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a b s t r a c t 

The eccentric Maxwell ringlet in Saturn’s C ring is home to a prominent wavelike structure that varies 

strongly and systematically with true anomaly, as revealed by nearly a decade of high-SNR Cassini oc- 

cultation observations. Using a simple linear “accordion” model to compensate for the compression and 

expansion of the ringlet and the wave, we derive a mean optical depth profile for the ringlet and a set of 

rescaled, background-subtracted radial wave profiles. We use wavelet analysis to identify the wave as a 2- 

armed trailing spiral, consistent with a density wave driven by an m = 2 outer Lindblad resonance (OLR), 

with a pattern speed �p = 1769 . 17 ° d −1 and a corresponding resonance radius a res = 87530 . 0 km. Esti- 

mates of the surface mass density of the Maxwell ringlet range from a mean value of 11 g cm 

−2 derived 

from the self-gravity model to 5 − 12 g cm 

−2 , as inferred from the wave’s phase profile and a theoretical 

dispersion relation. The corresponding opacity is about 0 . 12 cm 

2 g −1 , comparable to several plateaus in 

the outer C ring (Hedman, M.N., Nicholson, P.D. [2014]. Mont. Not. Roy. Astron. Soc. 4 4 4, 1369–1388). A 

linear density wave model using the derived wave phase profile nicely matches the wave’s amplitude, 

wavelength, and phase in most of our observations, confirming the accuracy of the pattern speed and 

demonstrating the wave’s coherence over a period of 8 years. However, the linear model fails to reproduce 

the narrow, spike-like structures that are prominent in the observed optical depth profiles. Using a sym- 

plectic N-body streamline-based dynamical code (Hahn, J.M., Spitale, J.N. [2013]. Astrophys. J. 772, 122), 

we simulate analogs of the Maxwell ringlet, modeled as an eccentric ringlet with an embedded wave 

driven by a fictitious satellite with an OLR located within the ring. The simulations reproduce many of 

the features of the actual observations, including strongly asymmetric peaks and troughs in the inward- 

propagating density wave. We argue that the Maxwell ringlet wave is generated by a sectoral normal- 

mode oscillation inside Saturn with � = m = 2 , similar to other planetary internal modes that have been 

inferred from density waves observed in Saturn’s C ring (Hedman, M.N., Nicholson, P.D. [2013]. Astron. J. 

146, 12; Hedman, M.N., Nicholson, P.D. [2014]. Mont. Not. Roy. Astron. Soc. 4 4 4, 1369–1388). Our identi- 

fication of a third m = 2 mode associated with saturnian internal oscillations supports the suggestions of 

mode splitting by Fuller et al. (Fuller, J., Lai, D., Storch, N.I. [2014]. Icarus 231, 34–50) and Fuller (Fuller, 

J. [2014]. Icarus 242, 283–296). The fitted amplitude of the wave, if it is interpreted as driven by the 

� = m = 2 f -mode, implies a radial amplitude at the 1 bar level of ∼50 cm, according to the models of 

Marley and Porco (Marley, M.S., Porco, C.C. [1993]. Icarus 106, 508). 

© 2015 Elsevier Inc. All rights reserved. 
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1. Introduction 

Embedded within a broad gap in the outer C ring, the eccen-

tric Maxwell ringlet was first identified and its basic properties
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escribed from Voyager observations ( Esposito et al., 1983; Porco et

l., 1984a ). With its sharp edges, freely-precessing elliptical shape,

nd linear width-radius relation, this ringlet has much in com-

on with the uranian � ring ( French et al., 1991 ). The simple

act that both of these ringlets evidently maintain their elliptical

hapes over periods long compared with their differential preces-

ion periods led early investigators to propose that each ringlet’s

http://dx.doi.org/10.1016/j.icarus.2015.08.020
http://www.ScienceDirect.com
http://www.elsevier.com/locate/icarus
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Fig. 1. A sequence of optical depth profiles of the Maxwell ringlet derived from 13 

Cassini VIMS γ Cru occultations, offset vertically by true anomaly. Note the wavelike 

internal structure in the inner two-thirds of the ringlet. 
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wn self-gravity counteracted its natural tendency to be circu-

arized as a result of differential apsidal precession due to the

lanetary oblateness ( Goldreich and Tremaine, 1979; Porco et al.,

984a ). However, more detailed studies of the � ring’s internal op-

ical depth profile cast some doubt on this simple model ( Gresh et

l., 1989 ), and later theoretical work emphasized the importance

f previously-neglected collisional interactions in maintaining the

hape of such rings ( Mosqueira, 1996; Chiang and Goldreich, 20 0 0 ).

Since 2005, Cassini observations have greatly increased our

tore of high-resolution profiles of the Maxwell ringlet. In particu-

ar, several sets of radio and stellar occultations have led to greatly-

mproved kinematic models of the ringlet’s edges, with post-fit

esiduals of ∼200 m ( Nicholson et al., 2014b ). A by-product of

his investigation was the realization that the Maxwell ringlet also

osts a well-developed wavelike structure, which at first sight re-

embles the numerous density waves in the A ring driven by inner

indblad resonances (ILRs) with external satellites. This wave was

rst seen in a single high-resolution Cassini image obtained dur-

ng Saturn Orbit Insertion ( Porco et al., 2005 ). Unlike the vast ma-

ority of these satellite-driven waves, however, the Maxwell wave

ppears to propagate inwards. This fact alone suggests that it be-

ongs instead in the category of density waves driven at outer Lind-

lad resonances (OLRs) whose origins are thought to be internal

scillations within Saturn ( Marley and Porco, 1993; Hedman and

icholson, 2013 ). However, the fact that this wave, although quite

rominent, is embedded within a precessing, eccentric ringlet pre-

ented the straightforward application of the techniques used by

edman and Nicholson (2013) to analyze a half-dozen similar OLR-

ype waves in the C ring. 

Here, we conduct a detailed investigation of this wave in order

o ascertain its origin and its implications for the dynamics of its

ost ringlet. For our analysis, we make use of the same extensive

et of stellar and radio occultation observations obtained by the

assini spacecraft and used by Nicholson et al. (2014b) . In Section

 , we review the Maxwell ringlet observations used in this work,

nd in Section 3 the ringlet’s average internal optical depth pro-

le is examined, with the goal of updating the classical Goldreich–

remaine self-gravity model. Next, in Section 4 , we use wavelet

ecomposition to identify the internal wave in the ringlet as an

 = 2 density wave driven at an outer Lindblad resonance, deter-

ine its pattern speed, calculate its precise resonance location, and

onstruct a simple linear density wave model as a first approxima-

ion to the observed wave. Given the complex morphology of the

ave, in Section 5 we move beyond linear models and employ N-

ody symplectic integrations that successfully reproduce many of

he observed properties of the Maxwell ringlet wave. In Section 6 ,

e compare the observed characteristics of the m = 2 wave with

hose of other waves believed to be generated by internal f -mode

scillations within Saturn, as studied by Hedman and Nicholson

2013, 2014) . In the final section, we present our conclusions and

ffer suggestions for future work. 

. Observations 

Our data set is essentially the same as that used by Nicholson et

l. (2014a,b) , and consists of ∼170 occultation profiles of Saturn’s

ings obtained from the Radio Science Subsystem (RSS), Ultravi-

let Imaging Spectrometer (UVIS) and Visual and Infrared Imag-

ng Spectrometer (VIMS) experiments on the Cassini orbiter. Of

hese, 105 profiles span the region of the outer C ring contain-

ng the Maxwell ringlet. The RSS data come primarily from a set

f eight nearly radial high quality occultations in 20 05/20 06, pro-

essed to a uniform resolution of 1 km ( French et al., 2010 ). VIMS

ata come from ∼60 stellar occultations that sample a wide range
f elevation angles, with generally high signal-to-noise ratios and

esolutions that range from 300 m to 1 km. A slightly smaller set of

tellar occultations from the UVIS instrument provide the highest

esolution data available – the best UVIS profiles have resolutions

s fine as 20–30 m ( Colwell et al., 2010 ). In the present study, we

se data from 94 different occultations, interpolated to a sampling

nterval of 20–100 m. 

Due to small errors in the reconstructed trajectory of the space-

raft, and in a few cases to uncertain stellar positions, the raw

rofiles have systematic radius errors of order 1 km. We correct

hese errors by applying a small time shift to each data set, de-

ermined by the measurements of ∼70 sharp-edged circular or

early-circular features in the B and C rings and the Cassini Divi-

ion, all with well-determined orbits. The corrections are the same

s those employed by Nicholson et al. (2014a,b) , to which the in-

erested reader is directed for more details. 

Fig. 1 shows a subset of our data for the Maxwell ringlet,

hosen from a series of 17 occultations of the star γ Crucis in

0 08/20 09, and arranged in order of increasing true anomaly (i.e.,

ngle from periapse). As well as obvious variations in the mean

adius and width of the ringlet, associated with its eccentric inner

nd outer edges, this figure shows a strong, wavelike structure that

ccupies the inner two-thirds of the ringlet. Although the visibility

nd character of this wave vary with true anomaly, its wavelength

nd amplitude in all cases decrease inwards. 

. Average ring properties 

Before embarking on our investigation of the wave embedded

ithin the Maxwell ringlet, we first establish some of the ringlet’s

lobal properties, such as its average optical depth profile, and use
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Fig. 3. The 16 QI = 1 profiles, rescaled to a mean width of 59.1 km, together 

with the mean optical depth profile in red. The 10 0 0-point profiles have been 

smoothed by 50 bins (3.0 km). The smoothed mean profile has an equivalent depth 

of 56.48 km, compared to the mean value in Fig. 2 of 57.24 km, or a difference of 

∼0 . 33 σ . 
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these to update the self-gravity model first employed by Porco

et al. (1984a) . Several of these results will also prove useful in the

following sections. 

3.1. Average optical depth profile 

The first step in our analysis is to determine the mean opti-

cal depth profile of the Maxwell ringlet. In order to correct for

the ringlet’s variable width, which ranges from 20.0 km at pe-

riapse to 98.2 km at apoapse ( Nicholson et al., 2014b ), we first

rescale each profile to a uniform mean width of 59.1 km. This

amounts to removing the eccentricity of each streamline within

the ring, on the assumption that the eccentricity varies linearly

from the inner edge, where ae = 18 . 9 km, to the outer edge, where

ae = 58 . 0 km; the mean eccentricity of the ringlet is a e = 38 . 5 km

(all orbital parameters are taken from Tables 2 and 5 of Nicholson

et al. (2014b) ). The resulting scaled radii approximate the semi-

major axes of the ring’s internal streamlines, which we measure

relative to the ringlet’s mean semi-major axis, a = 87509 . 8 km and

denote �a . Measured edges are used whenever available; in a few

cases (e.g., when short data gaps in the VIMS data fall at the edge

of the ringlet) we use the predicted edge radius based on our pub-

lished orbit model. The raw data are first interpolated onto a uni-

form 10 0 0-point grid from edge to edge, and then stretched or

compressed to the mean ringlet width of 59.1 km. 

In rescaling the ringlet’s radial profile, we must also adjust the

measured optical depths. For the RSS data, we assume an extinc-

tion efficiency of 2, due to the separation of the Doppler-shifted

scattered signal from the coherent directly transmitted signal

( Marouf et al., 1983 ), and for comparison with the stellar occulta-

tion results, we divide the observed RSS optical depths by two. On

the reasonable assumption that the total amount of material in the

ring per unit length in the azimuthal direction is constant, and on

the (less-certain) assumption that surface mass density is propor-

tional to optical depth, we might expect that the average optical

depth of the ring varies in inverse proportion to its radial width.

We can test this hypothesis by plotting the radially-integrated

normal optical depth A (i.e., the equivalent depth, as defined by
Fig. 2. The radially-integrated optical depth (or equivalent depth) of the Maxwell 

ringlet in our better-quality profiles. The observations are color-coded by quality in- 

dex (QI), as indicated. The solid horizontal line marks the mean equivalent depth of 

the QI = 1 points: A = 57 . 24 ± 2 . 30 km, with dashed lines showing its uncertainty. 

There appears to be no systematic variation with true anomaly, but lower-SNR pro- 

files give lower values, probably because of saturation in the estimates of the optical 

depth of the wave peaks. 
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lliot et al. (1984) ) of the ring vs true anomaly, as in Fig. 2 . For

his purpose, we have divided the occultation profiles into groups,

enoted by a subjective quality index QI. The 16 highest quality

ata are assigned QI = 1; a second tier of 36 profiles with slightly

ower SNR but very clear wave structure are assigned QI = 2; 42

rofiles with average SNR or somewhat noisy wave structure are

ssigned QI = 3; and 38 profiles with poor SNR are assigned QI = 4.

ifteen very poor profiles are assigned QI = 5, and are not used in

ubsequent analyses. Restricting our attention for the moment to

I = 1 profiles, which are the least likely to suffer from saturation

ven in the most opaque regions, we find that A is indeed inde-

endent of true anomaly, with a mean value Ā = 57 . 24 ± 2 . 30 km.

rofiles with QI = 2 or 3 give systematically lower values, probably

ecause they underestimate the optical depth in the more opaque

egions, such as the peaks in the wave. The corresponding mean

ptical depth of the ringlet τ = 0 . 968 . 

Based on these results, we rescale each measured optical depth

rofile by a factor of �r/59.1 km, where �r is the measured (or

f necessary, calculated) radial width of the ringlet. The result-

ng rescaled profiles for the 16 QI = 1 data sets are presented in

ig. 3 , along with their mean. The mean profile, which we denote

y τ0 (�a ) , has an equivalent depth of A = 56 . 48 km, very close to

he average value of 57.24 km estimated above. 

.2. The self-gravity model revisited 

Before proceeding further, it is desirable to check whether or

ot the simple linear-stretch model described above adequately de-

cribes the variations in the ringlet’s optical depth profile with

rue anomaly. A more physically-based model is the self-gravity

odel originally developed for the uranian � ring by Goldreich and

remaine (1979) , in which the eccentricity profile across the ring is

djusted in concert with the observed mean surface density pro-

le in such a way as to cancel the tendency of the ringlet’s inner

nd outer edges to precess differentially under the influence of the

lanet’s oblateness. Such a model was first applied to the Maxwell

inglet by Porco et al. (1984) , using Voyager imaging and occulta-

ion data. 

Starting with the mean optical depth profile τ0 (�a ) in Fig. 3 ,

hich corresponds to the actual profile τ (r) at a true anomaly

f 90 ° (i.e., the profile at quadrature), we follow the prescription

f Goldreich and Tremaine (1979) to calculate a radial profile of
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Fig. 5. Optical depth profiles for the Maxwell ringlet derived from the self-gravity 

model (solid lines) compared with those from the simple linear-stretch model (dot- 

ted lines) used to rescale the observations in Fig. 12 . Different colors denote differ- 

ent values of the true anomaly. By design, the profiles match at quadrature (blue 

curves). The average surface mass density at quadrature is about 11 g cm 

−2 , as de- 

rived from the self-gravity model. Note the differences in shape of the profiles near 

periapse (red curves) and apoapse (orange and magenta curves). 
ccentricity e (�a ) that is consistent with the assumed surface

ass density profile and uniform apsidal precession of the ringlet

nder the combined influences of Saturn’s second zonal gravity

armonic J 2 and the ring’s own self-gravity. For this calculation,

e divide the ringlet into 100 equally-spaced streamlines, each of

hich has a mass proportional to the local mean optical depth.

s boundary conditions, we use the observed eccentricities of the

ing’s inner and outer edges and its observed precession rate ˙ � 

 Nicholson et al., 2014b ). 

As a check of the validity of the linear-stretch approximation,

e compare in Fig. 4 the radial eccentricity profile ae (�a ) com-

uted from the self-gravity model with the simple linear model.

he agreement is quite good, as shown in the upper panel. The

iddle panel shows the deviation of the self-gravity eccentricity

rofile from the linear model, and the bottom panel shows the ec-

entricity gradient profile, q = ade / da , compared to the mean value

f q = 0 . 66 for the linear model. 

In Fig. 5 , we plot the predicted radial surface mass density

rofile of the Maxwell ringlet for several different values of the

rue anomaly, based on the eccentricity profile derived from the

elf-gravity model and the quadrature profile from Fig. 3 . For

omparison, we also show the predictions of our simple linear-

tretch model, scaled to the same edge radii. The agreement be-

ween the dynamically-motivated profile and the linear-stretch
ig. 4. Radial eccentricity profile ae (�a ) derived from the self-gravity model (solid 

ine) compared to a linear eccentricity model (dashed line). The middle panel shows 

he difference between the self-gravity and linear models, and the lower panel 

hows the self-gravity eccentricity gradient profile q (a ) = ade / da , compared to the 

ean value for the linear model of q = 0 . 66 . 
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odel is quite good at most longitudes, although the differ-

nces become more apparent near pericenter, where the dynam-

cal model is less strongly peaked and more parabolic in shape.

Conversely, the linear-stretch model is flatter than the dynami-

al model at apocenter.) This comparison should be kept in mind

elow, when we use the simple linear-stretch model to compare

ave profiles at different true anomalies. 

The self-gravity model also yields an estimate of the ring’s total

ass M r = 3 . 6 × 10 15 kg, equivalent to a sphere of water ice with

 radius of 9.9 km. The corresponding mean surface mass density

s 	 = 11 . 2 g cm 

−2 . This may be compared with the estimate of

17 g cm 

−2 obtained by Porco et al. (1984) using the same dynam-

cal model but based on Voyager observations, and to the more

pproximate estimate of 22 g cm 

−2 obtained by Nicholson et al.

2014b) using only the ringlet’s width-radius relation and a much

impler 2-streamline model. Of course, given the substantial eccen-

ricity gradient of the ringlet, the local surface density varies by a

actor of ∼5 from apoapse to periapse. 

An apparent failing of the self-gravity model has been the un-

omfortably low surface mass densities of ∼2 g cm 

−2 that it yields

or the narrower uranian α and β rings, which appear to be in-

ufficient for these rings to withstand the aerodynamic drag from

he extended uranian exosphere and to be inconsistent with the

article size distributions inferred from the Voyager RSS data. (See

rench et al. (1991) for a more detailed review of these arguments.)

hese arguments do not, however, apply to the more massive �
ing, where the predicted surface mass density is 25–35 g cm 

−2 .

e shall find in Section 4 below that the surface density of the

axwell ringlet inferred from the dispersion relation of the wave

s in fact quite consistent with that derived above from the self-

ravity model. 

A second problem identified with the Goldreich and Tremaine

1979) model is that the derived eccentricity profile is not always

onsistent with the observed variations in ringlet optical depth

rofiles with true anomaly. Marouf et al. (1987) compared the

oyager ingress and egress Radio Science occultation profiles of

he uranian � ring with both a simple linear model and the self-

ravity model of Goldreich and Tremaine (1979) , and found that

he former actually provided a better fit to the data. An inde-

endent analysis of four stellar occultation profiles for the � ring
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obtained by the Voyager Photopolarimeter instrument by Graps

et al. (1995) also concluded that the radial profile of q (a ) , while

not quite flat, did not match the predictions of the Goldreich and

Tremaine (1979) self-gravity model. (Note that the variation in

q (�a ) between ∼0.5 and ∼0.8 seen in Fig. 4 is similar to that

found for the � ring using the self-gravity model of Goldreich and

Tremaine (1979) , and that the sharp decrease in q near the edges

of both the Maxwell and � rings is probably due to pressure effects

at the edges, as discussed by Chiang and Goldreich (20 0 0) .) Unfor-

tunately it does not seem possible to apply the same analysis to

the Maxwell ringlet data, because the existence of the prominent

wave means that the mass interior to a particular semimajor axis is

not constant, but is instead dependent on both time and longitude.

Based on the above concerns, and on the empirical results

shown in Figs. 3 and 5 , we have elected to use the simple linear-

stretch model (which amounts to assuming that the dimensionless

eccentricity gradient q is constant across the ringlet), rather than

the more complex self-gravity model, to rescale the Cassini profiles

and remove the variations in the underlying optical depth profile

with true anomaly. 

4. Identification of the Maxwell ringlet wave 

4.1. Background-subtracted optical depth profiles 

Armed with the mean optical depth profile in Fig. 3 , we can

reprocess the raw occultation profiles such as those in Fig. 1
Fig. 6. Rescaled and background-subtracted optical depth profiles of the Maxwell ringle

number, and true anomaly f for each profile. These are selected from 52 QI = 1 and QI = 2

transitions in profile shape near f ∼ 135 ° and ∼330 °. 
o highlight the wave. We first linearly rescale each profile, as de-

cribed above, to a uniform width of 59.1 km and in optical depth

y the factor �r/59.1 km. We then subtract the mean optical depth

rofile of Fig. 3 from the rescaled profile, leaving only the varia-

ions with respect to the mean profile τ0 (�a ) . Examples of such

escaled and background-subtracted profiles are shown in Fig. 6 ,

hosen from the list of QI = 1 and QI = 2 profiles to provide a good

ampling of true anomalies. 

In this figure, several features of the wave become immedi-

tely apparent. First, we note that the wave is visible at all lon-

itudes in the highest-quality data, even within ∼10 ° of peri-

pse, where the ringlet’s average optical depth is quite high. Sec-

nd, the wavelengths of the first few cycles, which vary consid-

rably between the raw profiles, seem to be approximately inde-

endent of true anomaly in the rescaled profiles. Third, the loca-

ions of specific maxima and minima change from one profile to

nother, which indicates that this pattern is not a stationary struc-

ure. (We shall see in Section 4.3 that it is in fact a spiral wave-

orm that is propagating inwards.) Fourth, and most striking, we

ee that for 150 ° < f < 320 ° the wave shows sharp peaks (max-

ma) while at other true anomalies the profiles show pronounced

roughs (minima). The sharpest peaks and troughs occur at f �
40 ° and f � 45 °, respectively. In the transition regions at around

30 − 140 ° and near 330 ° the wave profiles are dominated by nei-

her peaks nor troughs; instead we see waveforms that are highly

kewed – almost sawtooth in shape – but reversed in the sense of

heir asymmetry. Finally, we note that the wave disappears before
t, sorted by true anomaly. Labels indicate the instrument, star name, Cassini rev 

 profiles to illustrate the full range of variation seen in the wave profiles. Note the 
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Fig. 7. Variation of peak amplitude of crests or troughs for the central part of the 

wave vs true anomaly, using all profiles with QI = 1, 2 or 3. The curve is a third- 

order Fourier fit. See text for details. 
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Fig. 8. An illustration of the wavelet decomposition procedure. The top panel shows 

the mean optical depth profile, the middle panel shows a representative smoothed 

background-subtracted optical depth profile, rescaled as in Fig. 6 , while the bottom 

panel shows a contour map of the wavelet power vs rescaled radius and wavelength 

(left axis) and radial wavenumber k (r) (right axis). The resonant radius for the wave 

is estimated to be 87,530 km, or �a = +20 km. 
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eaching the inner edge of the ring, likely the result of viscous

amping. 

It thus appears that the expansion and contraction of the ringlet

ssociated with its eccentricity also results in a similar expansion

nd contraction of the wave profile. The simple picture that sug-

ests itself is that of the pleats of an accordion expanding and con-

racting with the motion of the end plates. However, the system-

tic change from sharply-peaked minima to maxima is unexpected,

nd not so easily explained by such a simple model. 

We have attempted to quantify the striking variation in wave-

orm seen in Fig. 6 by measuring the amplitudes of the highest

r lowest peaks in the central part of each wave profile. For each

escaled and background-subtracted profile with QI = 3 or better,

e identify the point within the range −6 km < �a < +6 km with

he greatest deviation from zero. We then fit a gaussian profile

o this peak (either positive or negative) and record its ampli-

ude and sign. In Fig. 7 , we plot the resulting signed amplitudes

s true anomaly, along with a third-order Fourier fit to guide the

ye. The smoothed amplitudes range from dτ = −1 . 3 at f = 40 °

o dτ = +0 . 9 at 270 °, with zero-crossings at f � 160 ° and � 330 °.

ote that the former crossing is much more gradual than the lat-

er, in agreement with the varying waveforms in Fig. 6 . 

.2. Wavelet analysis 

The next step in our analysis is to characterize the variation

n wave phase with longitude and time, in order to establish its

zimuthal wavenumber m and its angular rotation rate, or pat-

ern speed �p . For this we employ a variant of the wavelet tech-

ique introduced by Hedman and Nicholson (2013) , in which the

hase difference between pairs of background-subtracted and radi-

lly scaled optical depth profiles is measured and compared with

he predicted value of δφ: 

φpred = | m | (δλ − �p δt) , (1) 

here δλ is the difference in inertial longitudes between the two

ccultation cuts and δt is the corresponding difference in observa-

ion times. An example of the wavelet decomposition of a Maxwell

inglet profile is shown in Fig. 8 . The top panel shows the mean

ptical depth profile as a function of normalized radius �a . The

iddle panel shows a smoothed, background-subtracted profile

hose periodic waveform is decomposed into a 2-D wavelet spec-

rum in the lower panel. The contours show the wavelet power as
 function of radial wavelength (left axis), wavenumber k (right

xis), and radius �a . The black line in the lower panel traces

he ridge-line of the contours, illustrating that the wavelength

f strongest wavelet power decreases inward, as expected for an

nward-propagating density wave. 

For each occultation profile, we use a similar complex wavelet

ransform W (k , �a ) to establish the phase φ(k , r) = tan 

−1 (W I /W R ) ,

here W R and W I are the real and imaginary parts of the trans-

orm and k is the radial wavenumber. An average of the phase is

omputed at each radial location �a , weighted by the total wavelet

ower, P (k , �a ) = W 

2 
R + W 

2 
I , to produce the monotonically-varying

hase profile φ(�a ) . The final step is to compute the phase differ-

nce δφobs between two background-subtracted, normalized, and 

adially-scaled observations as an average of δφ(�a ) , weighted

y the mean power profile P̄ (�a ) . (See Hedman and Nicholson

2013) for more details and examples of this procedure.) 

The strength of the difference technique is that, while the mean

hase φ(�a ) varies rapidly with radius through the wave, the

hase difference between two independent radial profiles of the

ame wave should be constant, and depend only on δλ and δt . 

.3. Wave pattern speed 

Under the assumption that the wave is driven by either an in-

er or outer Lindblad resonance, the local pattern speed is given

y the expression ( Hedman and Nicholson, 2013 ): 

 �p = (m − 1) n + ˙ � , (2) 

here m is positive for an ILR and negative for an OLR. Here, n is

he local keplerian mean motion and ˙ � is the apsidal precession

ate due to Saturn’s zonal gravity harmonics. For each trial value of

 , and for a series of values of �p in the neighborhood (i.e., within

0%) of the expected rate given by this equation, we calculate the
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Fig. 9. Periodogram showing the detection of an m = −2 OLR-type wave in the Maxwell ringlet. The minimum in the RMS phase residuals occurs for a pattern speed 

�p = 1769 . 17 °d 
−1 

, corresponding to a res = 87530 . 0 km. The lower panel shows all 1059 individual phase residuals, δφobs − δφpred , as a function of the time interval between 

observations δt . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10. A series of rescaled, background-subtracted wave profiles in the range of 

true anomaly 200 ° < f < 300 °, sorted by, and offset vertically in proportion to, the 

wave phase φ = | m | (λ − �p t) . We have set m = −2 and assumed the best-fit pat- 

tern speed from Fig. 9 . The trailing spiral nature of the pattern is evident (see text), 

as is its 2-armed nature. The dashed curve is a line of constant three-dimensional 

phase, φ(�a , λ, t) , as given by Eq. (3) , using the empirical radial phase function 

φr (�a ) derived in Section 4.4 . 
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predicted phase differences δφ for all possible pairs of occultations

and compare these with the observed phase differences. Carrying

out this prescription, we find a significant minimum in the RMS

phase residuals δφobs − δφpred only for an OLR with m = −2 . (All

values of m between −10 and +10 were tested.) 

Fig. 9 shows the detection of the m = −2 wave signature, in

the form of a plot of RMS phase residual vs pattern speed. For

this calculation we have used a total of 1059 pairs of VIMS and

UVIS profiles of QI = 3 or better, and with separations in time

of less than 300 days. 1 A pronounced minimum occurs for �p =
1769 . 17 ° d 

−1 
, very close to the expected value given by Eq. (2) ,

assuming the gravitational harmonic values given in Jacobson et

al. (2006) , with an RMS residual of 29.8 °. The corresponding reso-

nant radius a res = 87530 . 0 km, or �a = +20 . 2 km. The lower panel

of this figure shows the individual phase residuals as a function

of time interval δt , verifying that there are no systematic devia-

tions. This technique of scanning over a range of values for �p

is the same as that used by Nicholson et al. (2014a,b) to search

for normal modes at the edge of the B ring, and at various gaps

and ringlet edges in the C ring. The key difference here is that we

compare phase differences δφ to their predicted values, rather than

absolute values of φ. 

Although the above analysis indicates that the wave’s pattern

speed is consistent with that of an OLR with m = −2 , it is also

desirable to verify that its two-dimensional form matches a 2-

armed trailing spiral, as expected for any density wave driven at

a Lindblad resonance ( Shu, 1984 ). We do this in Fig. 10 by compar-

ing wave profiles of varying phase φ but acquired at similar true

anomalies. We choose a range of true anomaly, 200 ° < f < 300 °,

where the profiles are similar in form and the ring is not too nar-

row. As the phase (and thus the longitude in a frame rotating at

an angular rate �p ) increases, we see that the peaks in optical

depth move steadily to smaller radii, consistent with a trailing spi-

ral. And after an increase in φ of 360 ° the whole radial pattern of

peaks and troughs wraps around, after slipping exactly one cycle.
1 Longer time intervals lead to more precisely-defined minima, but also introduce 

aliasing problems, resulting in multiple, closely-spaced minima. We have found that 

300 days is a good compromise. 

v  

t  

i  

b  
ince we have assumed that | m | = 2 , this corresponds to a rotation

f 180 ° in physical space, or a 2-armed spiral pattern. 

For completeness, we argue that the wave is a density wave

hat perturbs the radial optical depth profile in a spiral pattern,

ather than a bending wave that results in corrugations of the ring

lane itself, driven for example by an inclination resonance with a

atellite. The pattern speed of an inward-propagating density wave

ue to an OLR is faster than the local mean motion, while the pat-

ern speed of an inward propagating bending wave due to an inner

ertical resonance is slower than the mean motion. The high pat-

ern speed of the detected wave is strong evidence that the wave

s a spiral density wave. An additional argument against the possi-

ility of this being a bending wave is that the visibility of vertical
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orrugations in a ring is highly dependent on the viewing geom-

try, and in particular the contrast in optical depth of the sharp

pikes and dips observed in the radial profiles of the rings would

e much more muted for occultations with large ring opening

ngles than for events observed at grazing incidence, and this is

ot the case. 

We thus find that the wave in the Maxwell ringlet, after apply-

ng our linear-stretch model to remove the effects of the ringlet’s

ccentricity, behaves almost exactly as expected for a density wave

riven at an OLR with m = −2 . It is thus likely to be yet another

xample of a C ring wave driven by internal f -mode oscillations in

aturn. This conclusion is supported by the rapid pattern speed,

hich is higher than the orbital mean motion of any known (or

ven hypothetical) satellite of Saturn. In fact, Marley and Porco

1993) noted the possibility of a causal connection between the

 f resonance and the Maxwell gap, although their best estimate

f the resonant radius was 86 , 215 ± 550 km, which is ∼1300 km

nterior to the gap and its ringlet. 

.4. Radial variation of wave phase 

In order to construct a kinematic model of the wave, we require

 prescription for its phase φ as a function of radius, longitude and

ime. Following Hedman and Nicholson (2013) , we can write this

n the form 

(�a , λ, t) = | m | (λ − �p t) + φr (�a ) . (3) 

he quantity φr (�a ) could be obtained from our wavelet analy-

is, to within an unknown constant φ0 , as the mean phase φ(�a )

ntroduced above. A simpler and cleaner procedure, however, is

o use one of the high-quality occultation profiles (specifically

VIS β Cen105E), rescaled to quadrature as described above, and

imply identify the sharp peaks in optical depth. Each successive

easured peak corresponds to a difference in φr of 360 °, and

e use a least-squares quadratic-interpolation routine to fill in

he intermediate values and derive the full radial phase profile

r (�a ) , as shown in Fig. 11 . The extrapolated stationary phase

oint is at �a = 18 . 9 km, corresponding to a resonant radius,
ig. 11. Determination of radial wave phase φr as a function of rescaled radius �a . Th

uccessive wave crests identified, while the bottom panel shows the corresponding cumu

he red curve is a simple quadratic model fitted to the reconstructed phase profile (se

hase residuals in Fig. 9 , while the + symbol marks the radius at which the quadratically

ndependent estimates of the resonance radius. 
 res = 87 , 528 . 7 km. This is comfortingly close to the value of a res 

nferred from the pattern speed of the wave in Fig. 9 , giving us

onfidence that we have a dynamically self-consistent model for

he wave. 

It is instructive to compare this empirically-derived phase pro-

le with the asymptotic model for a linear density wave, as given

y Shu (1984) (cf. Eq. (5) of Hedman and Nicholson (2013) ): 

r (�a ) � 3(m − 1) 
M S ( a + �a − a res ) 

2 

4 π	0 a 
4 
res 

, (4) 

here M S is the mass of Saturn and 	0 is the mean surface den-

ity of the ring at quadrature. The red curve in Fig. 11 shows such

 parabolic model fitted to our adopted phase profile, where the

t parameters are 	0 and the resonance location a res . We find that

0 = 15 g cm 

−2 , which is in fair agreement with the estimate ob-

ained in Section 3.2 from the self-gravity model, but the fitted

alue for a res is unphysical, as it falls within the first cycle of the

ave. We attribute this to the fact that the analytic model applies

o a ring of constant background surface density, whereas the ac-

ual mean optical depth profile of the Maxwell ringlet is far from

niform. For this reason, we prefer to use our empirical model for

r (�a ) rather than the quadratic fit. 

We can, however, differentiate the em pirical phase model to ob-

ain the radial wavenumber k (�a ) = d φr /d �a , and combine this

ith the differential form of Eq. (4) to estimate the local surface

ensity profile 	0 (�a ) . We find that 	0 steadily decreases from

12 g cm 

−2 at �a = +5 km to ∼5 g cm 

−2 at �a = −20 km, mim-

cking the decline in mean optical depth τ0 over this range. The

orresponding opacity of the ring κ = τ0 / 	0 , remains relatively

onstant at 0.12 cm 

2 g −1 . This is within the range of values found

or several nearby plateaus in the outer C ring of 0.11–0.31 cm 

2 

g −1 ( Hedman and Nicholson, 2014 ). 

.5. Linear density wave model 

With a model for the wave phase φ(�a , λ, t) from Eq. (3) and a

umerical expression for φr (�a ) , we can predict the profile of the
e top panel shows a rescaled, background-subtracted occultation profile, with the 

lative phase, starting from zero at the inferred resonant radius, �a res = +18 . 9 km. 

e text). The vertical dotted line indicates the resonance radius derived from the 

-extrapolated empirical φr has zero slope. Note the close agreement between these 
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density wave in any other (rescaled) occultation profile. For sim-

plicity, we employ the linear wave model of Shu (1984) to write

the predicted surface density profile in the form 

	(�a , λ, t) / 	0 = 1 − A L R 

[
F (ξ ) e im (�p t−λ−φ0 ) 

]
e −(ξ/ξD ) 

3 

, (5)

where 	0 is the unperturbed background surface density of the

ring and the dimensionless distance from resonance ξ is simply re-

lated to our radial phase φr via ξ 2 = φr (�a ) . The complex oscilla-

tory function F (ξ ) involves a Fresnel integral, which must be eval-

uated numerically. A L is the dimensionless amplitude of the wave

and the parameter ξD is an effective damping length. Eyeball fits

of this model to several of the Cassini profiles in Fig. 6 show that

a reasonable fit is obtained with the parameters A L = 0 . 04 , ξD = 6

and a phase offset φ0 = 300 °. Linear density wave theory pro-

vides estimates of the ring kinematic viscosity ν and the rms ran-

dom velocity c from ξD and the mean ringlet optical depth (cf.

Eqs. (7) and (8), and Footnote 1, of Tiscareno et al. (2007) ). We

find ν ∼ 17 Stokes (cm 

2 s −1 ) and c ∼ 0 . 13 cm s −1 , although these

values should be regarded as rough estimates only, since ν de-

pends quite sensitively on ξD , being proportional to ξ−3 
D 

, whereas
Fig. 12. Comparison of the linear density wave model with observations. The 16 Cassini

true anomaly f , as labeled in the title of each panel. The rescaled optical depths are sho

model; and the green curve is the mean background profile τ0 (�a ) . No free parameters 

and φ0 . The phase of the wave is calculated from its known pattern speed, the inertial lo
 ∝ ξ−3 / 2 
D 

. Recall, too, that the mean optical depth of the Maxwell

inglet increases by a factor of five from apoapse to periapse, fur-

her complicating this simple picture. 

Combining this model for a linear wave with the mean back-

round optical depth profile τ0 from Fig. 3 , we have our final

odel for the ringlet’s rescaled optical depth profile 

(�a , λ, t) = τ0 (�a )	(�a , λ, t) / 	0 . (6)

 comparison of the same 16 high-quality, rescaled wave profiles

hown in Fig. 6 with the linear density wave model is presented

n Fig. 12 . For each occultation we plot three curves: the rescaled

ptical depth profile in red, the linear wave model in blue, and the

ackground optical depth profile in green (the latter is the same

or all panels.) Comparing the three curves, we make the following

oints: 

1. In most cases, the phase of the model wave matches the ob-

served profile quite well, indicating that our value for the pat-

tern speed is accurate and that the wave has been behaving
 VIMS or UVIS occultation profiles used in Fig. 6 are shown in order of increasing 

wn in red; the blue curves show the profiles predicted by the linear density wave 

have been adjusted for any individual profile, beyond the common values of A L , ξD 

ngitude of the occultation profile, and the time of the observation. 
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Fig. 13. A graphical depiction of the m = −2 spiral wave structure in the Maxwell 

ringlet, based on a linear density wave model and a simple linear-stretch model 

for the background optical depth profile. The ringlet’s radial width and eccentricity 

are exaggerated for clarity, but the relative radial scales of the wave and ring and 

the fractional variation in ring width are all accurate. Brightness is proportional to 

optical depth. 
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coherently over a period of 8 years. The only exceptions are

near the transition values of f ∼ 130 ° and 330 °, where the

agreement is quite poor. 

2. The consistency of the phase match extends well out into the

tail of the wave, implying that our radial phase function φr (r)

(which was derived from a single profile) performs well as a

universal model. 

3. Although the model matches the wave’s amplitude reasonably

well at most longitudes, it does not predict either the strong

peaks around f ∼ 270 ° or the deep minima around f ∼ 40 °. 

4. The shape and level of the individual scaled profiles is quite

similar to the mean optical depth profile, implying that our

simple linear-stretch model describes the actual τ profiles quite

well. The largest deviations occur near periapse ( f � 0 °), where

the linear model overestimates the actual optical depth near

the centerline of the ringlet. This is consistent with Fig. 5 ,

where the self-gravity model predicts a less centrally peaked

profile near pericenter than does the linear model. 

To complete our discussion of the linear density wave model,

e present in Fig. 13 a pseudo-image of the Maxwell ringlet with

ts embedded wave. For this image, we have combined the back-

round mean optical depth profile, linearly stretched as function

f true anomaly, with the linear wave model discussed above. The

elative widths of the ringlet at periapse and apoapse are accurate,

ut the absolute widths as well as the ringlet’s mean eccentric-

ty have been greatly exaggerated. Higher intensity indicates higher

ptical depth. The wave is seen propagating inwards, first growing

n amplitude and then gradually damping away. Although this is

nly a snapshot of the ring, one must imagine that this structure

s evolving on several timescales: the spiral wave rotates at a rate

f 1769 ° d 

−1 , while the eccentric ring precesses under the influ-

nce of Saturn’s J 2 at a rate of 14 . 69 ° d 

−1 
(period = 24.5 days). As

he wave rotates, its radial scale is alternately compressed and ex-

anded every 4.88 h, no doubt dissipating significant amounts of

nergy in inelastic collisions. 

. N-body simulations of the Maxwell ringlet wave 

Thus far, we have securely established several important char-

cteristics of the Maxwell ringlet density wave, foremost its iden-

ity as an inward-propagating m = 2 OLR with a well-determined
attern speed, resonance radius, and phase profile φr (�a ) , assum-

ng a simple “accordion” scaling of the internal radial structure to

ompensate for the substantial width variations of the ring. A very

imple linear density wave model is successful in predicting the

hase of the wave for any given occultation observation, match-

ng reasonably well the locations of the wave crests and troughs

f the internal wave. However, the actual detailed morphology of

he peaks and troughs is not what a linear model would predict.

n order to explore the underlying dynamics of the wave more re-

listically, in this section we present physically-based N-body sim-

lations of the Maxwell ringlet and its internal wave, using an in-

egrator capable of simulating a strong spiral density wave as it

ropagates in a narrow, eccentric ringlet. 

.1. Description of the N-body integrator 

It is a considerable computational challenge to model the dy-

amics of an optically thick, eccentric ringlet with a large ec-

entricity gradient and a forced internal wave, using traditional

-body codes. For the Maxwell ringlet, important length scales

pan the sub-km wavelength of the density wave near peri-

pse to the 20–100 km variation in ring width from periapse to

poapse. The relevant time scales include the very rapid pattern

peed ( ∼1769 ° day −1 ), slow precession rate ( ∼14.69 ° day −1 ), and

he rather long interval for the density wave to propagate from its

esonance radius to the inner edge of the ring ( ∼6 years, or ∼50 0 0

rbital periods, assuming a group velocity of the wave of 4 km yr −1 

nd a mean ring width of 60 km). A fully realistic N-body treat-

ent would accommodate the requirement for self-gravity to bal-

nce differential precession in the presence of a significantly oblate

entral planet. Standard N-body co-rotating patch codes with peri-

dic boundary conditions, such as that of Rein and Latter (2013) ,

ould require a prohibitively large number of particles to handle

uch a simulation. 

Instead, we employ an N-body integrator – epi _ int – that

as specifically designed to simulate collective phenomena in a

ense planetary ring ( Hahn and Spitale, 2013 hence forth HS13).

his code uses the same drift-kick scheme as the symplectic inte-

rators Symba and Mercury that are widely used to study plan-

tary dynamics ( Duncan et al., 1998; Chambers, 1999 ). However

pi _ int differs from a traditional N-body integrator by not using

he usual inverse-square law to calculate inter-particle forces; that

pproach experiences an artificially high degree of particle–particle

cattering due to the necessity of employing simulated particles

hat are significantly more massive than real ring particles. Such

rtificial scattering tends to wash out the gentler and more orderly

ing phenomena characteristic of a spiral density wave, which is

f primary interest here. In epi _ int , the positions and velocities

f simulated ring particles trace the streamlines that represent the

ing’s global shape. The acceleration felt by a trace particle due to

 nearby streamline is approximated as that due to a straight wire

f matter, 2 Gλ/ �, where G is the gravitational constant, λ is the

treamline’s linear mass density and � is the radial distance be-

ween the particle and the streamline. 

The use of gravitating wires to calculate ring gravity has been

idely used in analytic studies of non-linear ring phenomena

 Goldreich and Tremaine, 1979; Borderies et al., 1983, 1986 ), and

he streamline concept is well tested and readily implemented in

n N-body code. A major benefit of this gravity law is that there

s no resultant gravitational scattering as two particles drift past

ach other in longitude; since each particle represents a segment

n a long wire of matter, there is no gravitational impulse that

ould otherwise occur as discrete particles drift past each other in

 traditional N-body model. Consequently, gravitational scattering

s greatly reduced and only a modest number of particles is needed

o represent a ringlet’s full 360 ° extent, usually a few thousand. 
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We note at this point that the surface mass density variations

predicted by the linear density wave model ( Eq. (5) ) arise from

variations in the distance between streamlines due to trends in

the orbital eccentricity and pericenter with semimajor axis. In gen-

eral, the local surface mass density will be inversely proportional

to 1 − q cos (λ − � + γ ) , where the parameters q and γ quan-

tify the gradients in the orbital eccentricity and pericenter posi-

tion ( q cos γ = d ( ae ) / d a and q sin γ = −ae (d � ) / d a , Borderies et al.

(1983) ). Note that γ should not be confused with the phase of

the density wave φ. For typical density waves, the only source

of nonzero eccentricities is the wave itself, and so the shapes

of the density variations are determined by the strength of the

resonant perturbations as well as the average surface mass den-

sity and viscosity of the ring. However, in this case we have a

wave that is superimposed on top of an eccentric ringlet with its

own significant eccentricity gradient, as well as organized pericen-

ter locations that can themselves produce azimuthal variations in

the ring’s average surface density ( Borderies et al., 1983 ). These

background trends in the ring particles’ orbital elements cannot

change the basic symmetry or the pattern speed of the density

wave, but they will introduce extra terms into the expression for

the local surface density that can distort the detailed shape of

the profiles. Such interactions between the density wave and the

ringlet’s eccentricity gradient are challenging to explore analyti-

cally, an additional motivation to employ a numerical streamline

model. 

The ring’s surface density 	 is readily calculated from the den-

sity of streamlines, and the N-body epi _ int code uses this infor-

mation to compute the additional forces associated with particle–

particle collisions. The integrator assumes that the ring particles

are an innumerable swarm of colliding particles. Collisions occur-

ring among particles residing in adjacent parcels in the ring will

communicate linear momentum between those parcels, and differ-

ences in those rates cause those parcels’ trajectories to evolve. The

rate at which collisions transfer momentum is controlled by the

particle swarm’s pressure which, for a flattened 2D cloud of col-

liding particles, is p = c 2 	, where c is the dispersion velocity of

the particles, chosen so that the mean value of the Toomre stabil-

ity parameter Q = cκ/πG 	 is equal to 2 (here, κ is the epicyclic

frequency; note that gravitational stability requires Q > 1 and the

presence of a density wave requires that Q not be larger than a

few or so). The net acceleration on any simulated N-body parti-

cle due to collisions with particles in adjacent streamlines is thus

A p = −(∂ p/∂ r) / 	. The model also accounts for the large pressure

drop that occurs at a ring’s sharp edge: in that case the particle

only feels a pressure force from the adjacent streamline, and the

acceleration is A p = ±p/λ with the plus (minus) used at the ring’s

outer (inner) edge. 

Collisions among particles in a differentially-rotating ring also

transmit angular momentum radially through the ring with flux

F ν = −νs 	r 2 (∂ �/∂ r) , where νs is the kinematic shear viscosity

and � the angular velocity ( Borderies et al., 1982 ). The tangen-

tial acceleration that is associated with this radial angular momen-

tum flux is obtained from the differential torque that is exerted

across adjacent streamlines, A ν , θ = −(∂ F ν/∂ r ) /r 	 in the ring’s in-

terior and A ν , θ = ±F ν/λr at the ring’s inner or outer edge, as de-

scribed in detail in HS13. 

5.2. N-body models of the Maxwell ringlet 

In principle, the HS13 code is capable of realistically model-

ing the Maxwell ringlet’s eccentric shape, mean optical depth pro-

file at quadrature, the differential precession due to the J 2 compo-

nent of Saturn’s oblateness, and the response of the ring to a ficti-

tious prograde interior satellite with an m = 2 OLR located within

the ringlet at the inferred resonance radius. In practice, the strong
ccentricity gradient and substantial planet-induced differential

recession across the ringlet result in streamline crossings that

nvariably terminate such potentially realistic simulations. After

onsiderable experimentation, we simplified the model’s physical

arameters in a way that retains the key qualitative character-

stics of the Maxwell ringlet and its internal wave, while relax-

ng other constraints that were not central to our purpose. We

uppressed the differential precession due to Saturn by setting

 2 = 0 , which greatly reduced (but did not completely eliminate)

he misalignment of the apses of the inner and outer edges of

he ringlet during the integrations. This enabled us to simulate

he response of an eccentric ring to resonant forcing, at the ex-

ense of exploring the dynamics of ring confinement and apse

lignment about an oblate planet. We also reduced the eccentric-

ty gradient across the ring so that the width varied by a fac-

or of about 2 from periapse to apoapse, compared to the ac-

ual value of ∼5. Finally, to mimic whatever process prevents the

ing from spreading radially, epi _ int applies fictitious torques

o the ringlet’s innermost and outermost streamlines to coun-

erbalance the viscous torques they experience from the ring’s

nterior. 

In our exploratory simulations, we varied the assumed mean

urface mass density of the ringlet 	0 from 5 to 40 g cm 

−2 , cover-

ng the range of results from the self-gravity analyses described in

ection 3.2 . The lower surface densities resulted in density waves

ith relatively short wavelengths and about a dozen wave crests

panning the ringlet, roughly comparable to the observed structure

f the Maxwell ringlet. However, these simulations were slow to

volve because of the low group velocity of the satellite-induced

ave, and streamline crossing terminated the integrations before

he wave had propagated from the resonance radius to the inner

egions of the ringlet. The larger surface densities resulted in more

apidly-evolving waves, but with fewer wave crests than the ac-

ual Maxwell ringlet. We varied the mass of the fictitious inte-

ior satellite from 10 −11 to 10 −9 M S , with smaller values resulting

n relatively weak, quasi-linear density waves and the larger val-

es resulting in very strongly non-linear waves that quickly re-

ulted in streamline crossing. In other experiments, we compared

imulations that included and excluded the pressure forces asso-

iated with collisions, and found little difference in the results, al-

hough including collisional pressure tended to delay the inevitable

treamline crossing that terminated the calculations. We assumed

 Toomre parameter Q = 2 for the results shown here. The cor-

esponding dispersion velocity is c = 1 . 75 × 10 −2 cm s −1 , signifi-

antly smaller than the estimate provided by the linear density

ave result found previously in Section 4 . (We experimented with

ispersion velocities of 0.175 and 1.75 cm s −1 , but the wave pat-

ern was strongly deformed and streamline crossing rapidly ter-

inated those simulations.) Finally, we explored a range of as-

umed shear and bulk viscosities between 0 and 20 0 0 Stokes, with

he expected result that wave damping was stronger with higher

iscosities. 

Fig. 14 shows representative results of the late stage of evo-

ution for an epi _ int simulation of a Maxwell-like ringlet with

 forced m = 2 OLR. For this run, we used 200 streamlines with

4 particles per streamline, for a total of 12,800 particles; nearly

dentical results were obtained with 400 streamlines and 128 par-

icles per streamline (51,200 particles). This 2-D polar projection

f the ring shows the ringlet’s surface mass density just prior

o termination of the simulation resulting from streamline cross-

ng near the most opaque part of the ringlet. (The surface den-

ity is obtained by interpolation of particle positions along stream-

ines to determine the linear mass density of each streamline, and

hen by interpolation of the radial separation of adjacent stream-

ines to determine the local mass density.) The simulation was be-

un with an initially uniform radial optical depth profile, and the
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Fig. 14. Symplectic N-body simulation of an m = −2 wave developed within an 

eccentric ringlet, due to resonant forcing by a hypothetical interior satellite. The 

ringlet’s radial width and eccentricity are exaggerated for clarity, but the relative 

radial scales of the wave and ring and the fractional variation in ring width are 

preserved from the model values. Compare the wave structure resulting from this 

numerical integration with that of the linear density wave model for the Maxwell 

ringlet in Fig. 13 . 
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ronounced wave structure emerged over the course of about 4800

rbital periods ( ∼1450 days), shortly after which streamline cross-

ng terminated the integration. For this simulation, we included

he pressure effects associated with particle collisions, as described

bove, and assumed values for the bulk and shear viscosities of 100

tokes, a bit larger than the value found from the linear density

ave model in Section 4 . We set 	 = 10 g cm 

−2 , comparable to
0 

ig. 15. Optical depth profiles across the simulated ringlet in Fig. 14 , plotted at interval

he left panel shows the raw profiles in real radius and the right panel the rescaled profi

een rescaled horizontally to the maximum ring width, assumed to be 80 km, rather tha

epth of each profile.) The main qualitative characteristics of the observed wave are repro

he strong compression of the wave profile near periapse. Profiles are shown in red at in

rofiles observed at nearby anomalies, in Fig. 6 . 
stimates provided by the self-gravity analysis and as inferred

rom the wave’s phase profile and a theoretical dispersion rela-

ion. The mass of the fictitious resonant satellite producing the

nternal wave was 1 . 0 × 10 −10 M S , about one-third of the mass of

rometheus or eight times that of Atlas. Because the wave may

ot have reached its steady-state amplitude before the completion

f the simulation, this mass is best thought of as an approximate

pper limit to that needed to generate a wave of this amplitude. 

The variation in radial structure with ring longitude (or true

nomaly) is more easily seen in Fig. 15 , which shows radial sur-

ace density profiles from our simulation sampled every 10 ° in

rue anomaly from the polar projection in Fig. 14 . The raw profiles

re plotted relative to true radius in the left panel (without sub-

racting a mean background radial profile), and at right we have

escaled the profile widths to a constant value, while at the same

ime scaling the surface density to preserve the radially integrated

ptical depth for each individual profile. Note that at any given ra-

ius two complete wave cycles are traversed as we move through

60 ° in longitude, as expected for an m = 2 wave. In this simu-

ation, as in the real ringlet, the waveform changes from having

trong peaks in density near f = 300 ° to sharper troughs around

f = 40 °, with a broad transition region around f ∼ 160 ° (cf. Fig. 7 ).

lthough the profiles are by no means identical to those in Fig.

 , the similarity suggests that it is the interaction of the density

ave with the eccentricity gradient across the ringlet that is re-

ponsible for the unexpected changes in the wave profile with true

nomaly. The epi _ int simulation of the Maxwell ringlet shows

 shift in periapse longitude of a few degrees from the inner to

he outer edge. The latter manifests itself as an offset in the mini-

um ringlet width by ∼20 ° from f = 0 °. Such effects are predicted

y more sophisticated versions of the self-gravity model ( Borderies
s of 10 ° in true anomaly, showing the development of an m = −2 OLR-type wave. 

les, for comparison with the observations in Fig. 6 . (In this case, the profiles have 

n the mean width, and scaled vertically to preserve the radially integrated optical 

duced here, including the transitions between sharp peaks and sharp troughs. Note 

tervals of 60 ° in true anomaly, for ease of comparison with individual occultation 
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et al., 1983 ). However, in our model we have set the planet’s J 2 
(and thus the ringlet’s precession rate) to zero, so one should be

wary of drawing any direct analogies. Indeed, this shift may be

the manifestation of a very long period libration that has not been

completely sampled over the relatively short duration of the N-

body simulation. 

Overall, the epi _ int simulations of the Maxwell ringlet suc-

cessfully produce a strong density wave with radial profiles that

more closely resemble the actual observations than does our sim-

ple linear model. Although the integrations eventually terminate

because of streamline crossing, they capture several key character-

istics of the actual observations, including both prominent peaks

and troughs in optical depth and a realistic variation in wave-

length and amplitude across the ringlet. They also provide a rough

upper limit to the mass of the fictitious satellite that drives the

wave, which we will use in the next section to estimate the na-

ture of the forcing of the wave. Although a detailed dynamical ex-

planation for the radial optical depth variations of the wave re-

mains elusive, some insight can be gained from an examination

of the eccentricity and periapse longitudes of the streamlines at

the conclusion of the numerical simulations, shown in Fig. 16 . At

the upper left, the eccentricity (scaled by orbital radius) is plot-

ted as a function of semimajor axis. The trend is very close to lin-

ear, and the deviations from a linear fit are shown in the lower

left panel, where the periodic structure is clearly associated with

the peaks and troughs in the density wave seen in the simu-

lated optical depth profiles. The general structure of the eccentric-

ity gradient is almost inverted from that seen in Fig. 4 for the

Goldreich and Tremaine (1979) self-gravity model, but since we

have set J 2 = 0 in the epi _ int integrations, we should not expect

exact agreement between these two cases. The two panels at right

show the corresponding results for the periapse longitude of the

streamlines. 

These results, while encouraging, still leave room for improve-

ment. As noted previously, our simulations have a substantially

smaller average eccentricity gradient than the actual Maxwell
Fig. 16. Radial variations in streamline eccentricity and periapse longitude, from our stan

the conclusion of the integration to the initial linear model, shown as a dashed line. The l

structure associated with the internal density wave that has developed over the course of

At upper right, the periapse longitude is shown to vary roughly linearly with orbital radiu

in the lower right panel. Again, the wavelike appearance reflects the structure of the inte

periodic variations in the eccentricity profile and the periapse longitude of the particle st
inglet. We have also ignored the effects of differential preces-

ion on the overall structure of the ring, and on its variation with

rue anomaly, though in Fig. 5 we have seen that these effects are

uite modest. Finally, we note that there is more detailed struc-

ure in the observed radial optical depth profiles than we see in

ur simulations. It is likely that a more sophisticated treatment

f close particle encounters than assumed in epi _ int will be

equired to understand how these structures are formed, and to

nable the simulations to continue without resulting in stream-

ine crossing. For example, it may be important to model shocks

n a dense particle environment when nearby streamlines are

inched close together as particles approach ring periapse. Never-

heless, the N-body symplectic streamline approach to modeling

n eccentric ringlet with an embedded wave holds considerable

romise for providing insight into the dynamics of such complex

inglets. 

. Origin of the Maxwell ringlet wave 

The pattern speed of the wave in the Maxwell ringlet is much

reater than the orbital mean motion of any of Saturn’s moons, by

lmost a factor of 3. This, combined with the fact that the wave

ropagates inwards and is thus almost certainly driven at an outer

indblad resonance, makes it extremely unlikely that this wave

s created by any normal satellite resonance. Instead, it is most

ikely generated by a resonance with a normal-mode oscillation in-

ide Saturn. Assuming a nominal model for Saturn’s internal struc-

ure, Marley and Porco (1993) computed the pattern speeds of sev-

ral different fundamental sectoral (i.e., m = � ) normal modes that

ight produce OLR-type resonances in Saturn’s rings. 

Planetary internal modes come in three flavors: high-frequency

 – or pressure – modes and low-frequency g – or gravity-modes,

nd the intermediate-frequency f – or fundamental-mode, which

artakes of both characters. In a largely convective planet such

s Saturn, g -modes have zero frequency, but both f and p modes

re expected. Each mode is characterized by angular “quantum
dard epi _ int simulation. The upper left panel compares the eccentricity profile at 

ower left panel shows the difference between these two profiles, revealing periodic 

 the simulation, superimposed on a more regional quasi-sinusoidal residual pattern. 

s; the difference between the actual variation and a linear approximation is shown 

rnal wave generated in the simulation by a fictitious satellite. The combination of 

reamlines results in the optical depth profiles shown in Fig. 15 . 
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Fig. 17. Resonance locations for waves driven in Saturn’s C ring. The curves indicate 

the predicted pattern speeds for OLR-type ( m < 0 ) and ILR-type ( m > 0 ) waves as 

functions of orbital radius, while filled circles denote satellite-driven and internal- 

mode-driven waves identified to date. Labels identify the specific waves. The out- 

ermost m = −2 wave is the one in the Maxwell ringlet. Note that there are now 

three identified waves for m = −2 and three for m = −3 , but only single waves for 

m = −1 , m = −4 and m = −10 . The gray band indicates the observed range of satur- 

nian rotation rates. (Figure modified from Hedman and Nicholson (2014) .) 
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umbers” � and m , which specify the total number of nodal cir-

les at the planet’s surface, as well as the number of radial nodes,

pecified by n . For f -modes, n = 0 , while for p -modes, n = 1 , 2 , . . . .

oriolis forces lead to rotational splitting of modes with different

 values. However, modes with few or no radial nodes, and with

o latitudinal nodes (i.e., f -modes with m = � ) are the ones that

ouple most strongly to the radial epicyclic motions of the ring

articles and thus are most likely to generate density waves. These

re the sectoral f -modes, which may be parametrized by a single

umber, � . Marley and Porco (1993) found that the resonance with

he � = 2 sectoral f -mode (which they denoted 2 f and for which

hey estimated a pattern speed of ∼1810 ° d 

−1 ) was likely to fall

n the vicinity of the Maxwell gap, and thus suggested that there

ould be some causal connection between that resonance and the

axwell ringlet. 

Using Cassini occultation data, Hedman and Nicholson

2013) determined the pattern speeds and m -numbers of multiple

aves throughout the C ring, identifying m = −4 , − 3 and −2

aves within the regions where Marley and Porco (1993) had

redicted the resonances with the relevant normal modes could

eside. This finding supported the idea that normal mode oscilla-

ions inside Saturn could produce detectable waves in the rings.

owever, this analysis also revealed that there were three m = −3

aves and two m = −2 waves, which was surprising since Marley

nd Porco (1993) had predicted that each sectoral f -mode should

roduce a single wave. There should thus be only one m = −2

ave and one m = −3 wave at the appropriate ring locations.

ecent investigations of higher-order resonances ( Marley, 2014 ) do

ot yield any obvious candidates for nearby additional resonances,

nd so the multiple waves for a single m -value must reflect some

spect of the planet’s internal structure that is not captured in

imple fluid models. Indeed, recent work suggests that including

 solid core or a stably-stratified layer inside the planet could

otentially produce the multiple m = 3 and m = 2 modes ( Fuller

t al., 2014; Fuller, 2014 ). 2 

The two m = −2 waves characterized by Hedman and Nichol-

on (2013) occur at 84,644 km and 87,189 km, respectively. The

atter lies just interior to the Maxwell gap, and so is quite close

o the m = −2 wave located within the Maxwell ringlet. All three

f these m = −2 waves lie within the uncertainty range of Lind-

lad resonances with the 2 f normal mode oscillations computed

y Marley and Porco (1993) , so it is likely that all three are gener-

ted by such oscillations inside the planet. Furthermore, by pro-

iding the third example of an m = −2 structure in the C ring,

ur analysis of the Maxwell ringlet wave reveals that there are the

ame number of m = 2 and m = 3 oscillation modes in the planet

ith sufficient magnitude to produce observable wave signatures

n the rings. However, the pattern speeds of the m = −2 waves

pan a much broader range than do the m = −3 waves, implying

hat whatever process is responsible for splitting these modes af-

ects the frequency of the 2 f mode much more strongly than the

 f mode. The implications of this result for Saturn’s interior are

till unclear and will require further investigation. 

In Fig. 17 , we update the summary plot of Hedman and Nichol-

on (2014) to put the Maxwell ringlet wave in the context of other

ave features in the C ring attributed to either satellite resonances

r saturnian f -mode oscillations. 

The amplitude of the Maxwell ringlet wave also provides an

pportunity to estimate the amplitude of the planetary oscilla-

ions. Hedman and Nicholson (2013) did not attempt to estimate
2 The presence of solid or subadiabatic regions deep within the planet permits 

he existence of g -modes with nonzero frequencies which, if the frequencies are just 

ight, can overlap with the some of the f -modes, leading to multiple eigenmodes of 

ixed character. The observed modes would thus be neither pure f -modes nor pure 

 -modes, but for simplicity we shall refer to them here as f -modes. 

w  

r

 

m  

S  

c

he amplitudes of the oscillations required to produce the waves

hey studied because all of those structures involved opacity vari-

tions of order unity and so were probably non-linear. The density

ariations in the Maxwell ringlet, however, are less extreme and

o may provide a more robust estimate of the perturbation am-

litude. Our numerical simulations in Section 5 indicate that the

erturbations inside the planet are roughly equivalent to a satellite

ith a mass of 1 . 0 × 10 −10 M S , or ∼6 × 10 16 kg. This is about one-

hird of the mass of Prometheus. Using a similar argument to that

f Hedman and Nicholson (2014) , who estimated the internal den-

ity perturbation needed to produce several waves in the C-ring

lateaus that appear to be generated by persistent mass anomalies

o-rotating with Saturn’s winds, we calculate an average density

erturbation for a global mode of δρ/ ρ � 4 × 10 −10 . 

The permanent mass anomalies inside the planet responsi-

le for the m = +3 waves identified by Hedman and Nicholson

2014) are of order 10 14 –10 15 kg, or a factor of 50–500 times

maller than what seems to be required to produce the wave in the

axwell ringlet. This result is not unreasonable, given that these

aves appear to be generated by something tied to Saturn’s winds,

ather than oscillations in the planet’s deep interior. 

Another approach to estimating the amplitude of the 2 f normal

ode is to compare the amplitude of the linear density wave fit in

ection 4.5 with that predicted by Marley and Porco (1993) , who

alculate a normalized surface density amplitude of 6 . 6 g cm 

−2 
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for the wave driven by the � = m = 2 f -mode, assuming a maxi-

mum radial displacement at the 1-bar level in Saturn of �r = 1 m

(see their Table 1). Scaling this to the amplitude of our linear

model — as measured at the peak of the wave at ξ � 4 — of

∼0 . 23	0 � 2 . 8 g cm 

−2 , we estimate a surface amplitude of �r �
40 cm. This is remarkably close to the amplitude estimated by

Marley and Porco (1993) , on the assumption that the resonant

torque is responsible for maintaining the Maxwell gap. It is also

consistent with the 30 cm amplitude estimated by Marley (1991) ,

on the basis of equipartition of energy between modes and excita-

tion by convective turbulence. 

We can also compare the strength of the normal-mode reso-

nance responsible for the Maxwell ringlet wave with that of the

satellite resonances associated with the other narrow gaps in the C

ring. Although the precise mechanism whereby any of these gaps

– three of which have embedded ringlets – is maintained is un-

clear, we now have a total of four gaps that are located astride

resonances. The Colombo gap and Titan ringlet in the inner C ring

are associated with the Titan 1:0 apsidal resonance; the Maxwell

gap and ringlet are apparently associated with the 2 f internal

mode of Saturn; the Bond ringlet’s outer edge is perturbed by

the Prometheus 2:1 ILR; and the Dawes gap’s inner edge appears

to be controlled by the Mimas 3:1 ILR. Using satellite resonance

strengths tabulated by Nicholson et al. (2014b) (see their Table 10)

and the rough estimate provided above for the mass needed to

drive the Maxwell ringlet wave, we find relative strengths for these

four resonances of 570, 1.0, 2.8 and 12, respectively. On this same

scale, the strength of the Mimas 2:1 ILR at the outer edge of the

B ring is ∼670 ( Nicholson et al., 2014a ). (We have assumed here

that a mass equal to one-third of Prometheus needed to drive the

Maxwell ringlet wave at a first-order m = −2 OLR translates into a

resonance strength which is ∼1/3 that of the Prometheus 2:1 res-

onance, which is a first-order m = 2 ILR.) Unfortunately, these rel-

ative strengths are not obviously correlated with the correspond-

ing gap widths of 170, 260, 37 and 20 km, respectively; in fact, the

widest gap (Maxwell) is associated with the weakest resonance.

Clearly, more work is needed to understand the relationship be-

tween these gaps and their resonances. 

7. Conclusions and open questions 

High-SNR Cassini occultation observations spanning nearly a

decade have provided an extraordinarily detailed view of the radial

structure of the eccentric Maxwell ringlet in Saturn’s C ring, reveal-

ing a prominent wavelike structure that varies strongly and sys-

tematically with true anomaly. Using a simple “accordion” model

to compensate for the compression and expansion of the ringlet

and the wave, we derive a mean optical depth profile for the

ringlet and a set of rescaled, background-subtracted radial wave

profiles. We use wavelet analysis to identify the wave as a 2-armed

trailing spiral, consistent with a density wave driven by an m = 2

OLR, with �p = 1769 . 17 ° d 

−1 and a corresponding resonance radius

a res = 87530 . 0 km. Using one of the rescaled optical depth profiles,

we create a measured wave phase profile across the ring. Estimates

of the surface mass density of the Maxwell ringlet range from

a mean value of 11 g cm 

−2 derived from the self-gravity model

to 5 − 12 g cm 

−2 , as inferred from the wave’s phase profile and a

theoretical dispersion relation. The corresponding opacity is about

0 . 12 cm 

2 g −1 , comparable to several plateaus in the outer C ring

( Hedman and Nicholson, 2014 ). 

A linear density wave model that makes use of the above phase

profile nicely matches the wave’s approximate amplitude, wave-

length, and phase in most of our observations, confirming the

accuracy of the pattern speed and demonstrating the wave’s co-

herence over a period of 8 years. However, the linear model fails
o reproduce the narrow, spike-like structures that are prominent

n the observed optical depth profiles. 

Making use of epi _ int , a symplectic N-body streamline-based

ynamical code, we simulate analogs of the Maxwell ringlet, mod-

led as an eccentric ringlet with an embedded wave driven by a

ctitious satellite with an OLR located within the ring. The simula-

ions reproduce many of the features of the actual observations,

ncluding strong, asymmetric peaks and troughs in the inward-

ropagating density wave. The observed amplitude of the wave is

est matched by an assumed mass for the fictitious satellite of

bout 1 × 10 −10 M S , about one-third the mass of Prometheus. The

ssumed mean surface density 	0 = 10 g cm 

−2 matches the pre-

ictions of the Goldreich and Tremaine (1979) self-gravity model

s well as the observed wave phase profile. The corresponding Sat-

rn density perturbation sufficient to produce the observed wave

s about δρ/ ρ � 4 × 10 −10 . 

This N-body simulation represents a marked improvement over

he linear density wave model, but it nevertheless fails to repro-

uce the detailed trends in the wave’s optical depth profile and

ts variations with true anomaly. It will be necessary to improve

he physics of the code to deal more realistically with the highly

ompressed conditions that currently result in intersecting stream-

ines, causing the simulations to terminate. An additional impor-

ant augmentation of the simulations would be to include a phys-

cally realistic model for self-gravity or other means of prevent-

ng differential precession of the narrow ringlet due to planetary

blateness. 

We argue that the Maxwell ringlet wave is generated by a sec-

oral normal-mode oscillation inside Saturn with � = m = 2 , simi-

ar to other planetary internal modes that have been inferred from

ensity waves observed in Saturn’s C ring ( Hedman and Nichol-

on, 2013, 2014 ). Indeed, an association between the Lindblad res-

nance associated with this mode and the Maxwell gap was first

uggested by Marley and Porco (1993) , and more recently by Fuller

2014) , who predicted that the wave train in the ringlet would

ave m = −2 , as we have confirmed. Whether or not the Maxwell

inglet, or the gap in which it lies, is actually generated by this

articular mode of Saturn remains a matter of speculation at this

ime. 

Our identification of a third m = 2 mode associated with satur-

ian internal oscillations supports the suggestions of mode split-

ing by Fuller et al. (2014) and Fuller (2014) , but a deeper under-

tanding of how this comes about will require further study. The

tted amplitude of the wave, if it is interpreted as driven by the

 = m = 2 f -mode, implies a radial amplitude at the 1 bar level of

50 cm, according to the models of Marley and Porco (1993) . 

We are left with a number of vexing puzzles. How does it

appen that the Maxwell ringlet is located exactly at the loca-

ion of a resonance? Why is the wave so nicely centered in the

inglet? It seems unlikely that this is purely coincidental, and

ther narrow and sharp-edged ringlets also have internal wave-

ike structure – as yet unidentified with specific resonances –

ut we have not yet articulated the possible connections between

he formation and permanence of the ringlets and resonantly-

roduced waves. The rich set of Cassini observations of Saturn’s

ings will continue to provide a solid basis for such dynamical

nvestigations. 
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