fig. SM-7 shows a normal mode scan for

m = 1 of the residuals to the best-fitting eccentric model, with a

clear signature for a mode with a pattern speed of about 5.1 ◦ d 

−1 .

When both the primary and secondary m = 1 modes are fitted si-

multaneously, the amplitude of the secondary mode reaches 0.17

km. While somewhat correlated with the main m = 1 signature,

the final fitted pattern speed of the second m = 1 mode is sub-

stantially larger than for the first: ˙ � = 5 . 089 ◦ d 

−1 compared to

˙ � = 4 . 947 ◦ d 

−1 . The best fit that includes this second m = 1 mode

is included in Table 3 , and has a significantly reduced post-fit rms

error of just 0.11 km. It is perhaps significant that the apse rate of

the smaller m = 1 mode lies rather close to the fitted m = 1 pat-

tern speed of the B ring’s outer edge of ˙ � = 5 . 0835 ± 0 . 0019 ◦ d 

−1
 Nicholson et al., 2014a ), hinting that the B ring itself may be re-

ponsible for this additional m = 1 mode. On the other hand, the

eat period between the primary and secondary m = 1 modes is

n the order of a decade, roughly the span of data included in the

t, and thus there is a possibility that this signature is an artifact

f aliasing. If so, it is a rare phenomenon, since we have identified

nly one other instance of a putative secondary m = 1 mode in our

ts to over 150 ring and gap edges. 

.1. The Herschel ringlet 

Our fits show that the Herschel ringlet’s edges both have small

ut significant eccentricities, with amplitudes ae = 1 . 5 and 1.8 km,

nd comparable inclinations, with a sin i = 1 . 5 and 2.1 km (see

able 3 ). In addition, there are Mimas modes with amplitudes of

0.7 km. However, neither the nodes nor especially the pericen-

ers of the ringlet’s inner and outer edges are well-aligned, with

ifferences of δ	0 = 20 ± 2 ◦ and δ� 0 = 95 ± 3 ◦. Moreover, the fit-

ed apsidal and nodal precession rates of the two edges each differ

t the 4 σ level, suggesting that the inner and outer edges may be

ehaving independently of one another. Fig. 20 shows the mea-

ured radii of the Herschel ringlet’s edges relative to the periapse

ongitude of the inner edge. Note that difference in apse rate re-

ults in about 18 ° shift in periapse longitudes over the course of

0 0 0 days, the interval spanning the observation period of our ob-

ervations. 

Post-fit rms residuals are 0.25 and 0.45 km for inner and outer

dges, respectively, while the mean width of the ringlet is 28.9 km,

lightly less than one-third of the gap width. 

As in the case of the Strange ringlet, we used our spectral-

canning program to verify the reality of the inclinations of the

erschel ringlet’s edges. Fig. SM-8 shows scans of residuals vs

odal rate; in each case we see a clear signature of an inclination

ith a nodal regression rate very close to the predicted value. The

mplitudes are 1.4 and 1.6 km, respectively, compared to the least-

quares fit results of 1.5 and 2.1 km. As an aside, we note that

icholson et al. (1990) found an apparent radial displacement of

he Herschel ringlet between the Voyager PPS and RSS profiles of

10 km, which is much larger than the eccentricities established

y our fits to the much more extensive Cassini data. These results
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Fig. 16. Optical depth profiles for the Strange ringlet (R6) and the outer edge of the 

Huygens gap, derived from selected VIMS stellar occultation profiles. The profiles 

are offset vertically by a constant amount, and arranged (and labeled) in order of 

increasing true anomaly of the ringlet’s midline. Vertical dotted lines indicate the 

mean radius of the ringlet, based on our orbital fits, and the outer edge of the 

Huygens gap. 
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an probably be reconciled by appealing to the ringlet’s inclina-

ion, and to the very low elevation of the Voyager RSS occultation:

t B = 5 . 6 ◦, a vertical displacement of z = 1 . 8 km can appear as an

pparent radial displacement of as much as z/ tan B = 18 km (see

q. (8) ), even larger than the observed value. 

The Herschel ringlet’s width–radius relation is illustrated in

ig. SM-9 , but is relatively uninformative. The overall width vari-

tions are modest ( 24 − −33 km) and there is little correlation

ith the ringlet’s mean radius, reflecting the misalignment of the

ericenters of the inner and outer edges. Nevertheless, when us-

ng the mode-scanning algorithm, we find clear evidence for an

 = 1 width variation at the appropriate pattern speed for the

ing. We reconcile this strong detection of a width variation with

rue anomaly, and the corresponding weak evidence for a classical

idth-radius relation expected for an eccentric ringlet, by appeal-

ng to Fig. 20 , which shows that the ring width varies systemati-

ally with the anomalies of the two edges, but is not a minimum

t f = 0 ◦ or a maximum at f = 180 ◦. 

.2. Summary 

It is unclear whether the Herschel ringlet can be regarded as

 dynamically coherent eccentric ringlet, in the usual meaning of

his term. The differing pericenter longitudes and rates for the

dges of this ringlet suggest that the two edges are behaving in-

ependently, although the situation is not so clear for the inclina-

ions and nodes. The inclinations of the edges are similar, but the

ode rates differ by ∼4 σ , even though the fitted nodes are just 20 °
part. Taken together, these suggest that the ringlet as whole may

e inclined, even if the pericenters are not locked together, but just

ow such a configuration might arise and be maintained is admit-

edly perplexing. Further complicating the story is the evidence for

 weak secondary m = 1 mode on the Herschel gap’s outer edge,

erhaps indicative of forcing by the B ring itself. 

In Fig. 21 we plot the fitted amplitudes of the normal modes

dentified for the Herschel gap and ringlet, in the same format as

or the Huygens gap. 

. The Laplace gap 

The wide Laplace gap and its prominent ringlet dominate the

uter part of the Cassini Division. At 241 km, it is second in width

nly to the Huygens gap, and is comparable to the Maxwell gap

n the C ring. As can be seen in Fig. 22 , the Laplace ringlet is lo-

ated extremely close to the outer edge of the gap, leaving a space

f only ∼8 km between the ringlet and the gap edge, which is re-

uced to < 4 km when the eccentric edges of ringlet and gap are

nti-aligned. Note that, unlike the situation with the Herschel gap,

he optical depths immediately adjacent to the inner and outer gap

dges are very different, and both regions are much less opaque

han the ringlet (see Fig. 1 ). 

Although the inner edge of the Laplace gap is quite indis-

inct, and difficult to measure accurately, it—like most of the other

assini Division gaps—shows a pronounced eccentricity; in this

ase the amplitude ae = 3 . 3 km. But unlike most other gaps, the

aplace gap also has an eccentric outer edge, albeit with a smaller

mplitude of 1.3 km. The Mimas m = 2 modes have amplitudes of

0.25 km, and there is a possible inclination on the inner edge

ith a sin i = 0 . 25 km. Curiously, the fitted pericenter longitudes

nd apsidal precession rates for the inner and outer gap edges are

ery similar, despite their large radial separation. The rate of the

ore eccentric inner edge, ˙ � = 4 . 727 ◦ d 

−1 , is fairly close to the

redicted value, but that of the outer edge is much too fast, with

a ˙ � 

= −191 ± 4 km (see Table 4 ). Post-fit rms residuals are 0.26

nd 0.10 km for the inner and outer gap edges, respectively. 
.1. R10: The Laplace ringlet 

Our fits show clearly that both edges of the Laplace ringlet

R10) are noncircular, but are dominated by different modes. The

nner edge has a small eccentricity ( ae = 1 . 2 km), but a somewhat

arger m = 0 normal mode with an amplitude of 2.2 km as well

s two smaller OLR-type modes with m = −1 and −2 with am-

litudes of ∼0.6 km, and an even weaker m = −4 mode with an

mplitude of 0.1 km. The outer edge is predominantly eccentric

 ae = 2 . 8 km), with much smaller ILR-type modes with m = 2 , 3, 4,

 and 8 and amplitudes of 0 . 1 − −0 . 6 km. The usual m = 2 Mimas

odes have amplitudes of ∼0.24 km, and there is no detectable

nclination on either edge. The pericenters of the inner and outer

dges are not aligned, and their fitted apsidal rates are quite differ-

nt, with that of the outer edge being faster than that of the inner

dge (see Table 4 ). So, as in the case of the Herschel ringlet, the

aplace ringlet does not precess rigidly and thus cannot be consid-

red an eccentric ringlet in the usual sense of the term. 

The optical depth profiles in Fig. 22 show that the Laplace

inglet has a rather complex internal profile, with quasi-linear

amps at the inner and outer edges and a prominent wavelike

tructure in its central region. The latter has been identified by
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Fig. 17. Observations of Strange ringlet plotted vs mode argument. Note that, for each panel, the inclination and all other modes have been subtracted from the measure- 

ments, in order to reveal the mode of interest. See Table 2 for fitted parameters. 
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Colwell et al. (2009a ) as a density wave driven by the Pandora 9:7

inner Lindblad resonance, which is located close to the inner edge

of the ringlet at 120036.8 km. Despite this coincidence, and the

evidence of the wave, we have been unable to identify any cor-

responding m = 8 perturbation on the ringlet’s inner edge. When

the profiles are sorted by true anomaly, as they are in Fig. 22 , the

width of the inner ramp varies systematically, disappearing com-

pletely in the upper six profiles. The outer ramp also varies in

width, but is apparently present at all longitudes. Looking at these

profiles, one has the strong impression that the m = 0 and 1 modes

we have identified on the edges of the ringlet do not penetrate

very far into its interior. 

Post-fit rms residuals are 0.20 and 0.14 km for inner and outer

edges, respectively, while the mean width of the ringlet is 41.2 km.

The Laplace ringlet’s width–radius relation is illustrated in

Fig. SM-10 . The overall width variations are significant ( 34 − −48

km) but there is little correlation with the ringlet’s mean radius,

reflecting the fact that the inner and outer edges are dominated

by different (and multiple) modes. As before, however, a normal

mode scan in the ring width does reveal a weak correlation in ring

width with the pattern speed corresponding to the precession rate

of the eccentric ringlet, as a result of the nearly anti-aligned apses

of the ringlet edges. 

In Fig. 23 we plot the fitted amplitudes of the normal modes

identified for the Laplace gap and ringlet, in the same format as

for the Huygens and Herschel gaps. 

7. Normal modes 

Perhaps the most striking characteristic of the orbital properties

of the Cassini Division ringlets and gaps is the sheer abundance
nd variety of normal modes identified at the sharp edges of these

eatures. Normal modes in planetary rings were first identified in

he narrow uranian γ and δ rings, where conspicuous m = 0 and 2

adial distortions were identified with amplitudes of 5.15 and 3.11

m, respectively ( French et al., 1986; 1991 ). These are examples of

lobal modes that are coherent across a narrow ringlet. More re-

ently, non-resonant normal mode perturbations with m = 1 , 3 , 4 ,

nd 5 were identified in the outer edge of the B ring ( Nicholson

t al., 2014a ), consistent with the notion that normal modes in

 broad ring can arise from density waves reflected by the sharp

dge of the ring, effectively trapped in a resonant cavity near the

ing boundary ( Spitale and Porco, 2010 )—we will refer to these as

dge modes . Additional normal modes were identified at the edges

f sharp ringlets in the C ring ( Nicholson et al., 2014b ), and in

his work we have found literally dozens of normal modes of both

ypes in the Cassini Division. 

Nicholson et al. (2014b ) reviewed the concept of normal modes

n planetary rings in some detail (see Section 2 and Appendix A of

hat work), and here we briefly summarize the key physical con-

epts. As introduced by Borderies et al. (1986) and further devel-

ped by Longaretti and Rappaport (formerly Borderies ), outward-

nd inward-propagating density waves can arise spontaneously in

ense, self-gravitating rings, and can result in amplified standing

aves in the presence of a feedback mechanism, such as interfer-

nce between the waves approaching and reflecting from a ring

oundary. In its simplest form, this amplification process favors

avelengths of density waves that are comparable to the ringlet

idth, and a precessing eccentric ringlet can be thought of as such

n m = 1 global mode. But normal modes are not restricted to nar-

ow ringlets, and a similar feedback mechanism can reinforce addi-

ional modes near sharp inner or outer edges of broad rings. For a
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Fig. 18. Detected normal modes for the Huygens and Strange ringlets and the Huygens OEG. Modes are coded by color: free eccentric modes ( m = 1 ) are green, other free 

modes are red, and modes forced by an external satellite (in this case, the m = 2 mode forced by Mimas) are violet. Note the presence of a secondary m = 1 mode on the 

Huygens OER. The unexpected m = 1 mode on the Huygens OEG may be a forced response to the nearby eccentric Huygens ringlet, given their similar values of ˙ � , although 

the pericenter leads the latter’s by ∼110 ° (see Table 2 ). Several nearly identical modes are observed on both edges of the Strange ringlet, presumably due to its mean width 

of only ∼2 km. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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harp outer edge, outward-propagating trailing density waves with

n ILR within a few radial wavelengths interior to the ring edge

ill reflect at the edge, back towards its source as a leading wave

ith the same wavenumber and pattern speed. This will in turn

eflect at the ILR and reappear as an outward-propagating trail-

ng wave, ultimately amplifying the mode. A similar situation ap-

lies at the inner edge of a broad ring, but in this case the reflec-

ion occurs at the outer Lindblad resonance (OLR) location within

 few wavelengths exterior to the ring edge. Thus, our expecta-

ion is that ILR-type edge modes (with m ≥ 1) will appear at

he outer edges of ringlets and the inner edges of gaps (at OERs

nd IEGs), and OLR-type edge modes (with m ≤ 0) will appear at

he inner edges of ringlets and the outer edges of gaps (at IERs

nd OEGs). 

.1. Distribution of ILR- and OLR-type edge modes 

The actual distribution of normal modes on ringlet and gap

dges is remarkably consistent with this theoretical expectation.

able 5 summarizes the normal modes we have identified for all

assini Division ringlets and gaps, organized by ringlet and gap

ype, and further sorted by orbital radius. For completeness, we

lso list the fitted ae for the nominal global eccentric ( m = 1 )

ode, the forced m = 2 Mimas mode amplitudes, a sin i for fea-

ures with measured inclinations, the post-fit rms residual, and the
umber of data points. At the top are the IER/OEG features, and as

xpected, all of the detected modes (other than the eccentric m = 1

odes and the m = 5 mode at the Barnard gap OEG, probably

orced by the nearby Prometheus 5:4 ILR) are OLR-type, with m ≤
. Low wavenumber modes typically have larger fitted amplitudes

han higher wavenumber modes, but this is by no means uni-

ormly true. For example, the strongest edge mode for the Huygens

inglet IER is m = −4 , with an amplitude of 1.83 km, accompanied

y marginally weaker m = −3 and −2 modes, but no detectable

 = −1 or 0 modes. The innermost four features have measurable

nclinations, and with the exception of the Huygens ringlet IER, the

ms residuals for all features are less than 0.5 km. As discussed

elow, the amplitude of the forced m = 2 Mimas mode decreases

ystematically with increasing distance from the inner edge of the

assini Division (the outer edge of the B ring). In addition to the

sual m = 1 keplerian shapes of the ringlets and gaps, there is a

ossible secondary m = 1 mode on the outer edge of the Herschel

ap. 

Next in Table 5 is the Strange ringlet, narrowest of the ringlets

n this study, and perhaps not surprisingly, there is overlap in

he modes identified on the inner and outer edges, and the ring

id-line. These modes effectively span the entire ringlet, and are

hus more properly thought of as global modes. The combination

f large eccentricity and inclination and the abundance of normal

odes make this among the most complex kinematical models we
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Fig. 19. Optical depth profiles for the Herschel gap and ringlet, derived from se- 

lected VIMS stellar occultation profiles. The profiles are offset vertically by a con- 

stant amount, and arranged (and labeled) in order of increasing true anomaly of 

the gap’s inner edge. Vertical dotted lines indicate the mean radii of the inner and 

outer gap and ringlet edges, based on our orbital fits. 
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r  
ave encountered, with the largest post-fit rms residuals of all of

he Cassini Division features. Evidently there are significant radial

nd/or vertical distortions that are not currently included in this

ulti-mode model. 

Finally, we list the OER/IEG features. In this case, the agreement

ith the cavity mode model is exact: all detected edge modes

re ILR-type modes, as expected. As before, the innermost of the

eatures are the only ones with measurable inclinations, although

here may be no dynamical significance to this pattern. With the

xception of the Huygens ringlet, which has substantial unmodeled

adial distortions, as noted previously, all of the OER/IEG features

ave post-fit rms residuals below 0.5 km. The inner edges of the

erschel and Barnard gaps each have an abundance of edge modes,

hile the inner edges of the Jeffreys, Kuiper, and Laplace gaps have

o detected free normal modes at all, other than m = 1 . There is a

 = 5 mode at the Barnard gap IEG that is probably forced by the

earby Prometheus 5:4 ILR, as we discuss below in Section 8.2 . 

.2. Systematic patterns in resonance locations and estimated mass 

ensities 

The resonant cavity model for normal modes requires that the

esonant radii for each mode must lie within the ring material,
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Fig. 20. The measured radii of the Herschel ringlet inner and outer edges, plotted as a function of longitude relative to the periapse longitude of the inner ring edge. The 

fitted m = 1 amplitudes are 1.5 km (IER) and 1.9 km (OER); other normal modes have not been subtracted (see Table 3 ). Note the phase offset of the outer edge relative to 

the inner edge of �λ = � OER − � IER = 95 ◦ . 
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M  

b  
nd not in the adjacent gap. Thus, for IEG/OER features, we expect

hat �a p = a res − a edge > 0 , and for OEG/IER features that �a p <

. Furthermore, we expect that, within a ring with multiple nor-

al modes, | �a p | should systematically decrease with increasing

 m |, since the wavelength of density waves scales as | m − 1 | −1 , for

 given surface mass density ( Shu et al., 1984 ). The calculated val-

es of �a p are plotted for individual edges in Fig. 24 , as a function

f m . As predicted by the model, �a p is located within ring mate-

ial, and not in free space, for every mode. Similarly, the expected

rend of decreasing distance of the resonance from the ring edge

ith increasing | m | is followed in almost every instance. 

Encouraged by these trends, we can use the dispersion rela-

ion for density waves to estimate the surface mass density near

he edges of features with multiple normal modes. As described

n Nicholson et al. (2014a ), the method assumes that the distance

a p between each mode’s resonant radius and the ring edge is

qual to 1/4 of the first wavelength of the corresponding density

ave. Taking amplitude-weighted averages over the strongest free

odes for a given edge, we obtain the nominal mean surface den-

ities � listed in Table 6 . Since this simple prescription under-

stimates the true surface density by about a factor of 4, based

n numerical simulations by P. Goldreich (personal communica-

ion, 2013), we have included values for 4 � as well, representing

ur best estimates of the actual surface densities. Finally, for the

isted mean normal optical depth τ̄ , we compute the mean opac-

ty κ = τ̄ / 4� for each feature. 

For the Huygens and Laplace ringlets, we find quite reason-

ble agreement between the surface densities derived from the

nner and outer edges: for the Huygens ringlet, 4� = 19 . 1 and

4.5 gm cm 

−2 , and for the Laplace ringlet we find 4� = 12 . 6 and

m  
0.9 gm cm 

−2 for the inner and outer edges, respectively. The rel-

tively low optical depth Huygens OEG and Herschel IEG and OEG

ave 4� = 2.0, 3.0, and 1.2 gm cm 

−2 , respectively; the Barnard IEG

as a somewhat larger value of 7.3 gm cm 

−2 . By means of com-

arison, Colwell et al. (2009a ) estimated surface mass densities of

assini Division features based on density wave analysis, including

he 9:7 Pandora density wave in the Laplace ringlet. They obtained

n estimated surface mass density of 5.76 gm cm 

−2 , roughly half

he 4 � value we find from the normal mode analysis, suggesting

hat the correction factor of 4 we have applied may be an over-

stimate. In the C ring, the Maxwell ringlet’s mean surface mass

ensity is estimated to be ∼11 gm cm 

−2 from self-gravity esti-

ates, comparable to a range of 5–12 gm cm 

−2 , inferred from the

roperties of the internal m = −2 wave present in the ringlet itself

 French et al., 2016 ), and the Titan ringlet’s surface density is es-

imated at 5.2–6.5 gm cm 

−2 , based on the resonance locations of

ultiple edge modes ( Nicholson et al., 2014b ). 

.3. Open questions 

Every Cassini Division ring edge or gap that we have mea-

ured has a detectable eccentricity ( m = 1 ) and forced m = 2 Mi-

as mode; nearly all have additional ILR- or OLR-type normal

odes. This is in striking contrast to the situation in the C and B

ings, where (with the exception of the narrow ringlets described

n Nicholson et al., 2014b ), near all sharp-edge features are circular

nd equatorial, with no detectable modes at the A m 

∼0.1 km level.

ost of these features are not bounded on one side by free space,

ut instead are embedded within regions of non-zero optical depth

aterial, and it may be that normal modes are excited and persist
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Fig. 21. Detected normal modes for the Herschel ringlet and gap edges. Modes are coded by color: free eccentric modes ( m = 1 ) are green, other free modes are red, and 

modes forced by an external satellite (in this case, the m = 2 mode forced by Mimas) are violet. (For interpretation of the references to color in this figure legend, the reader 

is referred to the web version of this article.) 

Table 6 

Surface densities and opacities derived from normal modes. 

Feature a (km) m values � (g cm 

−2 ) 4 � (g cm 

−2 ) τ̄ κ(= τ̄ / 4�) cm 

2 g −1 

Huygens IER 117806 −2 , −3 , −4 , −5 4.8 19 .1 3.0 0.16 

Huygens OER 117824 2, 5 3.6 14 .5 3.0 0.21 

Laplace IER 120037 0 , −1 , −2 3.1 12 .6 0.7 0.06 

Laplace OER 120078 2, 3, 4 2.7 10 .9 0.7 0.06 

Huygens OEG 117931 0 , −1 , −3 , −4 0.5 2 .0 0.2 0.10 

Herschel IEG 118188 2, 3, 4, 5, 6, 7, 8, 10 0.8 3 .0 0.4 0.13 

Herschel OEG 118284 0 0.3 1 .2 0.3 0.25 

Barnard IEG 120304 2, 3, 4, 6, 7, 9 1.8 7 .3 0.4 0.05 
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only near free-space boundaries such as isolated ringlet edges or

true gap edges. This is consistent with the resonant cavity model

for normal modes described in detail in Section 2 of Nicholson

et al. (2014b ), but it does not account for which specific edges and

gaps contain strong normal modes. 

Although the general pattern of ILR- and OLR-type normal

modes agrees with theoretical expectations, and the trend of A m 

with distance from ringlet and gap edges seems largely consistent

with the resonant cavity model, we are left with a number of vex-

ing questions. What characteristics determine which ring features

are most or least likely to harbor normal modes? What governs

the specific selection of modes? Are there saturation mechanisms

that limit their amplitudes? What are their lifetimes? 

We can gain some insight into the formation and destruction

timescale for normal modes from an examination of the change in

character of the outer edge of the A ring when Janus exchanges

t  
ts orbital position as part of the Janus/Epimetheus coorbital swap.

rom Cassini imaging data, El Moutamid et al. (2016) found that

he m = 7 pattern driven by Janus when in its outer orbit had dis-

ppeared within two years of the coorbital swap, and in the in-

erim free ILR-type normal modes with m = 9 and 12 appeared de

ovo in both imaging and occultation data. 

As a separate experiment, we subdivided our occultation data

ets into separate time periods to explore whether any modes have

ppeared or disappeared over the eight or so years of observations,

ut we were not able to reach any statistically significant conclu-

ions from these tests. 

. Resonant perturbations in the Cassini Division 

In contrast to the adjacent A ring, the Cassini Division is host

o a relatively small number of first- or second-order satellite
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Fig. 22. Optical depth profiles for the Laplace ringlet located within the Laplace 

gap, derived from selected VIMS stellar occultation profiles. The profiles are offset 

vertically by a constant amount, and arranged (and labeled) in order of increasing 

true anomaly of the eccentric outer edge. Vertical dotted lines indicate the mean 

radii of the inner and outer ringlet edges, and the outer edge of the Laplace gap, 

based on our orbital fits. 
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Table 7 

Barnard Gap resonance models. 

Feature Barnard IEG Barnard OEG 

Resonance Prometheus 5:4 ILR Prometheus 5:4 ILR 

m 5 5 

a (km) 120303.69 ± 0.05 120316.04 ± 0.01 

a res (km) 120304.0 120304.0 

�a res (km) −0 . 31 ± 0 . 05 12.04 ± 0.01 

n Prom ( 
◦ d −1 ) 587.28379 587.28379 

	P ( 
◦ d −1 ) 587.28565 ± 0.0 0 088 587.28403 ± 0.00103 

�	P ( 
◦ d −1 ) 0.00186 ± 0.00088 0.0 0 024 ± 0.00103 

δm ( °) a 27.61 ± 0.57 58.97 ± 0.87 

λProm ( °) a 22.91 22.91 

�δm ( °) 4.70 ± 0.57 36.06 ± 0.87 

S (km 

2 ) 2.12 2.12 

A pred (km) 6.84 0.18 

A m (km) 1.36 ± 0.06 0.19 ± 0.01 

a At epoch 2008 January 1, 12:00:00 UTC = JD 2454467.0. 
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P  
esonances. Other than the Mimas 2:1 resonance that falls near

he inner boundary of the Cassini Division at the B ring’s outer

dge, the only significant resonances in the Cassini Division are

he first-order Pandora 6:5 and 7:6, the Prometheus 5:4, and the

tlas 5:4 ILRs, and the second-order Prometheus and Pandora 9:7

LRs. Colwell et al. (2009a ) analyzed density waves in the Cassini

ivision associated with several of these resonances, and inferred

he surface mass density, viscosity, and opacity of the ring mate-

ial in these regions from the dispersion and damping of the den-

ity waves. Here, we use the results of our orbit fits to the edges

f sharp features to explore resonant perturbations in the Cassini

ivision. 

.1. The m = 2 Mimas mode 

The inner edge of the Cassini Division is also the B ring’s outer

dge, which is strongly perturbed by the nearby Mimas 2:1 ILR.

t is not surprising, then, that the response of Cassini Division

inglets and gaps to this resonance is detectable over a signifi-

ant radial range. Indeed, we have identified statistically signifi-

ant perturbations for every measured feature in the Cassini Di-

ision. Moreover, the amplitude, phase, and pattern speed of the
orced m = 2 modes are in excellent agreement with theoretical

xpectations, as shown in Fig. 25 . In the top panel, we compare

he fitted mode amplitudes from Table 5 with the predictions of

 simple model for a test particle perturbed by this resonance

 Goldreich and Tremaine, 1982; Spitale and Hahn, 2016 ). Numer-

cally, we compute a theoretical resonance strength S = 466 km 

2 ,

nd a corresponding forced m = 2 amplitude at radius a of A 2 M 

=
/ | a − a res | , where a res is the resonance radius (117570 km). The

greement is quite satisfactory. As further evidence of the reality

f these detections, note that the apoapses of the edge perturba-

ions are approximately aligned with Mimas, as expected for orbits

xterior to the ILR. Furthermore, all fitted pattern speeds match

imas’s mean motion in 2006–2010, as shown in the third panel

f the figure. 

This is the second reported instance in Saturn’s rings in which

n ILR of an external satellite creates detectable systematic re-

ional perturbations in the shapes of sharp features: Titan’s strong

:0 ILR similarly introduces forced m = 1 perturbations in more

han two dozen features located throughout the inner C ring. In

oth cases, detectable perturbations up to 30 0 0 km from the res-

nance location (see Fig. 19 of Nicholson et al., 2014a ). 

.2. The Prometheus 5:4 resonance at the Barnard Gap 

As we have noted previously, the inner edge of the Barnard Gap

ies very close to the resonance radius for the Prometheus 5:4 ILR,

hich may result in resonant forcing of an m = 5 mode of the

dges of this gap. Indeed, an m = 5 signature is present among

he rich set of other ILR-type modes detected for the Barnard IEG.

here is also a weaker m = 5 ILR-type mode on the outer edge of

he gap, where we would normally expect to find only OLR-type

odes. Fig. SM-11 shows the normal mode scans for both modes,

nd in particular provides clear indications of an ILR-type m = 5

dge mode with an amplitude of just 0.19 km. Here, we evaluate

he evidence that these modes are forced by Prometheus. 

In Table 7 , we list for both inner and outer gap edges the best-

tting semimajor axis a and observed m = 5 mode amplitude A m 

,

attern speed 	P , and phase δm 

, and the key properties of the

orced resonance, including its predicted strength S . We also list

he corresponding differences between the observed and predicted

attern speed �	P and orientation �δm 

. For the predicted phase,

e assume that the pericenter of the m = 5 distortion is aligned

ith aligned with Prometheus, as expected for an orbit located in-

erior to a res . 

For the m = 5 mode at the inner edge, the agreement be-

ween the observations and the forced resonance model is quite

atisfactory: the pattern speed differs by only 0 . 00186 ◦ d 

−1 from

rometheus’s mean motion, and the pericenter orientation is less
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Fig. 23. Detected normal modes at the edges of the Laplace gap and ringlet. Modes are coded by color: free eccentric modes ( m = 1 ) are green, other free modes are red, 

and modes forced by an external satellite (in this case, the m = 2 mode forced by Mimas) are violet. (For interpretation of the references to color in this figure legend, the 

reader is referred to the web version of this article.) 
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than 5 ° from the direction to Prometheus. These differences do

exceed the quite small formal errors of the orbit fit, but these

geometrical agreements support the idea that the m = 5 mode is

forced, rather than free. The observed amplitude A m 

= 1 . 36 km,

however, is much smaller than the predicted value of 6.84 km.

Nominally, we find that the gap edge is only 0.31 km from the res-

onance location, but the uncertainty in the absolute radius scale

is comparable to this value, making the predicted amplitude it-

self uncertain by about a factor of two. Furthermore, linear theory

probably fails when �a res � S 1 / 2 (i.e., S/ �a res � �a res ) because of

streamline crossing in the ring. We note that similar disagreements

were found for three forced resonant perturbations in the C ring:

the pattern speeds and orientations of the fitted modes for the Ti-

tan 1:0 ILR, the Prometheus 2:1 ILR at the Bond OER, and the Mi-

mas 3:1 ILR at the Dawes IEG matched those of the putative forc-

ing satellites quite well, whereas the amplitudes of the modes dif-

fered more substantially from the predictions of the test particle

model (see Table 7 of Nicholson et al., 2014b ). 

The m = 5 mode on the outer gap edge is at first glance a

bit more perplexing, since we generally expect only OLR-type

modes for such features. In this instance, however, we have com-

pelling evidence that the mode is forced by Prometheus: its pat-

tern speed differs by only 0 . 0 0 024 ± 0 . 00103 ◦ d 

−1 from the pre-

dicted value, and the observed amplitude, A m 

= 0 . 19 ± 0 . 01 km,

while very small, matches almost exactly the predicted amplitude

of 0.18 km. Furthermore, the observed phase difference between

the mode’s pericenter and the mean longitude of Prometheus, �δm 

� 36 °, corresponds to a phase difference of 5 × 36 ◦ = 180 ◦ from

periapse when measured along a single lobe of the 5-lobed edge
 t  
istortion, just as expected for orbits outside of the satellite’s res-

nance radius. A similar change of 180 ° in the orientation of the

erturbation from inside to outside the Titan 1:0 ILR resonance ra-

ius is seen for a host of C ring gap edges, as shown in Fig. 19 of

icholson et al. (2014b ). 

. Eccentric gap and ringlet edges 

In Fig. 8 above we illustrated the radius variations associated

ith the m = 1 modes on the edges of the five simple gaps in the

assini Division. A similar gallery of plots for the three complex

aps and their embedded ringlets is presented in Fig. 26 . In this

ection, we examine regional patterns in the eccentricities and pre-

ession rates of non-circular gap and ringlet edges. 

.1. Eccentricities 

In Fig. 27 we plot the m = 1 mode amplitudes, for all sharp-

dged features in the Cassini Division that show a detectable ec-

entricity, vs their distance from the outer edge of the B ring. The

argest eccentricities are found for the Huygens ringlet ( ae = 28

m) and the B ring’s outer edge (21 km, see Nicholson et al.,

014a ), while the smallest definitely non-zero values are those of

he inner edges of the Kuiper gap (0.9 km) and the Laplace ringlet

1.2 km). As noted by Hedman et al. (2010) , the eccentricities gen-

rally decrease with increasing radius (or distance from the B ring

dge), though the trend is not monotonic. 

Most of the features in Fig. 27 are inner gap edges (IEGs); only

wo outer gap edges show measurable eccentricities in our fits:
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Fig. 24. The locations of calculated normal mode resonant radii relative to selected ringlet and gap edges in the Cassini Division. For each edge, the value of �a p is plotted 

vs m , with negative values of the latter indicating OLR-type modes. Vertical lines denote ringlet or gap edges, and shading indicates the presence of ring material. Resonantly 

forced modes ( m = 2 Mimas modes and the m = 5 Prometheus 5:4 ILR at the Barnard gap inner edge) and m = 1 keplerian perturbations are excluded. Note that the 

magnitude of �a p generally decreases with increasing | m |. The Strange ringlet (upper right panel) is a special case: It is so narrow that even the m � = 1 modes span the 

entire ringlet, and are best considered to be global modes, rather than edge modes. 
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Fig. 25. Amplitude, phase, and pattern speed of the forced m = 2 Mimas mode vs 

radius, from the orbit fits summarized in Table 5 . The curve in the upper panel 

shows the predicted amplitude falling inversely with distance from the resonance, 

based on a simple test-particle model and a calculated resonance strength S = 466 

km 

2 . The second panel shows that the fitted periapses of the forced normal mode 

are very close to 90 ° from Mimas’s longitude, as expected for orbits exterior to an 

ILR. All signatures have pattern speeds very close to Mimas’s mean motion in 2006- 

2010, as indicated by the solid line in the third panel. 
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those of the Huygens and Laplace gaps, and these are noticeably

smaller than the eccentricities seen on their inner edges. A third

outer gap edge—the Herschel gap—is not eccentric but shows a

definite m = 0 normal mode. It is probably not a coincidence that

all three of these gaps contain embedded ringlets. By contrast, of

the five simple gaps, only the Bessel gap shows a measurable per-

turbation on its outer edge, and this has an amplitude of only 0.6

km. (Here, we are excepting the ubiquitous m = 2 modes forced by

the Mimas 2:1 resonance.) 

9.2. Precession rates 

In Fig. 28 the fitted apsidal precession rates for the same fea-

tures shown in Fig. 27 are plotted vs semimajor axis, along with

the rates calculated from the best current estimates for Saturn’s

zonal gravity coefficients ( Jacobson et al., 2006 ). Hedman et al.

(2010) pointed out that, starting with the outer edge of the B

ring and going out to the inner edge of the Bessel gap, there are

eight eccentric features (or groups of nearby features with similar

apsidal rates) that form a quasi-regular sequence in their apsidal

precession rates, with an average interval of δ ˙ � = 0 . 06 ◦ d 

−1 . They

proposed further that this common interval may match the libra-

tion frequency of the dominant m = 2 mode on the outer edge of
he B ring, and suggested that the Cassini Division gaps may have

ormed at a series of three-body resonances with the B ring edge.

ubsequent work, however, has established that the m = 2 pertur-

ation on the B ring circulates rather than librates, and that its

irculation frequency is 0 . 182 ◦ d 

−1 ( Nicholson et al., 2014a; Spitale

nd Porco, 2010 ), or about three times greater than the libration

requency estimated by Hedman et al. (2010) . This calls into ques-

ion the viability of the three-body resonance model. 

The regular intervals between neighboring gap edges are quite

pparent in Fig. 28 , with the large interval between the B ring edge

nd the inner edge of the Herschel gap being filled by the co-

recessing edges of the Huygens ringlet. (Following Hedman et al.,

010 , we group the eccentric Herschel ringlet along with its inner

ap edge and do likewise for the Laplace ringlet.) Excluding the

wo eccentric outer gap edges, we find that the intervals between

eighboring edges in this sequence vary from 0.043 to 0 . 068 ◦ d 

−1 ,

ith a characteristic spacing of ∼ 0 . 06 ◦ d 

−1 . Given the regular se-

uence of precession rates, Nicholson et al. (2014) studied the cor-

esponding pericenter distribution over time, in search of an un-

erlying resonant relation of the kind suggested by Hedman et al.

2010) . Exploring this idea further, we investigated whether or

ot there is a recent (or future) epoch at which all (or a signifi-

ant subset) of these eight eccentric edges are co-aligned. Unfor-

unately, the answer is no, at least over a period of 200 years

entered on the Cassini epoch. (Over longer periods, the uncertain-

ies in the fitted precession rates make such an exercise increas-

ngly meaningless.) The closest grouping is in mid-2051, when the

ms scatter in ϖ is reduced to 24 °. If the criterion for alignment is

elaxed to include cases of anti-alignment (i.e., δϖ � 180 °), then

he tightest grouping is in early 1933, when the rms spread in

in ( δϖ) is reduced to 0.267, corresponding to a scatter of 16 °. Simi-

ar searches for groupings modulo 90 ° or 60 ° do not yield anything

loser. 

.3. Anomalous precession rates 

In the middle panel of Fig. 28 we plot the residual precession

ates, after subtracting the predicted values due to Saturn’s zonal

ravity coefficients J 2 − J 10 ( Jacobson et al., 2006 ). Most noticeable

ere is that all the residuals are positive, except for the Strange

inglet ( a = 117907 km). This is in contrast to the situation in the C

ing, where the precession rates of the Maxwell and Titan ringlets

ere found to be very close to their predicted values ( Nicholson

t al., 2014b ), and in the case of the resonantly-forced Titan ringlet,

he resonant radius deduced from the observed eccentricity closely

atches the predicted location. In general, we may attribute these

xcess rates to gravitational perturbations from the nearby B ring;

he dot-dashed curve in the figure shows the secular contribution

o the apsidal rates in this region for a nominal uniform surface

ass density of � = 100 g cm 

−2 . Although the match is by no

eans perfect, suggesting that additional perturbations may be in-

olved in some cases, this does provide a reasonable fit to the gen-

ral trend of the observed residuals. 

Three features, however, stand out by virtue of their very

arge residuals, or anomalous precession rates: the outer edges

f the Huygens and Laplace gaps and the outer edge of the

aplace ringlet, all of which exceed their predicted rates by at least

.03 °d 

−1 . Slightly less prominent, but also troublesome, are the

essel gap’s inner edge and the Laplace IER. All other edges show

esiduals less than 0.01 °d 

−1 , or < 0.2%. The worst offenders are as-

ociated with two of the three complex gaps, and we suspect that

erturbations by the opaque, embedded ringlets might be respon-

ible. However, each gap/ringlet combination seems to be unique,

o we will discuss each in turn. 
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Fig. 26. A gallery of m = 1 models and residuals vs true anomaly for the three complex gaps in the Cassini Division, and the eccentric edges of the Herschel and Laplace 

ringlets. Fit parameters are given in Tables 2 –4 . Note the non-zero eccentricities of the three OEGs, unlike the nearly circular edges of the simple gaps shown in Fig. 8 . 

Normal modes have been removed, when present. 
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.3.1. The Huygens gap and ringlets 

While the Huygens and Strange ringlets have mean precession

ates only slightly larger than those expected, that of the gap’s

uter edge is substantially faster. In fact, it is faster than that of

ither ringlet. Expressed in terms of the offset between the ef-

ective radius at which ˙ � s ec = ˙ � (fit) and the actual semimajor

xis of the edge, we find that �a ˙ � 

= −201 ± 11 km for the OEG

see Table 2 ). The fitted rate of 5 . 0348 ± 0 . 0017 ◦ d 

−1 is in fact

uite close to that of the Huygens ringlet (5.0285–5.0303 ◦ d 

−1 ),

nd we might be tempted to conclude that the modest eccentric-

ty of the gap edge is forced by the much larger eccentricity of

he ringlet. However, the corresponding pericenter longitudes at

poch ϖ0 differ by over 100 °, which makes this situation unlikely

o be true. Note that both rates are significantly slower than the

bserved pattern speed of the m = 1 mode at the edge of the B

ing, which is 5 . 081 ± 0 . 006 ◦ d 

−1 ( Nicholson et al., 2014a ), so it

eems unlikely that either is being directly influenced by the B ring

dge. 

.3.2. The Herschel gap and ringlet 

If we compare the apsidal precession rates of the three edges

n the Herschel gap with significant m = 1 signatures in Table 3 ,

e find that the inner ringlet edge and inner gap edge have very

imilar values of 4 . 962 ◦ d 

−1 < ˙ � < 4 . 974 ◦ d 

−1 , whereas the inner

nd outer edges of the ringlet exhibit statistically significant differ-

ntial precession. On this basis, as noted in Section 5 above, the

erschel ringlet does not precess as a unit like most other eccen-

ric ringlets, and perhaps should not be classified as such. (We note

lso that the pericenters of the ringlet’s inner and outer edges dif-

er by 92 °, at our epoch of 1 January 2008.) Taken together with

he fact that the eccentricity of the inner gap edge is much larger
han that of the ringlet, we are again tempted to conclude that the

ccentricity of the inner edge of the ringlet is being forced by that

f the inner gap edge, while the outer edge of the ringlet is be-

aving independently. In this case, this inference is supported by

he further observation that the pericenter longitudes of the inner

ap and ringlet edges differ by almost 180 °, as expected where an

ccentric inner orbit forces an outer one ( Nicholson et al., 2014b ). 

.3.3. The Laplace gap and ringlet 

With the Laplace gap and its ringlet, we are presented with

 puzzling situation: From Table 4 , we see that the inner gap

dge and the outer ringlet edge have very similar precession rates,

ith 4 . 725 ◦ d 

−1 < ˙ � < 4 . 727 ◦ d 

−1 , whereas the less-eccentric in-

er edge of the ringlet is significantly slower at 4 . 713 ± 0 . 001 ◦ d 

−1 ,

nd very similar to the outer gap edge rate of 4 . 717 ± 0 . 001 ◦ d 

−1 .

he apse rates of the two ringlet edges differ by many times their

ormal errors, and once again, we have what appears to be an ec-

entric ringlet that does not rigidly precess. Furthermore, we see

hat the pericenter longitudes of the inner and outer gap edges are

lmost identical, but differ from that of the ringlet’s co-precessing

uter edge by ∼100 °. We are at a loss to offer an explanation for

his situation, but suspect that the similarity of the apsidal rates

nd pericenters of the gap edges is too close to ascribe to chance.

iven the larger eccentricity of the inner gap edge, and the fact

hat its precession rate is much closer to the predicted value ˙ � s ec ,

t would appear that the eccentricity of the outer gap edge is be-

ng forced by that of the inner edge. But this is rather surprising,

iven the much higher optical depth, and presumably higher sur-

ace mass density, adjacent to the outer edge (see Fig. 1 ). 
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Fig. 27. Upper panel: Fitted eccentricities (i.e., m = 1 mode amplitudes) for clearly non-circular features in the Cassini Division, as a function of semimajor axis. Filled circles 

denote the inner edges of gaps (IEGs), which account for the majority of eccentric edges, while open circles denote the outer edges (OEGs) of the Huygens and Laplace gaps. 

Earth symbols indicate the edges of the four eccentric ringlets: Huygens, Strange, Herschel and Laplace. Lower panel:Optical depth profile, for context. 
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10. Conclusions 

We have conducted a comprehensive survey of sharp-edged

ringlets and gaps in the Cassini Division of Saturn’s rings, mak-

ing use of nearly 200 high-SNR stellar and radio occultation chords

obtained by the Cassini VIMS, UVIS, and RSS instruments between

2005 and 2013. The high quality of the observations enables us to

establish an absolute radius scale for the rings with an estimated

accuracy of 0.25 km, and to determine the orbital elements of 22

Cassini Division ringlets and gap edges with remarkable precision.

The results reveal an extraordinary richness in the shapes of these

features, with eccentricities from as small as ae = 80 m to nearly

30 km, free normal modes (both global and edge modes) with am-

plitudes from ∼ 0 . 1 to 4 . 1 km, and detectable inclinations as small

as a sin i = 0 . 2 km. Throughout the entire region, the forced Mimas

2.1 ILR produces systematic m = 2 distortions that quantitatively

match the expected amplitudes, phases, and pattern speed. 

The narrow Russell, Jeffreys, Kuiper, Bessel, and Barnard gaps

are simplest in structure, and do not contain dense ringlets. The

outer edges of these gaps are generally quite sharp and four of
hem are circular to within ∼0.25 km, whereas most of the in-

er gap edges have lower contrast and have significant eccentric-

ties, although in most cases we find evidence for additional nor-

al modes. The Barnard gap falls very near to the Prometheus 5:4

LR, and we find statistically significant m = 5 patterns on both the

nner and outer edges of the gap with measured pattern speeds

onsistent with the mean motion of Prometheus, as expected for

 forced mode. The periapses of the modes at the inner/outer

ap edges are nearly aligned/antialigned with Prometheus, pro-

iding supporting evidence a resonant interaction with this small

atellite. 

Three Cassini Division gaps are more complex, containing one

r more isolated ringlets: the Huygens, Herschel, and Laplace

aps. The Huygens gap is 361 km wide and its outer edge has

 significant eccentricity ae = 2 . 2 km and four OLR-type normal

odes with amplitudes from 0 . 3 to 1 . 8 km. The gap also contains

wo prominent ringlets. The first of these—the Huygens ringlet—

s unique among eccentric ringlets in having nearly identical (and

ubstantial) eccentricities on the two edges, in addition to a host

f OLR-type normal modes on the inner edge and two ILR-type
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Fig. 28. Upper panel: Fitted apsidal precession rates vs mean radius for the eccentric features shown in Fig. 27 . Symbols are as in that figure. Note the quasi-regular sequence 

in the precession rates for the gap inner edges, as first noted by Hedman et al. (2010) . The solid line shows the predicted precession rates, calculated from Saturn’s zonal 

gravity coefficients J 2 − J 10 . Middle panel: The differences between the fitted and calculated precession rates in the upper panel, using the same symbols. The dot-dashed 

curve shows the contribution to the apsidal precession rates from the nearby B ring, assuming a uniform surface mass density of 100 g cm 

−2 . Lower panel: Optical depth 

profile, for context. 
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odes on the outer edge. We also see evidence for a secondary

 = 1 (eccentric) mode on the outer edge of the ringlet, with a

attern speed similar to that of the B ring outer edge. It is possi-

le that this mode is forced by the B ring itself. The ringlet has a

mall but measurable inclination, as do several of the other ringlets

n the Cassini Division. Variations in the width of the Huygens

inglet are complex, but statistically are consistent with the ex-

ected magnitudes resulting from the random superposition of the

ultiple normal modes on the two edges. The occultation data do

ot provide independent or supporting evidence for the sugges-

ion that embedded satellites produce long-term radial distortions

n the inner edge shape that rotate at the keplerian rate of the

inglet ( Spitale and Hahn, 2016 ). Also present in the Huygens gap

s the so-called Strange ringlet, with a substantial eccentricity of

e = 7 . 5 km and inclination of a sin i = 7 . 1 km, as well as both ILR-
nd OLR-type normal modes. Of all of the Cassini Division features,

he Strange ringlet has the largest post-fit rms residuals (1.6 km),

ar greater than the typical measurement uncertainty of 0.2 km,

ndicative of significant unmodeled distortions in its radial shape

nd/or vertical variations. 

The 100 km-wide Herschel gap’s inner edge has one of the

argest eccentricities in the Cassini Division, with ae = 8 . 3 km,

nd at least seven ILR-type normal modes with amplitudes from

 . 2 to 1 . 3 km. The outer gap edge is also eccentric, and hosts four

LR-type normal modes with amplitudes from 0 . 1 to 1 . 3 km, with

trong evidence for a secondary m = 1 mode with a pattern speed

uite close to that of the B ring’s outer edge, raising the possi-

ility that the B ring itself may drive this mode. Both gap edges

re weakly but measurably inclined, with a sin i = 0 . 25 − −0 . 34 km.

he Herschel ringlet itself is eccentric and inclined, but neither the
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pericenters nor the nodes are well-aligned, raising questions about

whether the Herschel ringlet can be regarded as a dynamically co-

herent eccentric ringlet. 

The third of the complex gaps is the 241 km-wide Laplace gap,

containing the Laplace ringlet. Both gap edges are eccentric, with

very similar pericenter longitudes and apsidal precession rates for

two edges, in spite of their large radial separation. The Laplace

ringlet itself has eccentric edges, with several OLR-type normal

modes on the inner edge and five ILR-type modes on the outer

edge. Once again, however, the pericenter longitudes of the edges

are not aligned and the fitted apsidal rates are quite different.

Hence, as in the case of the Herschel ringlet, the Laplace ringlet

does not precess rigidly and does not conform to the usual dy-

namical picture of an eccentric ringlet. 

The abundance of free normal modes at gap and ringlet edges

is one of the key findings of this investigation. Consistently, we

find free ILR-type normal modes ( m > 0) at the outer edges of

ringlets and the inner edges of gaps, and free OLR-type normal

modes ( m ≤ 0) at inner ringlet edges and outer edges of gaps,

as expected for a resonant cavity model of normal modes as the

superposition of density waves reflected between a resonance lo-

cated within the ring material and the free edge of the ring or

gap. The general trend in features containing multiple modes is for

the distance between resonance and ring edge to decrease with in-

creasing wavenumber, as expected from the dispersion relation for

density waves. We use these results to estimate the surface mass

density and opacity of these features. 

Throughout the Cassini Division, we find fitted precession rates

that are, in general, slightly larger than the predicted values based

on the Saturn’s zonal gravity field alone. The overall radial trend in

the excess rates matches the secular contribution expected from

the nearby B ring, assuming a surface mass density of � = 100

gm cm 

−2 . However, the outer edges of the Huygens and Laplace

gaps and the outer edge of the Laplace ringlet have conspicuously

large residuals, exceeding their predicted precession rates by more

than 0 . 03 ◦ d 

−1 . These patterns are probably are the result of forc-

ing by nearby ring material, but at present we cannot account for

the patterns in detail. 
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