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A B S T R A C T

A pattern of ∼1 km wavelength ripples exhibiting a periodic beating pattern in Saturn’s inner C ring (74,500–
77,765 km) was detected in low-inclination Cassini Radio Science Subsystem (RSS) occultation observations
made in 2010 (Marouf et al., 2011). Initially interpreted as analogous to the ∼30 km wavelength vertical
corrugations with 𝑚 = 1 discovered in the C and D rings in near-equinox Cassini Imaging Science Subsystem
(ISS) images by Hedman et al. (2007, 2011), the shorter wavelength of these features suggested that they
had evolved from a pair of impacts several centuries ago. However, important inconsistencies with this model
prevented a secure identification of their origin. A comprehensive search has revealed additional detections
of this pattern in Cassini RSS, Visual and Infrared Mapping Spectrometer (VIMS) and Ultraviolet Imaging
Spectrograph (UVIS) occultations observed between 2008 and 2017 that show a significant decrease in the
wavelength of the ripples over time, suggesting a much more recent origin than centuries ago. We identify
the conspicuous beat pattern visible in the ripple structure as the interference of 𝑚 = 0 and 𝑚 = 2 vertical
modes of similar amplitudes but slightly different frequencies, evolving over time and winding up at a rate
governed by the mean motion of ring particles, rather than by the much slower node rate that is applicable
to the 𝑚 = 1 corrugations. From empirical fits to the observed time-dependent wavelengths of the two modes
and power spectral analysis of individual optical depth profiles, we demonstrate that the short-wavelength
vertical corrugations originated from the same event that produced the longer-wavelength 𝑚 = 1 periodic
structure in the rings. We infer an impact date of UTC 1983 Sep 19.25 ± 5.5 d, taking into account a plausibly
small contribution of ring self-gravity to the windup rates of the corrugations. No convincing signatures of
counterpart 𝑚 = 0 or 𝑚 = 2 radial modes, or of vertical modes with 𝑚 ≥ 3, are present in the occultation
data, and no evidence of ripple structure is detectable beyond an orbital radius of 77,765 km. The measured
amplitudes 𝐴0

𝑧 and 𝐴2
𝑧 of the newly-identified modes are anti-correlated with the ring optical depth. We detect

a significant decrease in the amplitudes of both modes between 2008 and 2017. N-body numerical collisional
simulations provide constraints on the vertical and radial ring viscosity that are compatible with the observed
radial trend of mode amplitudes 𝐴0

𝑧 and 𝐴2
𝑧 and their variation with time. Assuming an effective particle size

𝑅=1 m, the inferred coefficient of restitution 𝜖𝑛 ∼ 0.5, with corresponding vertical and radial viscosities 𝜈z
= 1.6 cm2 s−1and 𝜈r = 2.2 cm2 s−1at a radius of 75,500 km. The initial amplitudes of the 𝑚 = 0 and 𝑚 = 2
vertical modes are estimated to be ∼4 to 7 times their observed values in 2017 in this region.
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1. Introduction

A mysterious pattern of ∼1 km wavelength ripples exhibiting a
periodic beating pattern was detected in Saturn’s inner C ring (74,500–
77,765 km) from low-inclination Cassini Radio Science Subsystem (RSS)
occultation observations made in 2010 (Marouf et al., 2011). Remi-
niscent of the ∼30 km wavelength vertical corrugations in the rings
visible in near-equinox Cassini Imaging Science Subsystem (ISS) im-
ges that are believed to have resulted from an impact swarm in
ate 1983 (Hedman et al., 2007, 2011, 2015), the shorter-wavelength

ripples were provisionally interpreted as much more tightly wound
pirals that had evolved from a pair of impacts several centuries ago,
ut important inconsistencies with this model prevented a secure iden-

tification of their origin Marouf et al. (2011). A comprehensive search
of multi-instrument occultation observations over the entire duration of
the Cassini mission has revealed additional detections of this pattern in

SS, Visual and Infrared Mapping Spectrometer (VIMS) and Ultraviolet
maging Spectrograph (UVIS) occultations between 2008 and 2017 that
how a significant decrease in the wavelength of the ripples over time,
uggesting a much more recent origin of the short-wavelength ripple
tructure.

In this paper, we demonstrate that the ripple structure was gener-
ted during the same 1983 impact that was responsible for the 𝑚 = 1
orrugation pattern visible in near-equinox Cassini ISS images (Hedman
t al., 2007, 2011, 2015). We begin with a survey of the observations
n Section 2, and in Section 3 we develop a generalized model for

the time evolution of vertical and radial normal modes excited by an
idealized ring impact. In Section 4, we measure the windup rate of
he waves, constrain the impact date, and identify the normal modes

responsible for the beat pattern of the observed ∼1 km wavelength
ripples. In Section 5, we measure the variation of the amplitudes of
he ripple patterns across the inner and middle C ring and show that

they decreased significantly over the course of the Cassini mission.
We estimate the possible effects of ring self-gravity on the windup
rates of the ripple patterns. Then, in Section 6, we present the results
of N-body kinematic collisional simulations of the perturbations for
 range of assumed ring particle properties and compare the trends

in the measured amplitudes of the waves over time with theoretical
models of the time-dependent damping behavior. In Section 7, we
discuss considerations for the impact formation mechanism responsible
or the observed structure, and in the final section, we summarize our
ey results.

2. Observations

The ripple structure that is the focus of this study is most clearly
vident in low optical depth regions of the inner C ring observed during
ccultations at low ring opening angles. To set the general scene, Fig. 1

shows the radial normal optical depth profile derived from the Cassini
SS_133I_X25 occultation over the ring plane radial range 74,500–
8,300 km, from just exterior to the C ring inner edge at 74,490 km to
he onset of the higher optical depth region of the middle C ring beyond
8,000 km.1 In the upper panel, selected low optical depth regions
re enclosed by dashed boxes labeled Rxx.x, where xx.x corresponds
o the radius of the center of the region in thousands of km. The
econd and third rows show two such regions in more detail. Region

R75.5 at left has a mean normal optical depth 𝜏𝑛 ∼ 0.05 and spans
70 km (75,300–75,670 km), exhibiting an overall ∼30 km undulatory
ariation in optical depth with a prominent shorter-wavelength beat
requency pattern shown at higher resolution in the lower left panel.
or future reference, we overplot the theoretical signature of a putative

1 The RSS_133I_X25 profile was observed during the Cassini rev 133 ingress
occultation observed at X-band from DSN station DSS-25, with a ring opening
angle of 𝐵∗ = 1.883◦. The diffraction reconstruction was performed with a
shortest resolvable wavelength of 300 m.
2 
𝑚 = 1 vertical mode of amplitude 𝐴1
𝑧 = 100 m and radial wavelength

1
𝑧 = 30.6 km, the predicted value for the windup of an 𝑚 = 1 vertical
ode with an impact date 𝑡𝑖 = 1983.7 (Hedman et al., 2007, 2011,

2015). (This is a notional sinusoidal signature, not the result of a fit.
The wave amplitude and phase have been estimated by eye to give
a plausible match.) Similarly, at right, we show region R77.7, with a
mean normal optical depth 𝜏𝑛 ∼ 0.04 spanning 125 km (77,640–77,765
km), including two unresolved features near 77,660 and 77,760 km.
A similar beat pattern is evident, and again we overplot a notional
sinusoid with amplitude 𝐴1

𝑧 = 100 m and 𝜆1𝑧 = 35.1 km, corresponding
to the predicted wavelength at this orbital radius for an 𝑚 = 1 vertical
mode for the same impact date 𝑡𝑖.

Fig. 2 shows the same RSS_133I_X25 profile for R76.6 (76,500–
76,750 km), containing two features of unknown origin — B10 and
B11, from the catalog of Baillié et al. (2011) — straddling a radial zone
f 𝜏𝑛 ∼ 0.04 that contains similar short wavelength structure to that
een in regions R75.5 and R77.7, but with less clearly visible repeating
eat frequency wavepackets, or longer wavelength periodic variations
n optical depth. Here, we overplot the predicted signature of an 𝑚 = 1
ertical wave with wavelength 𝜆1𝑧 = 32.8 km and amplitude 𝐴1

𝑧 = 100 m.
Fig. 3 shows the remaining labeled regions:

• Region R74.6 (74,500–74,700 km) has complex structure, includ-
ing W74.51 (an outer Lindblad resonance (OLR) spiral density
wave associated with an internal 𝑓 -mode of Saturn with 𝑚 =
8 and 𝑙 = 12 French et al., 2021), and Baillié et al. (2011)
feature B1, identified by French et al. (2019) as an outer vertical
resonance (OVR) bending wave associated with Saturn 𝑓 -mode
with 𝑚 = 7 and 𝑙 = 10. The background optical depth 𝜏𝑛 ∼ 0.05,
except for four narrow ∼15 km-wide gaps centered near 74,550,
74,600, 74,625, and 74,660 km, three of which have unidentified
wavelike structure adjacent to their relatively sharp inner edges.
There is additional short wavelength (𝜆 ∼ 1 km) quasiperiodic
structure reminiscent of that seen in R75.5, R76.6, and R77.7, but
it is not readily distinguishable from possible unidentified density
or bending waves with comparable wavelengths.

• Region R74.9 (74,700–75,100 km) has variable 𝜏𝑛(∼0.05 − 0.12)
and contains three strong waves (Baillié et al., 2011): B2 (the
Mimas 4:1 inner Lindblad resonance (ILR)) and OVRs B3 and B4,
attributed to Saturn 𝑓 -modes with 𝑚 = 4, 𝑙 = 5 and 𝑚 = 9, 𝑙 = 14,
respectively (French et al., 2019). Apart from these waves, no
obvious ∼1 km wavelength structure is evident in this region.

• Region R75.2 (75,100–75,300 km) has a rather uniform 𝜏𝑛 ∼ 0.05,
and contains the W75.14 wave — a Saturn-driven OLR 𝑓 -mode
(𝑚 = 10, 𝑙 = 16) — and an unidentified localized feature near
75,200 km. The characteristic 𝜆 ∼ 1 km wavepacket pattern is
evident at low amplitude throughout this region.

• Region R75.4 (75,100–75,670 km) (labeled in Fig. 1) spans re-
gions R75.2 and R75.5. It is the longest interval of roughly
uniform low optical depth 𝜏𝑛(∼0.05) in the inner C ring and shows
∼1 km wavelength structure throughout.

• Region R76.9 (76,750–77,000 km) has a variable normal optical
depth 𝜏𝑛 ∼ 0.05 − 0.10, with an asymmetric localized peak near
76,910 km, superimposed throughout by low-amplitude oscilla-
tions with 𝜆 ∼ 1 km.

• Region 77.3 (77,175–77,350 km) has the highest average optical
depth (𝜏𝑛 ∼ 0.10) of any of the labeled inner C ring regions, and
little or no evidence of short-wavelength periodic structure.

We will revisit these regions in Section 5, when we estimate the
radial variation in the amplitudes of the modes responsible for the
hort-wavelength C ring ripples, which are visible by eye only when
𝜏𝑛⟩ ≲ 0.05. No ripple structure was detected exterior to 77,765 km in

any observations.
Table 1 lists the key characteristics of the RSS, UVIS, and VIMS

occultations used in this study, including the calendar date of the event,
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Fig. 1. The radial normal optical depth profile of the inner C ring, from the RSS_133I_X25 occultation of 2010 June 18 observed at low incidence angle (𝐵∗ = 1.883◦ , t an𝐵ef f = 0.1616).
The RSS data were diffraction-corrected with a processing resolution of 200 m. The upper panel shows the locations of selected ring regions labeled as Rxx.x, where xx.x is the
approximate central radius in thousands of km. The second row shows two regions (R75.5 and R77.7) with particularly strong short wavelength (𝜆 ∼ 1 km) ripple structure
exhibiting a beating pattern indicative of the presence of two waves of nearly equal wavelength. These two regions are immediately interior to the most prominent gaps in the
inner C ring: G1 at 75,750 km and the Colombo gap (labeled CG) at 77,800 km. There are also longer wavelength undulations in the background optical depth that may be
associated with the 𝑚 = 1 vertical corrugations detected by Hedman et al. (2011, 2015) in Cassini ISS images obtained at low incidence angle. The third row zooms in to reveal
the ripple structure in greater detail. In each lower panel, we include the notional signature of an 𝑚 = 1 vertical corrugation of amplitude 𝐴1

𝑧 = 100 m with radial wavelength 𝜆1𝑧
corresponding to the local radial wavenumber predicted for an impact with the rings in 1983.7.

Fig. 2. The RSS_133I_X25 radial optical depth profile for R76.6 (76,500–76,750 km). The features labeled B10 and B11 are wavelike structures of unknown origin (Baillié et al.,
2011). As in Fig. 1, the region of uniform background optical depth 𝜏𝑛 ∼ 0.04 contains both short- and long-wavelength structure. The dashed line in the lower panel shows the
theoretical signature of an 𝑚 = 1 vertical wave with radial wavelength 𝜆1𝑧 = 32.8 km and vertical amplitude 𝐴1

𝑧 = 100 m, with the phase adjusted by eye to provide a plausible
match to the data.
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Fig. 3. RSS_133I_X25 radial optical depth profiles for five selected radial ranges in the inner C ring. See text for details.
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the ring opening angle 𝐵∗ (as seen from the DSN station on Earth for
SS events and from the star for stellar occultations), and for regions

R75.5 and R77.7 the ring intercept time in decimal years, the inertial
longitude in the ring plane 𝜃, t an𝐵ef f , and 𝜙, where the effective ring
opening angle 𝐵ef f is defined by

t an𝐵ef f = t an𝐵∗

cos𝜙
(1)

and 𝜙 is the azimuthal angle in the ring plane between the line of
ight from the distant end of the occultation ray and the local radial
irection (Gresh et al., 1986). As we show in Section 3.6.1 below,
he detectability of vertical corrugations in the ring is enhanced when
t an𝐵ef f | ≪ 1 and muted when | t an𝐵ef f | ≫ 1, which corresponds
o a viewing geometry along the wave crests and troughs. Table 1

includes all occultation data sets with well-determined geometry that
span the entire inner C ring and have sufficiently high radial resolution
and SNR to reveal 1-km periodic structure in a power spectrum of
the optical depth profile between 75,000 km and 78,000 km. In all,
35 occultations met these criteria. Except for the very low-inclination
UVIS_IotOri_159E event, we excluded multiple-star occultations. The
ipple structure was detectable in high-SNR observations with | t an𝐵ef f |
s large as 1.75, in isolated regions. The Cassini orbital tour spanned
4 
a range of inclinations, resulting in an uneven time distribution of
ripple detections. The earliest were RSS observations in 2008 and 2010;
ow-inclination stellar occultations observed at this time were either
ecorded at too low a cadence to resolve the ripple structure, had
nfavorable | t an𝐵ef f | > 1, or did not have sufficient SNR to reveal the
ipple structure. Subsequent UVIS occultations in 2012, and UVIS and
IMS occultations in 2017, had favorable geometry and SNR, resulting

n ripple detections. In addition, Table 1 includes three very high SNR
VIMS occultations of the star 𝛼 Sco that have very high | t an𝐵ef f |. In
Section 4.2.2, we take advantage of the geometry of these events to con-
firm that the modes responsible for the ripple structure involve vertical
rather than radial disturbances. The RSS observations were diffraction-
reconstructed with a minimum resolvable wavelength of 0.3 km, using
the inversion method of Marouf et al. (1986). All observations were
ub-sampled, interpolated, and rebinned to a common radius scale at an

oversampled resolution of 0.025 km, registered to the absolute radius
scale and ring plane geometry given by French et al. (2017).

Fig. 4 shows a gallery of representative low-inclination RSS, UVIS,
and VIMS occultation profiles of region R75.5 (75,300–75,670 km),
which is of special interest because it has a uniform background optical
depth and exhibits significant ripple structure over a range of several
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Table 1
Cassini C ring occultation observations.

Event IDa UTC Date 𝐵∗ (◦) R75.5b R77.7c

Yeard 𝜃 (◦) t an𝐵ef f 𝜙 (◦) Yeard 𝜃 (◦) t an𝐵ef f 𝜙 (◦)

RSS_056E_X34 2008 JAN 15 −7.032 2008.0393117 318.27 0.4017 107.88 2008.0393144 324.71 0.2995 114.32
RSS_057E_X43 2008 JAN 27 −7.378 2008.0719540 318.41 0.4060 108.60 2008.0719568 324.70 0.3076 114.90
RSS_060E_X26 2008 MAR 02 −8.642 2008.1659378 323.97 0.3410 116.46 2008.1659399 327.94 0.3000 120.44
RSS_060E_X14 2008 MAR 02 −8.642 2008.1659378 323.97 0.3410 116.46 2008.1659399 327.94 0.3000 120.44
RSS_063E_X63 2008 APR 01 −9.598 2008.2497547 322.62 0.3723 117.01 2008.2497569 326.34 0.3309 120.73
RSS_064E_X43 2008 APR 11 −9.783 2008.2759833 324.04 0.3576 118.83 2008.2759853 327.50 0.3228 122.28
RSS_067E_X14 2008 MAY 09 −9.905 2008.3544675 324.52 0.3528 119.66 2008.3544696 327.87 0.3205 123.01
RSS_123I_K34 2009 DEC 25 4.829 2009.9832636 312.51 0.4235 78.49 2009.9832566 312.43 0.4206 78.41
RSS_123I_X34 2009 DEC 25 4.829 2009.9832636 312.51 0.4235 78.49 2009.9832566 312.43 0.4206 78.41
RSS_123I_X43 2009 DEC 25 4.829 2009.9832636 312.51 0.4235 78.49 2009.9832566 312.43 0.4206 78.41
RSS_125I_K34 2010 JAN 26 4.767 2010.0707021 306.94 0.2807 72.72 2010.0706954 306.86 0.2794 72.63
RSS_125I_X34 2010 JAN 26 4.767 2010.0707021 306.94 0.2807 72.72 2010.0706954 306.86 0.2794 72.63
RSS_125I_X43 2010 JAN 26 4.767 2010.0707021 306.94 0.2807 72.72 2010.0706954 306.86 0.2794 72.63
RSS_125E_X63 2010 JAN 26 4.765 2010.0711581 121.22 −0.2132 246.99 2010.0711650 121.31 −0.2140 247.07
RSS_125E_K55 2010 JAN 26 4.765 2010.0711581 121.22 −0.2132 246.99 2010.0711650 121.31 −0.2140 247.07
RSS_125E_X55 2010 JAN 26 4.765 2010.0711581 121.22 −0.2132 246.99 2010.0711650 121.31 −0.2140 247.07
RSS_133I_X15 2010 JUN 18 1.883 2010.4625766 306.82 0.1616 78.26 2010.4625698 306.87 0.1622 78.31
RSS_133I_X25 2010 JUN 18 1.883 2010.4625766 306.82 0.1616 78.26 2010.4625698 306.87 0.1622 78.31
RSS_133E_X15 2010 JUN 19 1.886 2010.4630397 129.98 −0.2203 261.40 2010.4630468 129.93 −0.2192 261.36
RSS_133E_X25 2010 JUN 19 1.886 2010.4630397 129.98 −0.2203 261.40 2010.4630468 129.93 −0.2192 261.36
RSS_133E_K25 2010 JUN 19 1.886 2010.4630397 129.98 −0.2203 261.40 2010.4630468 129.93 −0.2192 261.36
RSS_133E_X34 2010 JUN 19 1.886 2010.4630398 130.00 −0.2209 261.43 2010.4630468 129.95 −0.2197 261.38
RSS_133E_K34 2010 JUN 19 1.886 2010.4630398 130.00 −0.2209 261.43 2010.4630468 129.95 −0.2197 261.38
RSS_133E_X43 2010 JUN 19 1.886 2010.4630398 130.00 −0.2209 261.43 2010.4630468 129.95 −0.2197 261.38
UVIS_IotOri_159E 2012 JAN 04 −1.192 2012.0085225 253.78 0.0407 120.77 2012.0085292 251.65 0.0434 118.65
UVIS_AlpCMa168I 2012 JUN 28 −13.481 2012.4913703 84.28 −0.7067 289.83 2012.4913666 83.62 −0.7067 289.83
UVIS_GamOri234I 2016 APR 03 11.227 2016.2552904 11.49 −1.0104 258.67 2016.2552828 12.56 −1.0104 258.67
VIMS_alpSco241b_1umEe 2016 AUG 30 −32.161 2016.6629554 34.00 6.5160 95.54 2016.6629701 30.47 17.8950 92.01
VIMS_alpSco243_1umEe 2016 SEP 23 −32.161 2016.7284804 32.06 10.0087 93.60 2016.7284942 28.80 104.4042 90.35
VIMS_alpSco245_1umEe 2016 OCT 13 −32.161 2016.7821833 32.28 9.4241 93.83 2016.7821948 28.43 −1471.0714 89.98
VIMS_alpOri268_1umE 2017 APR 06 11.682 2017.2634126 206.14 0.5316 67.11 2017.2634220 203.44 0.4786 64.41
VIMS_alpOri269_1umE 2017 APR 14 11.682 2017.2830482 201.36 0.4452 62.32 2017.2830565 199.08 0.4141 60.05
VIMS_alpCMa274_1umE 2017 MAY 13 −13.482 2017.3643961 267.77 0.5010 118.59 2017.3644128 270.08 0.4669 120.90
UVIS_AlpCMa274E 2017 MAY 13 −13.482 2017.3643962 291.11 0.3046 141.91 2017.3644129 292.08 0.3007 142.88
VIMS_alpOri277_1umI 2017 JUN 05 11.682 2017.4250516 346.32 −0.3540 234.26 2017.4250423 346.85 −0.3385 232.35
VIMS_alpCMa281_1umI 2017 JUN 27 −13.482 2017.4877248 106.79 −1.7511 277.87 2017.4876943 105.08 −1.0960 282.64
UVIS_AlpCMa281E 2017 JUN 27 −13.482 2017.4879218 359.59 0.2779 210.39 2017.4879523 357.54 0.2724 208.34
VIMS_alpCMa281_1umE 2017 JUN 27 −13.482 2017.4879221 33.60 0.5561 244.46 2017.4879526 28.85 0.4751 239.69

a Event IDs encode the instrument name, three-digit rev number, and direction (I for ingress, E for egress). VIMS events encode the star ID, the wavelength of the VIMS observation
used, and the DSN number. RSS events encode the observing band (K for Ka-band, X for X-band) and the DSN number.
b Region R75.5 — quantities evaluated at 𝑟 =75,500 km.
c Region R77.7 — quantities evaluated at 𝑟 =77,700 km.
d Fractional year evaluated at the ring plane intercept time, computed as yyyy.yyyyy= 2000 + ET/365.25/86400, where ET is ephemeris seconds after J2000. To convert to a
calendar date, use the ET, rather than the decimal year, to avoid leap year issues.
e High | t an𝐵ef f | event.
r

g
s

i
r

hundred km. Optical depths for UVIS and VIMS have been doubled
to be directly comparable to RSS observations, for which the effective
extinction efficiency asymptotically approaches 2 by Babinet’s principle
(see French and Nicholson, 2000 for a discussion of the validity of
this approximation). Five separate high-SNR RSS occultation events
spanning the inner C ring were observed at low incidence angle from
multiple DSN stations at X and Ka band (𝜆 = 3.6 and 0.9 cm, re-
spectively) during Rev 123 (ingress), Rev 125 (ingress and egress),
and Rev 133 (ingress and egress).2 Representative examples of these
ive events are included at the top of the figure, showing intermittent
hort wavelength wavepackets. UVIS_iotOri_159E was observed at an
xceptionally low 𝐵∗ = −1.192◦ and t an𝐵ef f = 0.0407 (Table 1) and is
articularly sensitive to short wavelength periodic vertical structure in
he ring. Finally, we include nine VIMS occultations with a range of
iewing geometries and sensitivities to vertical corrugations.

2 Earlier RSS occultations from revs 056–067 are included in our analysis
elow. We excluded the RSS Rev 079 chord occultation because its minimum
adius was 76,460 km, missing R75.5. RSS observations were obtained at low
ing opening angle during rev 137I as well, but were obscured by the planet
elow a ring plane radius of 78,000 km.
 e

5 
Fig. 5 shows a similar gallery of representative low-inclination RSS,
UVIS, and VIMS occultation profiles for region R77.7 (77,640–77,765
km), featuring the strongest ripple structure visible anywhere in the
inner C ring. The prominence of the short wavelength ripple structure
varies from profile to profile, in part owing to the variation of t an𝐵ef f .
The radial locations of the wavepackets differ from profile to profile,
possibly indicative of evolution of the structure over time or as the
esult of differing viewing geometry, as explored in Section 5. This

region lies ∼100−200 km interior to the strong Titan 1:0 inner Lindblad
resonance at 77857.4 km (Nicholson et al., 2014), resulting in radial
distortions of the wavepackets, depending on the relative longitude of
Titan (see Section 3.5). Notice that all three VIMS 𝛼 Sco profiles show
a single wavepacket at 77,740 km, near the inner edge of the Colombo
ap, even though | t an𝐵ef f | ≫ 1 for these observations (see Table 1),
uggesting that this may represent radial (rather than vertical) wavelike

structure, perhaps driven by the Titan resonance.

3. Theoretical background

In this section, we provide the theoretical background for our
nterpretation of the short wavelength C ring ripple structure as the
esult of a recent impact of a debris swarm with Saturn’s ring. We
xpand on previous studies that attributed the 𝜆 ∼ 30 km wavelength
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Fig. 4. Gallery of representative low inclination RSS, UVIS, and VIMS occultation profiles of region R75.5 (75,300–75,670 km). The localized features near 75,570 and 75,660 km
have no measurable deviations from circular and equatorial orbits. They may be isolated embedded ringlets or short wavelength density waves of unknown origin. The prominence
f the short wavelength ripple structure varies from profile to profile, in part owing to the variation of t an𝐵ef f . See text for details.
Fig. 5. Gallery of representative low inclination RSS, UVIS, and VIMS occultation profiles of region R77.7 (77,640–77,765 km). The dashed vertical line at 77747.89 km marks
he mean location of the inner edge of the Colombo gap, and the dotted vertical lines denote the fitted amplitude 𝑎𝑒 = 3.11 km of the forced eccentricity resulting from the nearby
itan 1:0 inner Lindblad resonance at 77857.4 km (Nicholson et al., 2014) that similarly distorts the local radial structure. See text for additional details.
m
𝛺

corrugations seen in images in Saturn’s rings to differential apsidal
precession and nodal regression of 𝑚 = 1 perturbations since the time
of impact (Hedman et al., 2007, 2011, 2015). These studies describe
 model in which an initially circular and equatorial ring was instan-
aneously distorted radially and vertically into non-circular inclined
eplerian orbits, with radially-dependent amplitudes in eccentricity and
nclination, but aligned pericenters and nodes. Here, we broaden this
onceptual framework by representing the disturbance as producing a
ombination of the wavenumber 𝑚 = 1 keplerian components investi-

gated previously with possible additional radial and vertical distortions
represented by normal modes with 𝑚 ≠ 1 that might account for the
𝜆 ∼ 1 km beating signatures observed in the Cassini occultation profiles
 p

6 
seen in Figs. 1–5.

3.1. Normal modes and pattern speeds

We model the ring at semimajor axis 𝑎 as a keplerian orbit plus
a combination of free radial and vertical distortions of azimuthal
wavenumber 𝑚. For 𝑚 ≠ 0, 𝑚 is the number of radial or vertical

inima and maxima in the azimuthal pattern, and the pattern speed
𝑃 is its angular rotation rate in inertial space. (For clarity, we will

denote pattern speeds of radial modes by 𝛺𝑃 𝑟 and pattern speeds of
vertical modes by 𝛺𝑃 𝑧.) As described in Nicholson et al. (2014), the
attern speed of a radial perturbation is expected to be close to that of
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a Lindblad resonance at the ring particle’s orbit. For a free (or unforced)
ode with 𝑚 ≠ 0, we define the radial oscillation frequency as

𝜔𝑚𝑟 (𝑎) ≡ 𝑚𝛺𝑚
𝑃 𝑟(𝑎) = (𝑚 − 1)𝑛(𝑎) + 𝜛̇sec(𝑎), (2)

where the mean motion 𝑛 and apsidal precession rate 𝜛̇sec are evaluated
at semimajor axis 𝑎.3 The azimuthal wavenumber 𝑚 is positive for inner
Lindblad resonances (ILR) and negative for outer Lindblad resonances
(OLR). In either case, the pattern speed is positive. For the special case
of 𝑚 = 1, the term involving the mean motion 𝑛 vanishes, and the
esulting pattern speed is still positive but much slower than for 𝑚 ≠ 1,
ince 𝜛̇sec ≪ 𝑛. For an 𝑚 = 1 equatorial keplerian orbit with eccentricity
𝑒 about an oblate planet, the apsidal precession rate includes the
combined effects of the zonal gravity harmonics 𝐽2, 𝐽4, 𝐽6,… and the
secular precession induced by the planet’s satellites, and is given to
𝑂(𝐽6) by

̇ sec =
√

𝐺 𝑀
𝑎3

{

3
2
𝐽2

(𝑅𝑝
𝑎

)2

(1 + 2𝑒2) − 15
4
𝐽4

(𝑅𝑝
𝑎

)4

+
[ 27
64
𝐽 3
2 − 45

32
𝐽2𝐽4 +

105
16

𝐽6
]

(𝑅𝑝
𝑎

)6

+ 1
4

𝑀𝑜
∑

𝑗=1

𝑚𝑗
𝑀
𝛼2𝑜𝑗𝑏

1
3∕2(𝛼𝑜𝑗 )

}

,

(3)

from Jacobson (2014). To lowest order, we have

̇ sec ≃
3𝐽2
2

(𝑅𝑝
𝑎

)2
𝑛

≃
3𝐽2
2

(𝑅𝑝
𝑎

)2
√

𝐺 𝑀
𝑎3

∝ 𝑎−7∕2.

(4)

Here, 𝐺 is the gravitational constant, 𝑀 is the mass of the planet,
and 𝑅𝑝 is the planet’s equatorial radius (Borderies-Rappaport and Lon-
garetti, 1994). The summation is carried out over outer satellites (sub-
script 𝑜) of mass 𝑚𝑗 and orbital radius 𝑎𝑜𝑗 , where 𝛼𝑜𝑗 = 𝑎∕𝑎𝑜𝑗 and
𝑏13∕2(𝛼𝑜𝑗 ) are Laplace coefficients as defined by Brouwer and Clemence
(1961).

For vertical modes with 𝑚 ≠ 0, we define the vertical oscillation
requency as

𝜔𝑚𝑧 (𝑎) ≡ 𝑚𝛺𝑚
𝑃 𝑧(𝑎) = (𝑚 − 1)𝑛(𝑎) + 𝛺̇sec(𝑎). (5)

Here, 𝛺̇sec is the nodal regression rate, which to leading order is the
negative of the apsidal precession rate.4 Note that 𝛺𝑚

𝑃 𝑧 is also positive
or all 𝑚 ≠ 0, except for 𝑚 = 1, where 𝛺𝑃 𝑧 = 𝛺̇sec < 0.

To 𝑂(𝐽6),

̇
sec = −

√

𝐺 𝑀
𝑎3

{

3
2
𝐽2

(𝑅𝑝
𝑎

)2

(1 + 2𝑒2) −
[ 9
4
𝐽 2
2 + 15

4
𝐽4
]

(𝑅𝑝
𝑎

)4

+
[ 351
64

𝐽 3
2 + 315

32
𝐽2𝐽4 +

105
16

𝐽6
]

(𝑅𝑝
𝑎

)6

+ 1
4

𝑀𝑜
∑

𝑗=1

𝑚𝑗
𝑀
𝛼2𝑜𝑗𝑏

1
3∕2(𝛼𝑜𝑗 )

}

,

(6)

from Jacobson (2014).
To lowest order,

̇ sec(𝑎) ≃ −3𝐽2
2

(𝑅𝑝
𝑎

)2
𝑛

≃ −3𝐽2
2

(𝑅𝑝
𝑎

)2
√

𝐺 𝑀
𝑎3

∝ −𝑎−7∕2,

(7)

3 This corresponds to the usual definition of a Lindblad resonance, where
(𝑛 −𝛺𝑚

𝑃 𝑟) = 𝜅(𝑎) = 𝑛(𝑎) − 𝜛̇sec(𝑎), from Shu (1984) Eq, (11).
4 For a vertical resonance, 𝑚(𝑛 − 𝛺𝑚

𝑃 𝑧) = 𝜇(𝑎) = 𝑛(𝑎) − 𝛺̇sec(𝑎), from Shu
(1984) Eq. (12).
7 
Table 2
Saturn gravity parameters.

Parameter Value Note

𝐺 𝑀S 37 931 206.0 km3 s−2 R. Jacobson (pers. comm.)
𝑅𝑝 60 330 km Reference radius for 𝐽𝑛
𝐽2 16 290.573 × 10−6 Iess et al. (2019)
𝐽4 −935.314 × 10−6 Iess et al. (2019)
𝐽6 86.340 × 10−6 Iess et al. (2019)
𝐽8 −14.624 × 10−6 Iess et al. (2019)
𝐽10 4.672 × 10−6 Iess et al. (2019)
𝐽12 −0.997 × 10−6 Iess et al. (2019)
𝜛̇sat (75 000 k m) 0.000166◦ d−1 Satellite contribution to apse rate

Once again, the pattern speed is much slower for 𝑚 = 1 than for 𝑚 ≠ 1,
ince |𝛺̇sec|≪ 𝑛, but in this case it is negative.

Eqs. (3) and (6) are accurate to 𝑂(𝐽6); in practice, we extend these
esults to order 𝐽12 using the expressions given by Nicholson and Porco

(1988). The Saturn gravity parameters used for this study, as measured
y Cassini, are given in Table 2.

For the special case of 𝑚 = 0, there is no azimuthal dependence of
the perturbations. Instead, all ring particles with a given semimajor axis
oscillate either radially or vertically in concert. In the radial case, all
such particles reach periapse at the same time and the ring appears to
‘‘breathe’’ radially at the epicyclic frequency 𝜅(𝑎):
𝜔0
𝑟 (𝑎) = 𝜅(𝑎)

= 𝑛(𝑎) − 𝜛̇sec(𝑎).
(8)

For a vertical 𝑚 = 0 mode, all ring particles with a given semimajor axis
have the same vertical displacement at the same time, independent of
azimuth, oscillating at the vertical epicyclic frequency 𝜇(𝑎):
𝜔0
𝑧(𝑎) = 𝜇(𝑎)

= 𝑛(𝑎) − 𝛺̇sec(𝑎).
(9)

(We use 𝜇 for the vertical epicyclic frequency to avoid possible confu-
sion with the ring viscosity 𝜈.)

To leading order, the ratio of the vertical and radial 𝑚 = 0 oscillation
requencies is given by
𝜔0
𝑧

𝜔0
𝑟
≃ 1 + 3𝐽2

(𝑅𝑝
𝑎

)2

≡ 𝜇(𝑎)
𝜅(𝑎)

.
(10)

Similarly, the vertical and radial pattern speeds 𝛺𝑃 𝑧(𝑚) and 𝛺𝑃 𝑟(𝑚)
differ slightly, via Eqs. (2) and (5), for any given 𝑚 ≠ 0. We will exploit
these differences in Section 4 to identify the possible vertical and radial
normal modes involved in the C ring ripples.

3.2. Vertical corrugations and radial spiral structure

Hedman et al. (2015) showed that periodic structure in the C
and D rings could be accounted for by an initial disturbance that
simultaneously tilted the ring plane and perturbed ring particles into
aligned eccentric orbits. Over time, these 𝑚 = 1 distortions in the ring
evolved into an ever-tightening pattern of vertical corrugations and a
tightening spiral in the radial direction as a result of differential nodal
regression and apsidal precession, respectively. Here, we generalize
on this notion by imagining that the initial disturbance resulted in
additional perturbations that can be represented as normal modes.

We assume radial and vertical perturbations of the form of normal
modes of azimuthal wavenumber 𝑚 at the local free pattern speeds:

𝑟𝑚(𝑎, 𝑡) = 𝑎 − 𝐴𝑚𝑟 cos(𝑚𝜓𝑚𝑟 ) (11)

and
𝑧𝑚(𝑎, 𝑡) = 𝐴𝑚𝑧 sin(𝑚𝜓𝑚𝑧 ), (12)
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where

𝜓𝑚𝑟 = 𝜃 −𝛺𝑚
𝑃 𝑟(𝑎)𝛥𝑡 − 𝛿𝑚𝑟 (13)

𝜓𝑚𝑧 = 𝜃 −𝛺𝑚
𝑃 𝑧(𝑎)𝛥𝑡 − 𝛿𝑚𝑧 , (14)

and

𝛥𝑡 = 𝑡 − 𝑡𝑖. (15)

We further assume that all streamlines begin at the impact time 𝑡𝑖 with
he same values of pericenter longitude 𝛿𝑚𝑟 and ascending node 𝛿𝑚𝑧 ,

independent of 𝑎.
For 𝑚 = 0, there is no 𝜃-dependence, and 𝑚𝛺𝑚

𝑃 𝑟 and 𝑚𝛺𝑚
𝑃 𝑧 are

eplaced by 𝜔0
𝑟 and 𝜔0

𝑧:

𝑟0(𝑎, 𝑡) = 𝑎 − 𝐴0
𝑟 cos[𝜔

0
𝑟𝛥𝑡 + 𝛿

0
𝑟 ] (16)

and

𝑧0(𝑎, 𝑡) = 𝐴0
𝑧 sin[𝜔

0
𝑧𝛥𝑡 + 𝛿

0
𝑧 ], (17)

where 𝛿0𝑟 and 𝛿0𝑧 are the phases of the radial and vertical modes,
respectively, at the impact epoch. The local values of 𝛺𝑃 and 𝜔 can
be approximated for 𝑚 ≠ 0 by

𝛺𝑚
𝑃 𝑟(𝑎) ≃ 𝛺𝑚

𝑃 𝑟(𝑟0) + (𝜕 𝛺𝑚
𝑃 𝑟∕𝜕 𝑎)(𝑎 − 𝑟0) (18)

and

𝛺𝑚
𝑃 𝑧(𝑎) ≃ 𝛺𝑚

𝑃 𝑧(𝑟0) + (𝜕 𝛺𝑚
𝑃 𝑧∕𝜕 𝑎)(𝑎 − 𝑟0), (19)

while for 𝑚 = 0 we have

𝜔0
𝑟 (𝑎) ≃ 𝜔0

𝑟 (𝑟0) + (𝜕 𝜔0
𝑟∕𝜕 𝑎)(𝑎 − 𝑟0) (20)

and

𝜔0
𝑧(𝑎) ≃ 𝜔0

𝑧(𝑟0) + (𝜕 𝜔0
𝑧∕𝜕 𝑎)(𝑎 − 𝑟0). (21)

By substitution, we have

𝜓𝑚𝑟 ≃ 𝜃 −𝛺𝑚
𝑃 𝑟(𝑟0)𝛥𝑡 − (𝜕 𝛺𝑚

𝑃 𝑟∕𝜕 𝑎)(𝑎 − 𝑟0)𝛥𝑡 − 𝛿𝑚𝑟 (22)

and

𝜓𝑚𝑧 ≃ 𝜃 −𝛺𝑚
𝑃 𝑧(𝑟0)𝛥𝑡 − (𝜕 𝛺𝑚

𝑃 𝑧∕𝜕 𝑎)(𝑎 − 𝑟0)𝛥𝑡 − 𝛿𝑚𝑧 . (23)

The third terms on the right hand sides of Eqs. (22) and (23) lead to os-
illations in radius at a given time 𝑡 and longitude 𝜃 with wavenumbers
𝑘𝑚𝑟 and 𝑘𝑚𝑧 , which may be written for 𝑚 > 1 as

𝑟𝑚(𝑎, 𝑡, 𝜃) ≃ 𝑎 − 𝐴𝑚𝑟 cos[𝑚(𝜃 −𝛺𝑚
𝑃 𝑟(𝑟0)𝛥𝑡 − 𝛿𝑚𝑟 ) + 𝑘𝑚𝑟 (𝑎 − 𝑟0)] (24)

and

𝑧𝑚(𝑎, 𝑡, 𝜃) ≃ 𝐴𝑚𝑧 sin[𝑚(𝜃 −𝛺𝑚
𝑃 𝑧(𝑟0)𝛥𝑡 − 𝛿𝑚𝑧 ) + 𝑘𝑚𝑧 (𝑎 − 𝑟0)], (25)

where after (Hedman et al., 2011, 2015) we define

𝑘𝑚𝑟 = |

|

|

𝑚
𝜕 𝛺𝑚

𝑃 𝑟
𝜕 𝑎

|

|

|

𝛥𝑡 (26)

and

𝑘𝑚𝑧 = |

|

|

𝑚
𝜕 𝛺𝑚

𝑃 𝑧
𝜕 𝑎

|

|

|

𝛥𝑡. (27)

Note that for 𝑚 ≠ 1, 𝜕 𝛺𝑚
𝑃 𝑟∕𝜕 𝑎 and 𝜕 𝛺𝑚

𝑃 𝑧∕𝜕 𝑎 are both negative and scale
approximately as 𝑎−5∕2 (Hedman et al., 2011, 2015). The correspond-
ing radial slope of the vertical corrugations for 𝑚 > 1 is
𝜕 𝑧𝑚
𝜕 𝑎 ≃ 𝐴𝑚𝑧 𝑘

𝑚
𝑧 cos[𝑚(𝜃 −𝛺𝑚

𝑃 𝑧(𝑟0)𝛥𝑡 − 𝛿𝑚𝑧 ) + 𝑘𝑚𝑧 (𝑎 − 𝑟0)]. (28)

For 𝑚 = 1, we have

𝑟1(𝑎, 𝑡, 𝜃) ≃ 𝑎 − 𝐴1
𝑟 cos[𝜃 −𝜛(𝑟0, 𝑡) + 𝑘1𝑟 (𝑎 − 𝑟0)] (29)
8 
and

𝑧1(𝑎, 𝑡, 𝜃) ≃ 𝐴1
𝑧 sin[𝜃 −𝛺(𝑟0, 𝑡) − 𝑘1𝑧(𝑎 − 𝑟0)], (30)

where

𝑘1𝑟 =
|

|

|

𝜕 𝜛̇
𝜕 𝑎

|

|

|

𝛥𝑡 (31)

and

𝑘1𝑧 =
|

|

|

𝜕𝛺̇
𝜕 𝑎

|

|

|

𝛥𝑡. (32)

Note that 𝜕 𝜛̇∕𝜕 𝑎 is negative, whereas 𝜕𝛺̇∕𝜕 𝑎 is positive, resulting in
the minus sign for the 𝑘1𝑧 term in Eq. (30). Both 𝑘1𝑟 and 𝑘1𝑧 scale
pproximately as 𝑎−9∕2. In agreement with Hedman et al. (2015), the
orresponding radial slope of the vertical corrugations associated with
he 𝑚 = 1 mode is
𝜕 𝑧1
𝜕 𝑎 ≃ −𝐴1

𝑧𝑘
1
𝑧 cos[𝜃 −𝛺(𝑟0, 𝑡) − 𝑘1𝑧(𝑎 − 𝑟0)]. (33)

For 𝑚 = 0, we have

𝑟0(𝑎, 𝑡) ≃ 𝑎 − 𝐴0
𝑟 cos[𝜔

0
𝑟 (𝑟0)𝛥𝑡 − 𝑘

0
𝑟 (𝑎 − 𝑟0) + 𝛿0𝑟 ] (34)

and

𝑧0(𝑎, 𝑡) ≃ 𝐴0
𝑧 sin[𝜔

0
𝑧(𝑟0)𝛥𝑡 − 𝑘

0
𝑧(𝑎 − 𝑟0) + 𝛿0𝑧 ], (35)

independent of longitude 𝜃, where

𝑘0𝑟 =
|

|

|

𝜕 𝜔0
𝑟

𝜕 𝑎
|

|

|

𝛥𝑡 (36)

and

𝑘0𝑧 =
|

|

|

𝜕 𝜔0
𝑧

𝜕 𝑎
|

|

|

𝛥𝑡. (37)

Note that both 𝜕 𝜔0
𝑟∕𝜕 𝑎 and 𝜕 𝜔0

𝑧∕𝜕 𝑎 scale approximately as 𝑎−5∕2 and are
egative.

The radial slope of the vertical corrugations associated with the
= 0 mode is

𝜕 𝑧0
𝜕 𝑎 ≃ −𝐴0

𝑧𝑘
0
𝑧 cos[𝜔

0
𝑧(𝑟0)𝛥𝑡 − 𝑘

0
𝑧(𝑎 − 𝑟0) + 𝛿0𝑧 ] (38)

We will explore below how the observed radial optical depth profile of
the perturbed ring is affected by the varying path length along the line
of sight through the corrugated surface.

As the radial disturbance evolves into a spiral pattern, the corre-
ponding radial optical depth profile observed during an occultation
ill be related to variations in the local surface mass density 𝜎𝑚

associated with each mode, which is inversely proportional to the radial
separation of adjacent particle streamlines:

𝜎𝑚 =
|

|

|

|

|

𝜎0
𝜕 𝑟𝑚∕𝜕 𝑎

|

|

|

|

|

, (39)

where 𝜎0 is the unperturbed surface mass density.
For 𝑚 > 1,

𝜎𝑚

𝜎0
= 1

1 + 𝐴𝑚𝑟 𝑘𝑚𝑟 sin[𝑚(𝜃 −𝛺𝑚
𝑃 𝑟(𝑟0)𝛥𝑡 − 𝛿𝑚𝑟 ) + 𝑘𝑚𝑟 (𝑎 − 𝑟0)]

, (40)

which is valid for 𝐴𝑚𝑟 𝑘𝑚𝑟 < 1, and approximately
𝜎𝑚

𝜎0
≃ 1 − 𝐴𝑚𝑟 𝑘𝑚𝑟 sin[𝑚(𝜃 −𝛺𝑚

𝑃 𝑟(𝑟0)𝛥𝑡 − 𝛿𝑚𝑟 ) + 𝑘𝑚𝑟 (𝑎 − 𝑟0)] (41)

in the limit 𝐴𝑚𝑟 𝑘𝑚𝑟 ≪ 1.
For 𝑚 = 1,

𝜎1

𝜎0
= 1

1 + 𝐴1
𝑟𝑘1𝑟 sin[𝜃 −𝜛(𝑟0, 𝑡) + 𝑘1𝑟 (𝑎 − 𝑟0)]

, (42)

which is valid for 𝐴1
𝑟𝑘

1
𝑟 < 1, and approximately

𝜎1

𝜎0
≃ 1 − 𝐴1

𝑟𝑘
1
𝑟 sin[𝜃 −𝜛(𝑟0, 𝑡) + 𝑘1𝑟 (𝑎 − 𝑟0)] (43)

in the limit 𝐴1𝑘1 ≪ 1.
𝑟 𝑟
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For 𝑚 = 0,
𝜎0

𝜎0
= 1

1 − 𝐴0
𝑟𝑘0𝑟 sin[𝜔0

𝑟 (𝑟0)𝛥𝑡 − 𝑘0𝑟 (𝑎 − 𝑟0) + 𝛿0𝑟 ]
≃ 1 + 𝐴0

𝑟𝑘
0
𝑟 sin[𝜔

0
𝑟 (𝑟0)𝛥𝑡 − 𝑘

0
𝑟 (𝑎 − 𝑟0) + 𝛿0𝑟 ].

(44)

The first expression is valid for 𝐴0
𝑟𝑘

0
𝑟 < 1 and the final approximation

s valid in the limit 𝐴0
𝑟𝑘

0
𝑟 ≪ 1.

3.3. Patterns of radial wavenumbers 𝑘𝑚𝑟 and 𝑘𝑚𝑧

In Section 4.2, we will use the observed radial and time dependence
f the best-fitting wavelengths (and their ratios) of the two compo-
ents of the ripple structure to identify the azimuthal wavenumbers
f candidate modes that match the observations, and to estimate the
orresponding impact time 𝑡𝑖. Although in general the radial wavenum-
ers 𝑘𝑚𝑟 and 𝑘𝑚𝑧 vary linearly in time since impact 𝛥𝑡 (ignoring the
elf-gravity of the ring), their ratios are time-independent, and thus
ontain no assumptions about the time history of the observed ripple
tructure. In Appendix B, we derive approximate wavenumber formulae
or 𝑘𝑚𝑟 and 𝑘𝑚𝑧 , evaluate them numerically, and show that there are near-
egeneracies that prevent the unique identification of the modes that
ontribute to the ripples observed in a single observation. We show

that 𝑘𝑚𝑟 = 𝑘2−𝑚𝑧 and 𝑘𝑚𝑧 ≃ 𝑘2−𝑚𝑟 , and that their ratios have a similar
egeneracy:
𝑘2−𝑚𝑟 (𝑎)
𝑘2−𝑚𝑧 (𝑎)

≃
𝑘𝑚𝑧 (𝑎)
𝑘𝑚𝑟 (𝑎)

. (45)

To resolve the ambiguity of the modes that are actually present in
he data, we will compare observations at different times with different

viewing geometry.

3.4. Influence of ring self-gravity on 𝑘𝑚𝑟 and 𝑘𝑚𝑧

So far, we have assumed that the ring precession rate is due entirely
o Saturn’s gravity and to the much weaker contributions of external
atellites, but as noted by Hedman et al. (2011), a ring with finite

surface mass density 𝜎 that might also vary with radius changes the
nodal regression rate by a small amount that can be estimated using
he dispersion relation for free vertical waves. Hedman et al. (2011)
howed (see Eqs. (S16)–(S23) in Supporting Online Material) that, for
= 1:

𝑘1𝑧(𝑎) = 𝑘1𝑧0(𝑎)

[

1 + 𝜋 𝐺
2𝜇

(3𝜎
𝑎

− 𝜕 𝜎
𝜕 𝑎

)

𝛥𝑡

]

, (46)

where 𝑘1𝑧0(𝑎) is the unperturbed vertical wavenumber for 𝑚 = 1 given
by Eqs. (6), (9) and (32) above and 𝜇 = 𝑛− 𝛺̇sec is the vertical epicyclic
frequency. From the symmetry of the dispersion relations for vertical
and radial modes, the corresponding result for an 𝑚 = 1 radial mode is

𝑘1𝑟 (𝑎) = 𝑘1𝑟0(𝑎)

[

1 − 𝜋 𝐺
2𝜅

(3𝜎
𝑎

− 𝜕 𝜎
𝜕 𝑎

)

𝛥𝑡

]

, (47)

where 𝑘1𝑟0(𝑎) is the unperturbed radial wavenumber for 𝑚 = 1 given by
Eqs. (3), (8) and (31) above and 𝜅 = 𝑛 − 𝜛̇sec is the radial epicyclic
requency. (Note that, since 𝑘1𝑧0(𝑎) and 𝑘1𝑟0(𝑎) are already proportional

to 𝛥𝑡 via Eqs. (31) and (32), the corresponding wavenumbers corrected
for self-gravity are quadratic functions of 𝛥𝑡.)

Following Hedman et al. (2011), we use the density wave and
ending wave dispersion relations to estimate corrections to 𝛺𝑃 𝑟 and
𝑃 𝑧, and thence to 𝑘𝑚𝑟 and 𝑘𝑚𝑧 for ring self-gravity. As shown in

Appendix A, for 𝑚 ≠ 0 or 1, we find that

𝑘𝑚𝑟 = 𝑘𝑚𝑟0

[

1 + 𝜋 𝐺(𝜎0 −
𝜕 𝜎0 )𝛥𝑡

]

(48)

2𝜅 𝑎 𝜕 𝑎
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and

𝑘𝑚𝑧 = 𝑘𝑚𝑧0

[

1 − 𝜋 𝐺
2𝜇

(𝜎0
𝑎

−
𝜕 𝜎0
𝜕 𝑎

)

𝛥𝑡

]

. (49)

For 𝑚 = 0, we have

𝑘0𝑟 = 𝑘0𝑟0

[

1 − 𝜋 𝐺
2𝜅

(𝜎0
𝑎

−
𝜕 𝜎0
𝜕 𝑎

)

𝛥𝑡

]

(50)

and

𝑘0𝑧 = 𝑘0𝑧0

[

1 + 𝜋 𝐺
2𝜇

(𝜎0
𝑎

−
𝜕 𝜎0
𝜕 𝑎

)

𝛥𝑡

]

(51)

In practice, we can slightly simplify the above expressions by setting
𝜅 ≃ 𝜇 ≃ 𝑛 (from Eqs. (8) and (9)), without significant loss of accuracy.
We will make use of these results to estimate the possible effects of
a finite ring surface mass density on the windup rates of the ripple
structure.

3.5. Influence of the titan 1:0 apsidal resonance on the radial wavenumber
𝑘𝑟

Titan has a strong 1:0 apsidal resonance located in the C ring at
𝑎r es = 77857.4 km that produces measurable forced eccentricities in
ring orbits over the range 𝑟 =74,500–79,400 km (see Fig. 19 Nicholson
et al., 2014). The measured amplitudes 𝑎𝑒Tit an(𝑎) closely match the
predicted test particle response to the theoretical resonance strength
 determined from the mass and orbital elements of Titan:

𝑎𝑒Tit an(𝑎) = 
|𝑎 − 𝑎r es|

, (52)

where  ≃ 382 km2 (Nicholson et al., 2014). For orbits interior to the
esonance radius, the periapse is approximately aligned with Titan, and
n this case the radial location of a circular ring at longitude 𝜃 with
emimajor axis 𝑎 perturbed by the Titan resonance is given by

𝑟Tit an(𝑎) = 𝑎 − 
|𝑎 − 𝑎r es|

cos(𝜃 − 𝜃Tit an), (53)

where 𝜃Tit an is the mean longitude of Titan at the ring intercept point
and observation time. A radial or vertical wave with unperturbed radial
wavelength 𝜆 will have a perturbed wavelength given by
𝜆Tit an(𝑎)

𝜆
= |

|

|

𝜕 𝑟Tit an
𝜕 𝑎

|

|

|

= 1 + 
(𝑎 − 𝑎r es)2

cos(𝜃 − 𝜃Tit an), (54)

with corresponding perturbed wavenumber
𝑘Tit an(𝑎)

𝑘
≃ 1 − 

(𝑎 − 𝑎r es)2
cos(𝜃 − 𝜃Tit an) (55)

and perturbed optical depth
𝜏Tit an(𝑎)

𝜏
≃ 1 − 

(𝑎 − 𝑎r es)2
cos(𝜃 − 𝜃Tit an). (56)

Numerically, the fractional change in 𝑘 is quite small in the inner C ring
∼5 × 10−5 at 𝑎 = 75,000 km), but much larger (∼4%) in the vicinity of

the observed ripple structure near 𝑎 = 77,760 km, only about 100 km
nterior to 𝑎r es. We will make use of these results in the interpretation
f distortions in the wavepackets evident in the outer R77.7 region.

3.6. Radial optical depth profiles from vertical corrugations and radial
spiral structure

The observed signal strength during a ring occultation is modu-
lated by the abundance of ring material encountered along the ray
ath. Under the assumption that the ring behaves like a classical
any-particles-thick layer, the observed normalized intensity 𝐼 is just

𝐼 = 𝑒−𝜏𝑛∕| sin𝐵
∗
|

(57)

= 𝑒−𝜏 ,
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where 𝜏𝑛 is the normal optical depth, and 𝜏 is the ‘‘observed’’ optical
depth. Our goal is to predict the radial optical depth profile 𝜏𝑛(𝑟) for
an occultation of a ring perturbed by vertical corrugations and radial
spiral structure of specified azimuthal wavenumber 𝑚.

3.6.1. Vertical corrugations
Under the assumption that ring particles in a thin layer are uni-

ormly distributed along the ray path, the observed optical depth is
proportional to the path length of the ray through the ring layer, which
epends on the viewing geometry, the effective slope of the ring, and
he assumed thickness of the layer. Assuming that the thickness of the

ring is constant perpendicular to the local radial slope 𝑑 𝑧∕𝑑 𝑟 and that
n occultation ray penetrates the ring plane only once, Hedman et al.

(2015) showed that the optical depth profile 𝜏𝑧(𝑟) of a warped ring is
given by

𝜏𝑧(𝑟) =
𝜏𝑛

| sin𝐵∗
|

[
√

1 + (𝑑 𝑧∕𝑑 𝑟)2
1 − cot 𝐵∗ cos𝜙(𝑑 𝑧∕𝑑 𝑟)

]

, (58)

where the slope of the corrugation is assumed to be sufficiently small
that the denominator in brackets is always positive. We rewrite the
apparent optical depth as

𝜏𝑧(𝑟) = 𝜏0

[
√

1 + (𝑑 𝑧∕𝑑 𝑟)2
1 − (𝑑 𝑧∕𝑑 𝑟)∕ t an𝐵ef f

]

, (59)

where 𝜏0 = 𝜏𝑛∕| sin𝐵∗
| is the quiescent optical depth of the undisturbed

ing.
Gresh et al. (1986) obtained a slightly different result under the

assumption that the vertical thickness of the ring is unchanged by the
erturbation:

𝜏𝑧(𝑟) =
𝜏0

1 − (𝑑 𝑧∕𝑑 𝑟)∕ t an𝐵ef f
. (60)

Since for the present application 𝑑 𝑧∕𝑑 𝑟 < 0.05, the numerator in
q. (59) differs from unity by at most 0.00125 and can be safely

neglected, and the two approaches are effectively identical. In cases
here |(𝑑 𝑧∕𝑑 𝑟)∕ t an𝐵ef f |≪ 1, we have the approximate result

𝜏𝑧(𝑟) ≃ 𝜏0[1 + (𝑑 𝑧∕𝑑 𝑟)∕ t an𝐵ef f ], (61)

although this approximation can be violated for ring occultations where
t an𝐵ef f is very small (≲0.1).

For a sinusoidal vertical perturbation, substituting for 𝑑 𝑧∕𝑑 𝑟 from
q. (25) for 𝑚 ≥ 1, we have

𝜏𝑚𝑧 (𝑟) =
𝜏0

1 − 𝐴𝑚𝑧 𝑘𝑚𝑧 sin[𝑚(𝜃 −𝛺𝑃 𝑧(𝑚, 𝑟0)𝛥𝑡 − 𝛿𝑚𝑧 ) + 𝑘𝑚𝑧 (𝑟 − 𝑟0)]∕ t an𝐵ef f
,

(62)

and for 𝑚 = 0 from Eq. (38):

𝜏0𝑧 (𝑟) =
𝜏0

1 − 𝐴0
𝑧𝑘0𝑧 cos[𝜔0

𝑧(𝑟0)𝛥𝑡 − 𝑘0𝑧(𝑎 − 𝑟0) + 𝛿0𝑧 ]∕ t an𝐵ef f
. (63)

Notice that the detectability of a vertical corrugation depends strongly
on the viewing geometry. If the occultation rays are parallel to the
corrugations (|𝜙| ≃ 90◦), then by Eq. (1) | t an𝐵ef f | → ∞, and the
vertical structure does not affect the observed optical depth, at least
under the geometric assumptions of the distribution of ring material.

In the general case that the oblique occultation ray penetrates the
corrugated surface at a height 𝑧 above the ring plane, the apparent
radius 𝑟𝑎𝑝 probed by an occultation ray is offset from the true radius
y the projected distance 𝑧∕ t an𝐵ef f :
𝑟𝑎𝑝 = 𝑟 − 𝑧∕ t an𝐵ef f . (64)

3.6.2. Radial spiral structure
Under the assumption that 𝜏𝑛 is proportional to the ring’s unper-

urbed surface density 𝜎0, the perturbed optical depth profile associated
ith radial spiral structure is given by 𝜏 (𝑟) = (𝜎∕𝜎 )𝜏 . From Eq. (42)
𝑟 0 0
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we have for 𝑚 ≥ 1:

𝜏𝑚𝑟 (𝑟) =
𝜏0

1 + 𝐴𝑚𝑟𝑘𝑚𝑟 sin[𝑚(𝜃 − 𝛿𝑚𝑟) − 𝑘𝑚𝑟(𝑟 − 𝑟0)]
(65)

and from Eq. (44) for 𝑚 = 0:

𝜏0𝑟 (𝑟) =
𝜏0

1 + 𝐴0
𝑟𝑘0𝑟 sin[𝜔0

𝑟 (𝑟0)𝛥𝑡 − 𝑘0𝑟 (𝑎 − 𝑟0) + 𝛿0𝑟 ].
. (66)

Unlike the case for vertical corrugations, the visibility of radial spiral
tructure for a given ring opening angle is independent of the azimuthal

viewing geometry. Note that 𝜏0𝑟 (𝑟) and 𝜏0𝑧 (𝑟) are functionally identical,
and therefore indistinguishable, if 𝐴0

𝑟𝑘
0
𝑟 = 𝐴0

𝑧𝑘
0
𝑧∕ t an𝐵ef f , 𝑘0𝑟 = 𝑘0𝑧, and

𝛿0𝑧 = 𝛿0𝑟 + 90◦.

3.6.3. Model optical depth profiles with simultaneous vertical and/or radial
modes

When multiple vertical or radial modes are present, our prescription
or computing the model optical depth profile in this composite case is
s follows:

1. Specify the characteristics of any radial normal modes, optionally
accounting for the gravitational effect on 𝑘𝑟(𝑟) of a finite surface
mass density using Eqs. (48) and (50), and solve for (𝜎∕𝜎0),
optionally accounting for the distortion of the radius scale and
radial wavenumber by the Titan 1:0 apsidal resonance.

2. Specify the characteristics of any vertical normal modes, option-
ally accounting for the gravitational effect on 𝑘𝑧(𝑟) of a finite
surface mass density using Eqs. (49) and (51) and the effects of
the Titan 1:0 resonance, and compute the nominal slope 𝑑 𝑧(𝑟)∕𝑑 𝑟.

3. Multiply the nominal slope by 𝜎∕𝜎0 to account for the radial
distortion 𝜕 𝑟∕𝜕 𝑎 due to any radial modes.5

4. Use the modified slope to compute 𝜏𝑧(𝑟).
5. Compute the composite optical depth profile 𝜏𝑐 resulting from the

ensemble of vertical and radial modes:

𝜏𝑐 (𝑟) = (𝜎∕𝜎0)𝜏𝑧(𝑟). (67)

6. If vertical modes are present, apply the mapping between the true
radius and the apparent radius scale from 𝑧(𝑟) and t an𝐵ef f .

7. Evaluate 𝜏𝑐 (𝑟) at the apparent radius values of the observations to
enable a direct comparison of the model and the data.

It is sometimes useful to compare the relative contributions of radial
and vertical modes to observed perturbations in the background optical
depth. Combining Eqs. (63) and (66), and defining 𝛥𝜏𝑟(𝑟) = 𝜏𝑟(𝑟) − 𝜏0
and 𝛥𝜏𝑧(𝑟) = 𝜏𝑧(𝑟) − 𝜏0, we have for 𝑚 = 0:
𝛥𝜏𝑧(𝑟)
𝛥𝜏𝑟(𝑟)

≃
𝐴0𝑧𝑘0𝑧∕| t an𝐵ef f |

𝐴0𝑟𝑘0𝑟
. (68)

For vertical and radial waves of comparable amplitudes (i.e., 𝐴0𝑧𝑘0𝑧 ≃
𝐴0𝑟𝑘0𝑟), 𝛥𝜏𝑧(𝑟)∕𝛥𝜏𝑟(𝑟) ≃ 1∕| t an𝐵ef f |. Interpreted geometrically, the
ertical structure dominates the observed optical depth profile (i.e.,
𝛥𝜏𝑧(𝑟)∕𝛥𝜏𝑟(𝑟) > 1) for low-incidence occultations viewed perpendicular
to the vertical corrugations when | t an𝐵ef f | < 1, and radial structure
dominates (even for low-incidence occultations) when | t an𝐵ef f | > 1.

To illustrate the properties of composite models that include com-
ined radial and/or vertical normal modes, we next compare analytical
odels of the predicted radial optical depth profiles with the results

of ray tracing simulations in which the ring is represented as a multi-
layered thin slab of material distorted vertically and radially by a
variety of normal modes. Table 3 lists the parameters of the six

5 This is a purely kinematical effect, and assumes there is no dynamic
oupling between radial and vertical modes. Imagine a sinusoidal vertical
orrugation. Now perturb the radial locations of the points on the vertical

sine wave with a radial compression/rarefaction. The local slope of the
vertical corrugation will be modified by the changed radial distance between

streamlines.
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Table 3
Composite models of multiple normal modes.

Parameter Model

1 2 3 4 5 6

𝜏𝑛 0.045 0.045 0.045 0.045 0.045 0.045
𝜙 (◦) 78.26 78.26 78.26 78.26 78.26 78.26
𝐵∗ (◦) 1.883 1.883 1.883 1.883 1.883 1.883
t an𝐵ef f 0.1616 0.1616 0.1616 0.1616 0.1616 0.1616
𝐴0
𝑟𝑎 (km) 0.025 0.025 0.025

𝜆0𝑟𝑎 (km) 1.04 1.04 1.04
𝛿0𝑟𝑎 (◦) 265 265 265
𝐴0
𝑟𝑏 (km) 0.025 0.025

𝜆0𝑟𝑏 (km) 1.20 1.20
𝛿0𝑟𝑏 (◦) 263 263
𝐴0
𝑧𝑎 (km) 0.025 t an𝐵ef f 0.025 t an𝐵ef f

𝜆0𝑧𝑎 (km) 1.04 1.04
𝛿0𝑧𝑎 (◦) 𝛿0𝑟𝑎 − 90◦ 𝛿0𝑟𝑎 − 90◦
𝐴0
𝑧𝑏 (km) 0.025 t an𝐵ef f 0.025 t an𝐵ef f 0.025 t an𝐵ef f

𝜆0𝑧𝑏 (km) 1.20 1.20 1.20
𝛿0𝑧𝑏 (◦) 𝛿0𝑟𝑏 − 90◦ 𝛿0𝑟𝑏 − 90◦ 𝛿0𝑟𝑏 − 90◦
𝐴1
𝑟𝑐 (km) 0.03/t an𝐵ef f 0.03/t an𝐵ef f

𝜆1𝑟𝑐 (km) 30 30
𝛿1𝑟𝑐 (◦) 0. 0.
𝐴1
𝑧𝑐 (km) 0.03 0.03

𝜆1𝑧𝑐 (km) 30∕0.9720 30∕0.9720

𝛿1𝑧𝑐 (◦) 𝛿1𝑟𝑐 − 90◦ 𝛿1𝑟𝑐 − 90◦
models shown in Fig. 6. We adopt the geometric parameters for the
RSS_133I_X25 event and include combinations of radial and vertical
𝑚 = 0 and 𝑚 = 1 modes. The relative phases and amplitudes of the
𝑚 = 0 modes are adjusted so that the predicted optical depth profiles
from Eqs. (63) and (66) are similar for a given wavelength 𝜆0.

For each model, the left panel shows a horizontal view of the ring,
haded by color to reflect the variations in ring surface mass density
ssociated with any radial modes. A representative occultation ray is
hown as a dashed line with slope t an𝐵ef f . At right, the solid line
hows the analytic model for the optical depth profile of the composite
ave, and the result of a numerical ray tracing of the ring layer shown
t left is plotted as a shaded gray band. In all cases, the ray tracing
odels closely match the expected analytic model, confirming the

elf-consistency between the physical model of the ring layer and the
heoretical profile.

The models have the following properties:

• Model 1 corresponds to the simultaneous presence of two 𝑚 =
0 radial modes (𝑎 and 𝑏) of identical amplitudes with closely
spaced wavelengths 𝜆0𝑟𝑎 = 1.04 km and 𝜆0𝑟𝑎 = 1.20 km. The
ring layer is flat, but with periodic variations in the surface mass
density associated with the rarefaction and compression of the
two radial waves. The resulting optical depth profile at right
shows the beating signature as the two component waves change
their relative phases, and qualitatively resembles the observations
in Fig. 1.

• Model 2 is similar to the first model, except that two vertical
modes are combined instead of two radial modes. In this case,
the ring has a complex corrugated vertical structure of variable
amplitude as the two waves change their relative phase. Once
again, the ray tracing results at right agree with the analytic
prediction, and the corresponding optical depth profile is very
similar to that for Model 1.

• Model 3 combines an 𝑚 = 0 radial mode from Model 1 and an
𝑚 = 0 vertical mode from Model 2. In this case, the vertical
corrugations vary sinusoidally and the surface mass density also
varies sinusoidally, but with a slightly different wavelength. The
ray tracing results at right closely resemble the previous two
models.
11 
• Model 4 swaps the radial and vertical 𝑚 = 0 modes from Model 3.
Notice that the wavelength of the vertical corrugations is shorter
for this model than for Model 3, while the radial compressions
indicated by the colored shading at left have a longer wavelength
than for Model 3. Nevertheless, the resulting composite optical
depth profile is nearly identical to that for Model 3.

A comparison of the results of Models 1–4 demonstrates that nearly
identical optical depth profiles can be generated by four different
combinations of radial and vertical modes, supporting the point made
above that the signatures of radial and vertical modes are very similar.
In the absence of independent evidence (e.g., a dependence on 𝐵ef f or
ring longitude 𝜃), the underlying physical nature of the two waves re-
sponsible for the observed beating pattern cannot be uniquely identified
as vertical or radial modes.

• Model 5 adds to Model 1 by including radial and vertical 𝑚 = 1
modes (labeled 𝑐) with wavelengths 𝜆1 ∼ 30 km and a vertical
corrugation amplitude of 0.03 km, comparable to the maximum
value observed in the inner C ring by Hedman et al. (2011).
Following Hedman et al. (2015), we assume that 𝜆1𝑟∕𝜆1𝑧 = 0.9720,
which we confirm using Eqs. (26) and (27). The horizontal view
of the ring clearly shows the long-wavelength undulations that are
responsible for the resulting comparable variability of the back-
ground optical depth superimposed on the usual short-wavelength
interacting 𝑚 = 0 radial and vertical modes. The overplotted
sinusoid at right corresponds to the radial optical depth profile
predicted from the two 𝑚 = 1 modes alone.

• Model 6 includes only the two 𝑚 = 1 modes and spans a
larger radial range. Because of the smaller fractional wavelength
difference between the two 𝑚 = 1 modes compared to the two
𝑚 = 0 modes, it takes many wavelengths for their relative phases
to drift by 360◦. Consequently, the 600 km range contains less
than one wavepacket.

These results show that additional evidence beyond the appearance
of a single optical depth profile is required to characterize any modes
that contribute to its overall structure. Furthermore, they demonstrate
that the 𝑚 = 1 corrugations visible in the Cassini ISS images may be
evident in the low-t an𝐵 occultation profiles as well if the vertical
ef f
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Fig. 6. Comparison of ray-tracing calculations and analytical composite models of a ring perturbed by combinations of radial and vertical normal modes. The left column of panels
shows the side view of the ring, with colored shading representing the radial variation in surface mass density associated with radial modes and the vertical offset resulting from
vertical modes. At right, the corresponding analytic composite optical depth profile 𝜏𝑐 (𝑟) is shown as a solid line, and the numerical ray-tracing result is shown in shaded gray.
Models 1–6 (described in the text) are shown from top to bottom. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)
amplitudes are sufficiently large. We will show below that very little
damping of the 𝑚 = 1 corrugation amplitude is expected over timescales
of decades.

4. Normal mode identification and inferred impact date

With this theoretical background in hand, we are in a position to
identify the specific normal modes responsible for the observed beat
patterns in the C ring ripple structure and to estimate the corresponding
impact date for the proposed particle swarm that initially disturbed the
ring. We begin by fitting two-component composite models to three
observed wavetrains to determine the wavelengths of the contributing
modes. We then compare the ratio of the two wavelengths to dynamical
12 
predictions for a range of possible azimuthal wavenumbers for vertical
and radial waves, and show that there are four possible combinations
that match the observed values. Using a variety of arguments, we
resolve this ambiguity and demonstrate that the ripple structure is
due to the interference of 𝑚 = 0 and 𝑚 = 2 vertical waves of
comparable amplitude. Given this identification, we show that the
fitted wavelengths are consistent with an impact date in late 1983,
the same time as the impact that produced the 𝑚 = 1 corrugations in
the C ring (Hedman et al., 2007, 2011, 2015). From the power spectra
of radial optical depth profiles in the R75.5 region, we confirm that
the strongest contributions to the observed periodic signals have the
expected wavelengths for the candidate 𝑚 = 0 and 𝑚 = 2 vertical modes,
with no detected signal for additional azimuthal wavenumbers other



R.G. French et al.

F
t

p
c
r

Icarus 431 (2025) 116463 
Fig. 7. Two-component composite fits to three inner C ring wavepackets. (Top) The 2017 April 6 VIMS_alpOri268_1umE occultation centered at 𝑟0 = 75,550 km. (Middle) The
2010 June 18 RSS_133I_X15 occultation centered at 𝑟0 = 77,725 km. (Bottom) The 2017 June 27 VIMS_alpCMa281_1umE event occultation centered at 𝑟0 = 77,722 km. The
least-squares fit solves for the amplitudes, phases, and wavelengths of two vertical modes with 𝑚 = 0 and 𝑚 = 2. The observations are plotted in gray and the best-fitting model is
shown as a solid line, extrapolated to the adjacent wavepackets as dashed lines for the two lower panels. The fitted parameters are given in Table 4.
m

m
2

than 𝑚 = 1, which has marginal detections in the examples shown.
inally, using Cassini occultations between 2008–2017, we measure the
ime evolution of the vertical wavenumbers 𝑘0𝑧(𝑟, 𝑡) and 𝑘2𝑧(𝑟, 𝑡). We show

that the empirically-estimated impact date is consistent with dynamical
redictions of the windup rate of the 𝑚 = 0 and 𝑚 = 2 vertical
orrugations, taking into account the effects of the self-gravity of the
ings.

4.1. Wavepacket fits

From the gallery of occultation profiles shown in Figs. 4 and 5,
we selected three examples that clearly exhibit the beat pattern of
two 𝜆 ∼ 1 km waves. The first is located in region R75.5: the
VIMS_alpOri268_1umE wavetrain centered near 75,500 km. The other
two are in the outer part of region R77.7: the RSS_133I_X15 wavetrain
centered near 77,725 km and the VIMS_alpCMa281_1umE wavetrain
centered near 77,722 km, observed seven years later. We performed
least-squares fits to portions of each wavetrain, solving for the best-
fitting amplitudes, phases, and wavelengths of m = 0 vertical and radial
modes, under the assumption that 𝑘𝑧 > 𝑘𝑟, as expected theoretically for
these modes (see Eq. (B.4)). (As noted above, the actual identity of the
contributing modes cannot be determined from individual profiles, and
we use the 𝑚 = 0 vertical and radial components for simplicity.) The
results of the fits are shown in Fig. 7 and the fitted parameters are given
in Table 4.
13 
The upper panel of Fig. 7 shows three contiguous wavepackets of
VIMS_alpOri268_1umE optical depth profile in gray. This event was ob-
served at incidence angle 𝐵∗ = 11.682◦ and t an𝐵ef f = 0.5316, providing

odest sensitivity to vertical corrugations. The overplotted solid curve
shows the best-fitting two-component model to all three wavepackets,
which nicely matches the observed phases of the ripple pattern across
the entire radial region shown, with fitted amplitudes 𝐴0

𝑧 = 2.56 ± 0.11
, 𝐴0

𝑟 = 3.76 ± 0.24 m (with equivalent vertical amplitude 𝐴0
𝑟 t an𝐵ef f =

.00 ± 0.13 m, as noted previously in Section 3.6.2), and wavelengths
𝜆0𝑧 = 0.9403 ± 0.0007 km and 𝜆0𝑟 = 1.0369 ± 0.0012 km. The ratios
𝑘0𝑧∕𝑘

0
𝑟 = 1.1027 and 𝑘0𝑟∕𝑘

0
𝑧 = 0.9069 are included in Table 4 for later

identification of the possible modes responsible for the observed ripple
structure.

The middle panel shows three wavepackets from the RSS_133I_X15
occultation in 2010. This event was observed at low incidence angle
𝐵∗ = 1.883◦ with t an𝐵ef f = 0.1622, providing excellent sensitivity
to vertical corrugations. The overplotted solid curve shows the best-
fitting two-component model, which nicely matches the ∼10 peaks of
the central wavepacket, with fitted amplitudes 𝐴0

𝑧 = 4.44 ± 0.25 m and
𝐴0
𝑟 = 33.24 ± 1.46 m, with equivalent vertical amplitude 𝐴0

𝑟 t an𝐵ef f =
5.39 ± 0.24 m. The fitted wavelengths 𝜆0𝑧 = 1.1502 ± 0.0040 km and
𝜆0𝑟 = 1.2561 ± 0.0044 km have corresponding ratios 𝑘0𝑧∕𝑘0𝑟 = 1.0921
and 𝑘0𝑟∕𝑘

0
𝑧 = 0.9157. The dashed line shows the extrapolation of the

model fit to the two adjacent wavepackets, exhibiting a clear phase
drift over the 40 km width of the region shown. More elaborate fits that
attempted to model the radial distortion due to the nearby Titan 1:0
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Table 4
Wavepacket fits with two arbitrary modes.

Parametera VIMS_alpOri268_1umE RSS_133E_X15 VIMS_alpCMa281_1umE

𝑟0 (km) 75 500.0 77 725.0 77 722.0
𝐵∗ (◦) 11.6819 1.8833 −13.4824
t an𝐵ef f 0.5317 0.1622 0.4745
𝐴0
𝑧 (m) 2.56 ± 0.11 4.44 ± 0.25 6.55 ± 0.59

𝐴0
𝑟 (m)b 3.76 ± 0.24 33.24 ± 1.46 23.59 ± 1.22

𝐴0
𝑟 t an𝐵ef f (m)b 2.00 ± 0.13 5.39 ± 0.24 11.20 ± 0.58

𝜆0𝑧 (km) 0.9403 ± 0.0007 1.1502 ± 0.0040 1.0099 ± 0.0050
𝜆0𝑟 (km) 1.0369 ± 0.0012 1.2561 ± 0.0044 1.0898 ± 0.0036
𝑘0𝑧 (km−1) 6.6819 5.4628 6.2218
𝑘0𝑟 (km−1) 6.0597 5.0022 5.7652
𝑘0𝑧∕𝑘

0
𝑟 1.1027 1.0921 1.0792

𝑘0𝑟∕𝑘
0
𝑧 0.9069 0.9157 0.9266

𝜏𝑛 0.0245 ± 0.0000 0.0402 ± 0.0001 0.0285 ± 0.0001
𝑡 (yr) 2017.2634 2010.4626 2017.4880

a Assuming 𝑘0𝑧 > 𝑘0𝑟 .
b 𝐴0

𝑟 is the amplitude of the assumed radial mode. If instead it is a vertical mode, its
ertical amplitude is 𝐴0

𝑟 t an𝐵ef f .

resonance, or that included the gradual compression/rarefaction due
o a longer-wavelength 𝑚 = 1 mode, did not result in an improved
egional fit. Nevertheless, the simple model does reliably match the
entral wavepacket.

The lower panel shows the corresponding results for the
VIMS_alpCMa281_1umE wavetrain. This event was observed at a more

odest ring opening angle 𝐵∗ = −13.482◦ but with a favorable viewing
ngle 𝜙, resulting in | t an𝐵ef f | = 0.4745 < 1, providing somewhat
nhanced sensitivity to vertical structure. Again, the best-fitting two-

component model matches the ∼10 peaks of the central wavepacket,
with fitted amplitudes 𝐴0

𝑧 = 6.55 ± 0.59 m, 𝐴0
𝑟 = 23.59 ± 1.22 m,

nd equivalent vertical amplitude 𝐴0
𝑟 t an𝐵ef f = 11.20 ± 0.58 m. The

fitted wavelengths 𝜆0𝑧 = 1.0099 ± 0.0050 km and 𝜆0𝑟 = 1.0898 ± 0.0036
km have corresponding ratios 𝑘0𝑧∕𝑘0𝑟 = 1.0792 and 𝑘0𝑟∕𝑘

0
𝑧 = 0.9266.

Notably, the fitted wavelengths are significantly shorter than those for
the RSS_133I_X15 event observed seven years earlier, a clear indication
of time evolution of the two separate ripple patterns. As before, while
the model nicely fits the central wavepacket, it drifts out of phase when
extrapolated to the adjacent wavepackets on each side.

4.2. Normal mode identification

4.2.1. Candidate modes
The wavepacket fits shown in Fig. 7, while admittedly imperfect

in matching the observed ring structure in detail, nevertheless are
sufficiently robust to restrict the possible combinations of vertical
and radial modes and azimuthal wavenumbers that match the mea-
sured properties of the interacting waves. The dynamically predicted
wavenumbers 𝑘𝑎 and 𝑘𝑏 for any two candidate vertical or radial modes
of azimuthal wavenumbers 𝑚𝑎 and 𝑚𝑏 vary with time since impact 𝛥𝑡
and with orbital radius 𝑟0, but in the absence of self-gravity, their ratios
are independent of time, as seen from Eqs. (36) and (37), and thus
contain no assumptions about the time history of the ripple structure.

In Table 5, we list 𝑘𝑎 and 𝑘𝑏, their equivalent radial wavelengths
𝜆𝑎 and 𝜆𝑏, and the ratios 𝑘𝑎∕𝑘𝑏 and 𝑘𝑏∕𝑘𝑎 for combinations of radial
and vertical modes with 𝑚 from −3 to 5, computed from Eqs. (26)–
(37) for the circumstances and geometry of the three wavepacket fits
shown in Fig. 7, assuming 𝑡𝑖 = 1983.7, the approximate date of the
proposed impact that produced detectable 𝑚 = 1 corrugations in the C
ing (Hedman et al., 2011). At the top of each section of the table, we
nclude the results of the wavepacket fits for an event from Table 4. We

assumed that 𝑘0𝑧 > 𝑘0𝑟 in our wavepacket fits, but this was an arbitrary
choice, and as we showed both analytically and from ray tracing, it is
not possible from the shape of an observed wavepacket alone to identify
14 
whether the contributing modes are radial or horizontal. Instead, we
compare both the fitted ratio 𝑘𝑎∕𝑘𝑏 and its inverse to the predictions
for each listed combination of vertical and radial modes for 𝑚𝑎 and
𝑚𝑏. We seek tabulated values of 𝑘𝑎∕𝑘𝑏 or 𝑘𝑏∕𝑘𝑎 in each section of
the table closest to the observed ratios 1.1027 for the 𝑡 = 2017.2634
VIMS_alpOri268_1umE wavepacket at 𝑟0 = 75,500 km, 1.0921 for the
𝑡 = 2010.4626 RSS_133I wavepacket at 𝑟0 = 77,725 km, and 1.0792 for
the 𝑡 = 2017.4880 VIMS_alpCMa281_1umE wavepacket at 𝑟0 = 77,722
km.

A checkmark in the right-hand column indicates a potential match
between the calculated and observed wavenumbers, as derived from
fits to the beat patterns in Fig. 7. Note that, because of the degeneracy
escribed in Section 3.3, models with both radial and vertical 𝑚 = 0
erturbations, radial and vertical 𝑚 = 2 perturbations, 𝑚 = 0 and 2
adial perturbations and 𝑚 = 0 and 2 vertical perturbations can all
it the observed ripple wavelengths and beat frequencies equally well,
lthough the interpretation of the individual periodic signals varies
etween the four cases. On the other hand, a mixed combination of
𝑚 = 0 radial and 𝑚 = 2 vertical oscillations, or vice versa, does not

ork because these pairs of modes have almost identical wavenumbers,
s noted above.

This provisional identification of the perturbations responsible for
the ∼1 km ripple structure can be strengthened by comparing the
itted wavelengths themselves (rather than just their ratios) to the

predicted values, assuming 𝑡𝑖 = 1983.7. The same combinations of
checkmarked 𝑚 = 0 and 𝑚 = 2 modes pass these tests as well: the
VIMS_alpOri268_1umE wavelengths 𝜆 = 0.94 and 1.04 km closely
match the predicted values of 0.95 and 1.03 km, the RSS_133I wave-
lengths 1.15 and 1.26 km come closest to matching the predicted values
of 1.28 and 1.39 km, and the VIMS_alpOri268_1umE wavelengths 1.01
and 1.09 km are very similar to the predicted values of 1.02 and 1.10
km. On the other hand, the predicted wavelengths for 𝑚 other than 0,
1, or 2 are all less than 0.68 km, well below the wavelengths of the
components of the observed ripple patterns.

4.2.2. Resolving the ambiguity of the mode identification
At this point, we have four candidate pairs of modes that match the

bserved C ring ripple wavenumbers/wavelengths and their ratios:

A: 𝑘0𝑧 and 𝑘0𝑟 (a vertical and a radial mode, each with 𝑚 = 0)
B: 𝑘2𝑧 and 𝑘2𝑟 (a vertical and a radial mode, each with 𝑚 = 2)
C: 𝑘0𝑧 and 𝑘2𝑧 (two vertical modes, with 𝑚 = 0 and 𝑚 = 2)
D: 𝑘0𝑟 and 𝑘2𝑟 (two radial modes, with 𝑚 = 0 and 𝑚 = 2).

We reject the two other potential combinations of 𝑚 = 0 and 𝑚 = 2
modes because (contrary to the observations) both components in each
pair have the same wavelength:

E: 𝑘0𝑟 and 𝑘2𝑧 (a radial 𝑚 = 0 mode and a vertical 𝑚 = 2 mode)
F: 𝑘2𝑟 and 𝑘0𝑧 (a radial 𝑚 = 2 mode and a vertical 𝑚 = 0 mode).

In the wavepacket fits shown in Fig. 7, we assumed model A, but any
f the four options (A through D) would have given nearly identical
itted lightcurves, different only in the phases of the component waves
nd the interpretation of the mode amplitudes as vertical corrugations
r radial perturbations, which differ by a factor of t an𝐵ef f . However,
e can use the fitted parameters for each of the four models for a
iven wavepacket to predict the detailed ripple structure in the same
adial location for a second observation at a different time and ring
ongitude, which differentially affect the model predictions. A model is
avored that consistently gives closer matches than the others. To limit
he magnified effects of small errors in pattern speeds propagated over
ong time intervals, we restrict our attention primarily to ingress/egress
airs of a given occultation that show the same wavepacket near the
ame location in both profiles.

We illustrate this approach in Fig. 8. In the upper left panel, we
show a single wavepacket from the RSS_133I_X15 occultation near
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Table 5
Azimuthal wavenumber identification from wave packet fits.
𝑚𝑎 𝑚𝑏 𝑘𝑎∕𝑘𝑏 𝑘𝑏∕𝑘𝑎 𝜆𝑎 (km) 𝜆𝑏 (km) Match

VIMS_alpOri268_1umEc 1.1027 0.9069 0.9403 ± 0.0007 1.0369 ± 0.0012
−3 z −3 r 1.0208 0.9796 0.2441 0.2492
−2 z −2 r 1.0278 0.9729 0.3244 0.3335
−1 z −1 r 1.0420 0.9596 0.4834 0.5038
0 z 0 r 1.0859 0.9209 0.9481 1.0295 ✓

1 r 1 z 1.0324 0.9686 23.5851 24.3502
2 z 2 r 0.9210 1.0858 1.0281 0.9469 ✓

2 r 0 z 1.0013 0.9987 0.9469 0.9481
2 z 0 r 1.0014 0.9986 1.0281 1.0295
2 z 0 z 0.9221 1.0844 1.0281 0.9481 ✓

2 r 0 r 1.0873 0.9197 0.9469 1.0295 ✓

3 z 3 r 0.9597 1.0420 0.5034 0.4831
4 z 4 r 0.9729 1.0278 0.3333 0.3243
5 z 5 r 0.9796 1.0208 0.2491 0.2441

RSS_133I_X15c 1.0921 0.9157 1.1502 ± 0.0040 1.2561 ± 0.0044
−3 z −3 r 1.0195 0.9809 0.3298 0.3363
−2 z −2 r 1.0260 0.9746 0.4384 0.4498
−1 z −1 r 1.0393 0.9622 0.6535 0.6792
0 z 0 r 1.0803 0.9257 1.2831 1.3861 ✓

1 r 1 z 1.0299 0.9710 34.0436 35.0600
2 z 2 r 0.9258 1.0802 1.3845 1.2817 ✓

2 r 0 z 1.0011 0.9989 1.2817 1.2831
2 z 0 r 1.0012 0.9988 1.3845 1.3861
2 z 0 z 0.9268 1.0790 1.3845 1.2831 ✓

2 r 0 r 1.0814 0.9247 1.2817 1.3861 ✓

3 z 3 r 0.9622 1.0393 0.6788 0.6532
4 z 4 r 0.9746 1.0260 0.4497 0.4382
5 z 5 r 0.9809 1.0195 0.3362 0.3297

VIMS_alpCMa281_1umEc 1.0792 0.9266 1.0099 ± 0.0050 1.0898 ± 0.0036
−3 z −3 r 1.0195 0.9809 0.2612 0.2663
−2 z −2 r 1.0260 0.9746 0.3472 0.3563
−1 z −1 r 1.0393 0.9622 0.5176 0.5379
0 z 0 r 1.0803 0.9257 1.0162 1.0978 ✓

1 r 1 z 1.0299 0.9710 26.9600 27.7650
2 z 2 r 0.9258 1.0802 1.0965 1.0151 ✓

2 r 0 z 1.0011 0.9989 1.0151 1.0162
2 z 0 r 1.0012 0.9988 1.0965 1.0978
2 z 0 z 0.9268 1.0790 1.0965 1.0162 ✓

2 r 0 r 1.0814 0.9247 1.0151 1.0978 ✓

3 z 3 r 0.9622 1.0393 0.5376 0.5173
4 z 4 r 0.9746 1.0260 0.3561 0.3471
5 z 5 r 0.9809 1.0195 0.2662 0.2612

a Computed from Eqs. (26)–(37) for each 𝑚 at the specified 𝑟0 in Table 4.
b Computed from Eqs. (26)–(37) for each 𝑚 at the specified 𝑟0 and 𝑡 in Table 4, assuming 𝑡𝑖 = 1983.7.
c Entries from wave packet fits in Table 4.
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𝑟0 = 77,725 km (the same feature shown in the middle panel of Fig. 7).
The best-fitting profiles for models A through D are overplotted, and as
expected are nearly identical to each other. In the upper right panel,
we show the egress profile (RSS_133E_X15) at the same radial location
nd the corresponding best-fitting model fits to this wavepacket. Qual-
tatively, the ingress and egress wavepackets appear to be quite similar
n general form. In the four panels below, we show the RSS_133E_X15

profile again (in blue), along with the predicted ripple pattern (shown
as an orange dashed line) computed using the RSS_133I_X15 fitted
parameters in turn for each of the four models A through D, moving
across and then down from middle left to lower right. The legend
in each panel identifies the modes corresponding to case, and lists
the RMS difference (𝜎) between the observations and the predicted
wavepacket. Only model C (lower left) shows a good match of the phase
and overall shape of the egress wavepacket, with the lowest 𝜎 of the
four comparisons.

As a second example, in Fig. 9, we use the same two RSS datasets
o compare a wavepacket in the R75.5 region (with 𝑟0 = 75,555 km).

Once again, the closest match is given by model C at the lower left.
The phases of the model and observed wavepacket match well, and
although the observed and modeled amplitudes of the individual peaks
15 
differ somewhat for model C, the other three models (A, B, and D) give
uch poorer matches.

We carried out a similar exercise for several other observations that
ad ingress/egress pairs of identifiable wavepackets located at similar
rbital radii. In most cases, model C provided a uniquely good match
o the comparison observations, with some exceptions where no models
rovided a good match, possibly due to slight errors in the ring plane

radius scale or unmodeled radial perturbations. Evidently, there are
egions in the rings where our simple two-component model is not
ufficient to capture the observed variations in ripple structure over
ime, ring longitude and viewing geometry.

As a variant on these comparisons, we can take advantage of the fact
that among models A through D, only model C has no radial modes.
In the galleries in Figs. 4 and 5, the lowest | t an𝐵ef f | data sets show
the most prominent ripples, supporting the idea that at least one of
he ripple components is a vertical corrugation. However, as shown
rom Eqs. (65) and (66), the fractional optical depth variation due to

a radial wave is independent of t an𝐵ef f and should be equally visible
n high-SNR occultations at both low and high | t an𝐵ef f |. In Fig. 10,

we compare the model predictions from the RSS_133E_X15 wavepacket
fits near 𝑟 = 77,725 km given in Table 4, scaled in wavelength to
0
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Fig. 8. Comparison of fits to the RSS_133E_X15 wavepacket near 𝑟0 = 77,725 km, and the corresponding predicted ripple patterns for RSS_133I_X15 in R77.5, for models A through
D. The upper row shows the RSS_133E_X15 and RSS_133I_X15 observations and the best-fitting model curves. The middle and lower rows compare the observed RSS_133I_X15
wavepacket (in blue) and the predicted pattern (dashed orange line) using the geometry and time of the RSS_133I_X15 event but the model parameters from RSS_133E_X15 for
each of the four cases A through D, from middle left to lower right. Only the model C (two vertical modes, with 𝑚 = 0 and 𝑚 = 2) predictions from the egress fits match the
general shape and phase of the ingress wavepacket. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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match the expected values for the high-SNR VIMS_alpSco243_1umE
vent. Near the radial region shown, | t an𝐵ef f | = 104.4, making it quite

insensitive to detecting vertical structure in the rings. Each panel shows
the observed optical depth profile for VIMS_alpSco243_1umE event
(blue), and the predicted profiles (dashed orange lines) sequentially for
models A through D from upper left to lower right. Models A and B
each have a radial and a vertical mode. Because of the unfavorable
viewing geometry, the vertical wave is absent from the predicted
models, and the predicted radial mode appears as a pure sinusoid. In
both cases, the model amplitude is well above the noise level of the
observations, suggesting a radial mode with an amplitude 𝐴𝑟 = 33 m
(Table 4) would be readily detected in the VIMS_alpSco243_1umE data.

odel D at lower right has two radial modes of different wavelengths
and comparable amplitudes, resulting in the familiar wavepacket ap-
pearance of the two interfering modes. Again, the model profile has
optical depth variations much larger than in the observations. Fi-
nally, the model C predictions at lower left show a flat model op-
tical depth profile, indicating that neither vertical mode would be
detectable for the geometry of the VIMS_alpSco243_1umE event at this
radius.

In an additional series of tests, we searched the VIMS_alpSco241,
VIMS_alpSco243, and VIMS_alpSco245 egress profiles for evidence of
 r
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∼1 km periodic structure comparable to the more obvious ripples
in low-incidence observations. The most prominent such structure
(other than just interior to the Titan 1:0 resonance) is visible in the
VIMS_alpSco243E profile near 𝑟0 = 75,556 km, shown in Fig. 11. The
eriodic structure appears to be real, but it has a wavelength of about
.75 km, well below the expected wavelengths of 0.96–1.05 km from
he model predictions at this radius and event date for 𝑚 = 0 or 𝑚 = 2
ertical or radial modes, and does not appear to be related to the 1983.7
mpact event.

Taken together, the detailed wavepacket comparisons of the four
candidate models and the absence of any sign of radial structure of
the expected wavelengths associated with radial modes for 𝑚 = 0 or
𝑚 = 2 demonstrate that only model C, with two vertical modes of
wavenumber 𝑚 = 0 and 𝑚 = 2, is compatible with the observations.
In Section 4.6, where we compare the signatures of ring self-gravity
n the time variation of radial and vertical modes, we will show that
here is additional strong evidence favoring model C. Henceforth, we
ill assume that the ripple structure can be described physically as two
ertical corrugations with slightly different radial wavelengths. Fur-
hermore, the fact that the wavepackets show nulls between adjacent
hase bundles suggests that the 𝑚 = 0 and 𝑚 = 2 vertical modes have
oughly comparable amplitudes.
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Fig. 9. Comparison of fits to the RSS_133E_X15 wavepacket near 𝑟0 = 75,555 km, and the corresponding predicted ripple patterns for RSS_133I_X15 in R77.5, for models A through
D. See caption for Fig. 8 for additional details. Model C (lower left) gives the best match between the ingress observations and the egress models, propagated to the time and
geometry of ingress profile.
7
𝑚

4.3. Regional power spectral analysis

The results in hand provide strong evidence that the initial distur-
ance that produced the observed 𝑚 = 1 modes detected by Hedman
t al. (2011) also produced the 𝑚 = 0 and 𝑚 = 2 vertical corrugations

detected in the occultation profiles considered here. However, the
imprecision of the wavepacket fits over a very restricted range of radii
severely limits the accuracy of the inferred windup rates of the two
corrugation patterns. To make further progress, we turn to spectral
analysis of the occultation observations over a much larger radial range.

4.3.1. Power spectra of km-scale radial structure
We note first that since the putative spiral patterns for all 𝑚 ≠ 1

have radially-dependent wavenumber 𝑘(𝑎) ∝ |𝜕 𝑛∕𝜕 𝑎| ∝ 𝑎−5∕2, the search
for signatures of spirals can be considerably improved by adopting
a revised radius scale prior to computing the power spectrum that
compensates for this expected dispersion. Following Hedman et al.
(2015), we first transform the observed ring radius 𝑟 into a rescaled
istance parameter 𝑑 given by

𝑑 = 2𝑟
3

( 𝑟0
𝑟

)5∕2
, (69)

where 𝑟0 is a specified reference radius and the factor of 2∕3 is chosen
o that the wavelength of a feature at 𝑟0 is the same in both the actual
adius and rescaled distance (i.e., that |𝜕 𝑑∕𝜕 𝑟| = 1 when 𝑟 = 𝑟 ). For
0
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modes with pattern speeds given by the mean motion 𝑛, the rescaled
wavelength across the range of the power spectrum should be roughly
constant. The spectral power is computed using a continuous Fourier
transform (CFT), where the power at a given wavenumber 𝑘 (where
𝑘∕2𝜋 = 1∕𝜆) is given by

𝑃 (𝑘) =
[

∑

𝑗
𝜏𝑛(𝑟𝑗 )𝑒

−𝑖𝑘(𝑟𝑗−𝑟0)
]2
, (70)

and 𝑟 is either the nominal radius or the rescaled distance 𝑑. Note
that the CFT power estimates are not normalized or orthogonal and
therefore cannot be directly compared to the power from a standard
Fourier transform, but they provide a means of localizing the peaks in
the power spectrum at a higher resolution. In practice, we compute 𝑃 (𝑘)
with a very fine mesh (𝛿 𝑘∕𝑘 = 0.0001) to provide an accurate estimate
of the wavenumber of any peak found in the power spectrum.

In Fig. 12, we show the power spectra of the optical depth profiles
from three low-incidence observations, plotted as a function of wave-
length and computed over the radial range 75,100–75,675 km (region
R75.4), chosen because it is the longest interval of roughly constant
low optical depth in the inner C ring with visible ripple structure
throughout. The predicted wavelengths at a reference radius 𝑟0 =
5,400 km for radial and vertical modes for azimuthal wavenumbers

= −3,−2,−2, 0, 2, and 3 are plotted as vertical lines, assuming
𝑡 = 1983.7. (As noted above, several modes have the same predicted
𝑖
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Fig. 10. Comparison of the observed VIMS_alpSco243_1umE optical depth profile near 𝑟0 = 77,723 km (shown in blue) and predictions (shown as dashed orange lines) from
the corresponding RSS_133E_X15 wavepacket fits for each of the four models A through D from upper left to lower right. The model wavelengths were scaled to compensate for
the six year interval between the observations. The unfavorable viewing geometry of the VIMS_alpSco243_1umE occultation for vertical waves results in model profiles that show
only radial modes. For models A and B, a single radial mode is present, resulting in a constant-amplitude sinusoids for both cases. For model D, two radial modes of slightly
ifferent wavelength beat against each other, resulting the wavepacket bundle at lower right. For model C (lower left), with two vertical modes, the predicted signal is a flat line.
or all other cases, however, the model predictions exceed the SNR of the VIMS data and the corresponding modeled radial modes would be easily detectable if present. (For
nterpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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wavelengths, resulting in overplotted vertical lines.) The upper panels
show the power spectra computed using the nominal observed radius
scale, plotted as a function of radial wavelength. The bottom panels
show the power spectra computed using the rescaled distance, plotted
as a function of the corresponding wavelength at reference radius
0 = 75,400 km. In both cases, the power is normalized to 100 for the

maximum power observed in the vicinity of the expected wavelengths
for 𝑚 = 0 and 𝑚 = 2 vertical modes.

Qualitatively, the power spectra for all three observations have
similar characteristics. Using the nominal radius scale, the top row
hows a broad and somewhat noisy pedestal of power in each spectrum

near the expected wavelengths for the 𝑚 = 0 and 𝑚 = 2 vertical modes
t the time of each observation. Using the rescaled distance instead, the

bottom row isolates the power into two narrow peaks, in most cases
centered near the expected wavelengths for the time of the observation
based on an impact data of 1983.7, supporting the inference from the
wavepacket fits that the periodic structure visible in Fig. 4 is associated
with 𝑚 = 0 and 𝑚 = 2 vertical modes. There are no such peaks near
any of the predicted wavelengths for other values of 𝑚, assuming that
𝑡 = 1983.7.
𝑖
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Looking at the results in Fig. 12 in more detail, the left column
of panels shows the results for the RSS_125I_X34 event observed at
= 2010.0707. In the bottom panel, there are two isolated power peaks
hat fall almost exactly on the predicted wavelengths for the 𝑚 = 0 and
= 2 vertical modes. To provide an estimate of the physical amplitude

f the two modes, we computed 𝑃 (𝑘) for the predicted wavelengths of
he modes at time 𝑡 and effective incidence angle t an𝐵ef f , and solved
teratively for the amplitudes 𝐴0

𝑧 and 𝐴2
𝑧 in the model that yielded

he observed power at the two predicted wavelengths. In this case,
2
𝑧 = 1.52 m and 𝐴0

𝑧 = 1.68 m. The middle column shows the results for
he very low inclination UVIS_IotOri_159E event observed two years
ater at 𝑡 = 2012.0085. The predicted wavelengths are shorter than
or the RSS_125I_X34 event and the observed spectrum shows a sharp
eak near the predicted wavelength of the 𝑚 = 2 vertical mode and
 weaker peak at the predicted wavelength of the 𝑚 = 0 vertical
ode, with substantial power over the entire wavelength range 𝜆 =
.95−1.45 km. The occulted star 𝜄 Ori is a multiple star system and
he observed optical depth profile shows radially offset contributions
rom at least three stars. This is likely to be responsible in part for the
ifferences in the appearance between the RSS_125I_X34 results and
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Fig. 11. The VIMS_alpSco243_1umE occultation profile near 𝑟0 = 75,556 km, showing periodic structure of unknown origin. Model predictions based on combinations of 𝑚 = 0
and 𝑚 = 2 radial and vertical modes for the radius and date of the observations all show wavelengths ≃ 1 km, substantially longer than the estimated ∼0.75 m wavelength of the
bserved periodic structure, which therefore does not seem to be associated with the ripples seen in low-incidence angle occultations.
d
p

t

t
r

the UVIS power spectra. The inferred amplitudes of the two modes are
𝐴2
𝑧 = 0.45 m and 𝐴0

𝑧 = 0.27 m. The right column shows the results for
he VIMS_alpOri277_1umI event observed at 𝑡 = 2017.4251, 5.4 years
fter the UVIS_IotOri_159E observation. The predicted wavelengths are
hifted to even lower values because of the further windup of the waves.
ere, there is a conspicuous pair of narrow peaks in observed power

n the bottom right plot centered on the predicted wavelengths, with
erived amplitudes 𝐴2

𝑧 = 0.93 m and 𝐴0
𝑧 = 0.80 m.

4.3.2. Evidence for 30-km scale 𝑚 = 1 structure
We now examine the same three observations for evidence of the

𝑚 = 1 structure detected in the C ring by Hedman et al. (2011).
Fig. 13 shows the power spectra of the observations computed using
 conventional Fourier transform over the radial range 75,100–75,675
m after rebinning the data to a uniform radial resolution of 1 km. As
een in Table 5, the predicted 𝑚 = 1 radial and vertical wavelengths
re closely spaced, differing by only a few percent, which is below the

fractional resolution of the power spectrum over the relatively narrow
radial range compared to the expected wavelength 𝜆 ∼ 30 km for
ignificant power for 𝑚 = 1. There are peaks in each of the three spectra

in the vicinity of the predicted 𝑚 = 1 locations, with the wavelength
of maximum power decreasing with time, as expected for a gradually
tightening corrugation pattern. The RSS_125I_X34 spectrum shows a
ronounced peak near 𝜆 = 32 km, a bit larger than the predicted 𝑚 = 1
𝑧

19 
value. The UVIS_IotOri_159E event shows an isolated peak near the pre-
dicted 𝑚 = 1 mode wavelengths, although the close spacing of the radial
and vertical wavelengths makes in impossible to identify the relative
contributions of either mode. Finally, the VIMS_alpOri277_1umI power
spectrum shows an isolated peak in the general vicinity of 𝜆 = 24 km,
with a subsidiary peak in power near 𝜆 = 19 km.

These results provide suggestive but not conclusive evidence for the
etection of 𝜆 = 25−35 km periodic signatures in the optical depth
rofiles associated with the 𝑚 = 1 disturbance from the 1983.7 impact.

Note that the radial range of 650 km used for these power spectra
corresponds to only about 20 cycles, limiting the spectral resolution, so
hat it is not possible to distinguish between the possible contributions

of 𝑚 = 1 vertical and radial modes. Hedman et al. (2011) concluded
hat the periodic 30-km scale structure in Cassini ISS images of the C
ing represented vertical corrugations, and in Figs. 1 and 2 we show

that the undulatory signatures in the optical depth profiles at this scale
are plausibly matched by 𝑚 = 1 vertical corrugations with amplitude
of order 𝐴1

𝑧 ∼ 100 m, larger by a factor of several than the amplitude
inferred by Hedman et al. (2011) from photometric estimates averaged
over 500 km, but somewhat smaller than the inferred vertical ampli-
tude of several hundred m for the D ring ripple structure attributed to
the 1983.7 impact (Hedman et al., 2015).
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Fig. 12. Power spectra of three low-incidence occultation profiles computed over the radial range 75,100–75,675 km, plotted as a function of radial wavelength 𝜆 at a reference
radius 𝑟0 = 75,400 km. For each event, the predicted wavelengths of the 𝑚 = −3,−2,−1, 0, 2, and 3 modes are shown at top, with radial and vertical locations marked by dashed
nd dotted lines, respectively. An impact date 𝑡𝑖 = 1983.7 is assumed for all calculations. The upper row shows relative power in the continuous Fourier transform (CFT) of the

observations using the nominal radius scale, and the lower row shows the CFT power using a distance scale that corrects for the predicted dispersion of a spiral wave with 𝑚 ≠ 1.
or each observation, a broad pedestal of power is visible near the predicted 𝑚 = 0 mode wavelengths in the upper row, with considerably sharper isolated peaks in the scaled
adius results in the lower row. The observed wavelengths of maximum power decrease systematically from the earliest shown occultation (RSS_125I_X34, 𝑡 = 2010.0707) at left
o the VIMS_alpOri277_1umI event (𝑡 = 2017.4251) spectrum at right. The UVIS_IotOri_159E occultation in the middle panel is of a multiple-star system (𝜄 Ori), contributing to
he complexity of the observed power spectra. Under the assumption that the two contributing modes are the 𝑚 = 0 and 𝑚 = 2 vertical modes, their amplitudes are estimated by

iteratively determining the amplitudes 𝐴0
𝑧 and 𝐴2

𝑧 of a composite model wave that match the observed peak power at the corresponding predicted wavelengths. No statistically
significant power is seen for other values of 𝑚.
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4.3.3. Direct retrieval of vertical structure
Assuming that all of the observed variations in optical depth are due

o vertical structure of the ring, rather than to radial variations in the
ackground optical depth, and that the vertical slopes are sufficiently
mall that every occultation ray penetrates the rings only once, it is

possible to retrieve the vertical structure of the ring 𝑧(𝑟) directly from
he optical depth profile 𝜏𝑧(𝑟) (Gresh et al., 1986). Solving iteratively
or 𝑑 𝑧(𝑟)∕𝑑 𝑟 from Eq. (59) and then integrating the result, we have:

𝑧(𝑟) = ∫

𝑟

𝑟𝑖

𝑑 𝑧(𝑟′)
𝑑 𝑟′ 𝑑 𝑟′. (71)

To illustrate the technique, Fig. 14 shows the vertical profile derived
rom a triple wavepacket in the RSS_133I_X15 radial optical depth
rofile over the radial range 77,705–77,745 km, assuming that the ring
as a uniform background optical depth and that all of the observed
ariations in 𝜏𝑛(𝑟) are the result of variations in the slant-path optical
epth as each occultation ray penetrates the vertically-corrugated ring
nly once. The resulting vertical profile 𝑧(𝑟) is dominated by a 𝜆 ∼
5 − 30 km periodic signature with vertical amplitude 𝐴𝑧 ∼ 75 m, with
uperimposed smaller-amplitude shorter-wavelength ripples with ver-
ical amplitudes ∼5–10 m associated with the prominent ∼1-km scale
eat pattern in wavepackets. For comparison, the predicted wavelength
f an 𝑚𝑧 = 1 mode for this event at this radial location is 𝜆1𝑧 ∼ 35 km,
ssuming an impact date of 1983.7, as illustrated in the lower right

panel of Fig. 1.
We will return in Section 5 to assess the detectability of the 𝑚 = 1

modes in the occultation data, but for now we will concentrate on the
more certain 𝜆 ∼ 1 km corrugations to estimate the impact date.
20 
4.4. Localized power spectra of region R75.5

To refine the estimates of the best-fitting 𝑚 = 0 and 𝑚 = 2
vertical mode wavelengths and their dependence on orbital radius,
we determine the wavenumbers 𝑘0𝑧 and 𝑘2𝑧 of the peaks within more
ocalized regions of each optical depth profile, choosing a fixed window
alfwidth 𝑤 = 200 km and stepping in boxcar fashion along the radial
rofile. To illustrate the technique, Fig. 15 shows examples of the
esulting power spectra for instances of each of the four time periods
uring which the 𝜆 ∼ 1 km C ring ripples are detectable: an early
SS event in 2008, a later RSS event in 2010, a UVIS occultation in
012, and a VIMS occultation in 2017. Each panel shows the CFT

computed using a scaled radius 𝑑(𝑟) for a single boxcar width centered
within region R75.5. In every instance, there are two isolated and
prominent peaks in power at wavenumbers 𝑘0𝑧 and 𝑘2𝑧 closely matching
the predicted values (shown by vertical lines) for 𝑚 = 0 and 𝑚 = 2
vertical modes produced by an impact in 1983.7:

(a) The RSS_060E_X14 event (upper left, 𝑡 = 2008.16594) was ob-
served at a ring opening angle 𝐵∗ = −8.642◦ and t an𝐵ef f =
0.3410, and although the data are too noisy to reveal the periodic
ripple structure in the optical depth profile itself at the resolution
shown, the power spectrum clearly shows the presence of two
modes at the predicted locations, both well above the noise level.

(b) The RSS_125I_X34 occultation (upper right, 𝑡 = 2010.07070) was
observed at a smaller ring opening angle 𝐵∗ = 4.767◦, providing
higher SNR but at less favorable azimuth 𝜙 for detecting vertical
structure, resulting in a marginally smaller t an𝐵 = 0.2807
ef f
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Fig. 13. Conventional Fourier transform power spectra of the same three events and
data intervals shown in Fig. 12. For each event, the predicted wavelengths of the 𝑚 = 1
radial and vertical modes assuming an impact date of 1983.7 are marked by dashed and
otted lines, respectively. The wavelength of the observed peak power decreases from
bout 32 km for RSS_125I in 2010 to about 24 km for VIMS_alpOri277_1umI (2017),

consistent with a windup of the 𝑚 = 1 mode over the seven-year interval between these
wo events. On the other hand, compared to the examples in Fig. 12, which showed

strong and narrow peaks in power at the expected wavelengths for 𝑚 = 0 and 𝑚 = 2
vertical modes, the peaks in the power spectra in the 𝜆 = 22 − 31 km range are broader
nd are thus less securely attributable to 𝑚 = 1 modes.

than for RSS_060E_X14. The spiral patterns have tightened over
the 1.90 yr interval between these two events, and the higher
SNR is reflected in the prominent power peaks compared to
the noise level in the spectrum. The optical depth profile shows
both short-scale periodic structure and longer-scale quasiperiodic
undulations that may be the signature of the 𝑚 = 1 spiral pattern
identified in the Cassini ISS images (Hedman et al., 2011).

(c) The UVIS_iotOri_159E event (lower left, 𝑡 = 2012.00852) was
observed at a ring opening angle 𝐵∗ = −1.192◦, with | t an𝐵ef f | =
0.0407, the lowest of any of the observations considered in this
study. Once again, the wavenumbers of the two modes have
increased since the previous observations and match the predicted
values for an impact with 𝑡𝑖 = 1983.7.

(d) The high-SNR VIMS_alpOri277_1umI occultation (lower right, 𝑡 =
2017.42505) was observed at ring opening angle 𝐵∗ = 11.682◦ and
| t an𝐵ef f | = 0.3540 (comparable to the RSS_060E_X14 event), with
noticeably higher 𝑘0𝑧 and 𝑘2𝑧 than the early RSS event shown in
panel (a).

These examples provide snapshots of the process whereby we de-
ermine the radial variations of 𝑘0𝑧(𝑟) and 𝑘2𝑧(𝑟) across a chosen radial

region for a given observation. For a given boxcar halfwidth 𝑤, we
step in radius along the optical depth profile in increments of 5 km,
compute the CFT within the corresponding window, and tabulate for
each step the power and wavenumbers of the two strongest isolated
peaks in the CFT power spectrum within a bounded region of the power
spectrum centered on the expected wavenumbers of the two vertical

odes. Fig. 16 shows the results for the RSS_060E_X14 event, with
alfwidth 𝑤 = 200 km boxcar centers spanning the radial range 75,300–
5,675 km. The upper panel shows the normal optical depth profile. A
ertical solid line marks the reference radius 𝑟 = 75,500 km at which
0 s

21 
we estimate 𝑘0𝑧 and 𝑘2𝑧, using the scaled radius 𝑑 centered at 𝑟0. The
vertical dashed lines mark the inner and outer boundaries of the central
adii sampled by the sliding boxcar window. The orange portion of the

profile shows the data used for the boxcar at the center of the selected
radial range. The horizontal range of the panel shows the inclusive
radial range of the data included in the full set of boxcar steps. The
adial trends in the power of the two power spectrum peaks shown in
he lower panel are plotted as orange and blue dots in the upper panel

of the figure, scaled vertically to fit within the plot window.
The lower panel of Fig. 16 shows the results of the individual

determinations of the wavenumbers of the two peaks in the power
spectrum for the central radius of each boxcar step, plotted as filled
circles (blue for the stronger of the two power peaks and orange
for the weaker). They fall along two parallel downward-sloping lines
as a function of radius, with decreasing wavenumber and increasing
corresponding wavelength 𝜆 = 2𝜋∕𝑘 labeled on the right vertical axis.
The upper set of points matches nearly perfectly the nearly-hidden dot-
dashed line marking predicted 𝑘0𝑧(𝑟) for an 𝑚 = 0 vertical mode with an
assumed impact date 𝑡𝑖 = 1983.7, while the lower set of points similarly
match the predicted 𝑘2𝑧(𝑟) for an 𝑚 = 2 vertical mode, marked by a
nearly-hidden dashed line. Both lines are bracketed by a nearby pair
of dotted lines separated by 𝛥𝑘∕2𝜋 = ±0.01 k m−1 of the predicted
wavenumber. The best-fitting 𝑘2𝑧(𝑟) and 𝑘0𝑧(𝑟) models computed from
Eqs. (27) and (37) for measured peaks in the power spectra that
ie within the respective pairs of bounding lines are overplotted on
he measured points. (Outlier peaks in the power spectrum that fall
utside of these bounds are excluded from the fit.) In this instance, the
avenumbers at the reference radius 𝑟0 are 𝑘2𝑧(𝑟0)∕2𝜋 = 0.7076 k m−1

nd 𝑘0𝑧(𝑟0)∕2𝜋 = 0.7691 k m−1, with corresponding wavelengths 𝜆2𝑘(𝑟0)
nd 𝜆0𝑧(𝑟0) = 1.4132 km and 1.3002 km and inferred impact times
𝑖= 1983.7479 and 1983.6927, respectively, computed from Eqs. (27)

and (37) and ignoring any contribution from the ring’s self-gravity. In
Section 5 below, we will make use of these measurements to estimate
the radial variations in the amplitudes 𝐴2

𝑧(𝑟) and 𝐴0
𝑧(𝑟).

Similarly, Fig. 17 shows the results for the RSS_125I_X34 event,
for boxcar halfwidth 𝑤 = 200 km with boxcar centers spanning the
radial range 75,300–75,675 km. In this instance, the wavenumbers at
the reference radius 𝑟0 are 𝑘2𝑧(𝑟0)∕2𝜋 = 0.7631 k m−1 and 𝑘0𝑧(𝑟0)∕2𝜋 =
0.8291 k m−1, with corresponding wavelengths 𝜆2𝑘(𝑟0) and 𝜆0𝑧(𝑟0) =
1.3105 km and 1.2061 km and inferred impact times 𝑡𝑖= 1983.7390
and 1983.6882, respectively, ignoring any contribution from the ring’s
self-gravity.

Fig. 18 shows the results of a similar analysis of the
VIS_IotOri_159E event, for boxcar halfwidth 𝑤 = 125 km, chosen
ecause it resulted in a more complete set of mode detections than
= 200 km. Note that there are instances in which the wavenumbers

f one or both of the strongest pair of peaks on the power spectrum
all outside of the expected vicinity of the 𝑚 = 0 and 𝑚 = 2 vertical
odes. For example, between 75,600 and 75,660 km neither of the two
ower spectrum peaks falls near the predicted range for the vertical
ode, and there is instead a set of points with 𝜆 ≃ 1.28 km at the

ower right that follow the same slope as the model 𝑘2𝑧(𝑟) and 𝑘0𝑧(𝑟)
trends. We attribute these signals to the co-addition of radially offset

avepackets associated with weaker components of the multiple star
ystem. The estimated impact dates are 𝑡𝑖 = 1983.6739 and 1983.7143
rom the fits to the two sets of observations lying within the bounded
anges of expected wavenumbers for the 𝑚𝑧 = 2 and 𝑚𝑧 = 0 modes,
espectively.

Fig. 19 shows the results for the VIMS_alpOri277_1umI event, one
of the highest SNR occultations in our set. In this instance, both modes
are prominent, clearly separated, and yield estimated impact times
𝑡𝑖 = 1983.7601 and 1983.6813 for the 𝑚𝑧 = 2 and 𝑚𝑧 = 0 modes,
respectively.

We performed a similar analysis for region R75.5 for each ob-
ervation listed in Table 1, using a range of window halfwidths 𝑤
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Fig. 14. Ring vertical structure obtained by direct retrieval from the RSS_133I_X15 radial optical depth profile over the radial ranges 75,525–75,575 km (top left) and 77,705–77,745
km (top right), under the assumption that the background optical depth is uniform and that the observed optical depth variations result from the varying slant path optical depth
as the occultation probes the vertically corrugated surface of the ring. The lower panels show the resulting vertical profile 𝑧(𝑟), featuring a 𝜆 ∼ 25 − 30 km periodic signature with
vertical amplitude 𝐴𝑧 ∼ 75 m, with superimposed smaller vertical amplitude (∼5–10 m) shorter-wavelength ripples associated with the ∼1-km scale variations in the optical depth
profile. (Note that the vertical amplitudes of the 1-km wavelength ripples are somewhat smaller for the R75.5 wavepacket at left than for the R77.7 wavepacket at right.).
Fig. 15. Continuous Fourier transform (CFT) power spectra representing the four separate time intervals of observations that revealed evidence of C ring ripples, computed using
 scaled radius scale 𝑑(𝑟) for the radial ranges shown, all within region R75.5. Upper left: RSS_060E_X14 (𝑡 = 2008.16594). Upper right: RSS_125I_X34 (𝑡 = 2010.07070). Lower left:

UVIS_IotOri_159E (𝑡 = 2012.00852). Lower right: VIMS_alpOri277_1umI (𝑡 = 2017.42505). See text for details.
w
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from 100 to 200 km in steps of 25 km. (We omit the R77.7 region
ere because of the effects of the Titan 1:0 resonance on 𝑘𝑟.) Many,

but not all, events showed convincing evidence for periodic structure
with the expected wavelengths of 𝑚 = 0 and 𝑚 = 2 vertical modes.
or each occultation, we retained the result for a given mode for the

widest window halfwidth 𝑤 that yielded the largest number 𝑁 ≥ 20
of measured points with wavenumbers falling within the 𝛥𝑘∕2𝜋 =
±0.01 k m−1 band of the predicted values, assuming an impact date
𝑡𝑖 = 1983.7. The results are given in Table 6. For each retained
vent and detected mode, we include the number of power spectrum
22 
measurements 𝑁 lying within the expected wavenumber band, the
indow halfwidth 𝑤, the fitted wavenumber 𝑘∕2𝜋 and corresponding
avelength 𝜆, the observed time 𝑡, and the inferred impact date 𝑡𝑖.

These results ignore ring surface gravity, which introduces systematic
fractional correction terms in the wavenumber ∼0.001 and consequent
hanges in the inferred impact date of up to 0.03 yr for the 2017

observations. Note that these corrections are of opposite sign for radial
and vertical modes of a given 𝑚, as shown in Appendix A, Eqs. (A.12)
and (A.14) for 𝑚 ≠ 1 or 0, and Eqs. (A.24) and (A.28) for 𝑚 = 0. We
explore these effects in Section 4.6 below.
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Fig. 16. Results of power spectral analysis of the RSS_060E_X14 occultation. The upper panel shows the radial optical depth profile over which the power spectrum was computed,
using a boxcar halfwidth 𝑤 = 200 km in steps of 5 km. The radial trends in the power of the two power spectrum peaks in the lower panel are shown by the orange and blue
dots, scaled vertically to fit within the plot window. The lower panel shows the wavenumbers 𝑘∕2𝜋 of the two strongest peaks in the power spectrum for the central radius of
each boxcar step (orange dots for the stronger and blue dots for the weaker of the two peaks). The corresponding radial wavelengths are indicated by the right axis labels. The
measured points follow a sloping line, indicating that the periodic structure responsible for the power peaks increases in wavelength with increasing radius. The observed slope
and wavenumbers closely match the predictions for 𝑚 = 0 vertical (upper line of points) and 𝑚 = 2 vertical (lower line) modes, shown as dot-dashed lines underneath the data
points, assuming an impact date 𝑡𝑖 = 1983.7. Lines overplotted on the measured points show the best-fitting 𝑘2𝑧(𝑟) and 𝑘0𝑧(𝑟) models computed from Eqs. (27) and (37) for measured
eaks in the power spectra that lie within the respective pairs of bounding lines separated by 𝛥𝑘∕2𝜋 = ±0.01 k m−1 of the predicted wavenumber. (Outlier peaks in the power
pectrum that fall outside of these bounds are excluded from the fit.) See text for additional details. (For interpretation of the references to color in this figure legend, the reader

is referred to the web version of this article.)
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4.5. Estimated impact date

We are now in a position to use the full set of observations to
determine the date of the impact that produced the observed short-
wavelength ripple structure in the C ring. Independent of the detailed
dynamics that govern the radial dependence of the windup rate of the
observed spiral structure, the time dependence of the wavenumber at
a given radial location can be linearly extrapolated back in time to the
instant at which 𝑘 = 0, under the assumption that 𝑘(𝑡 − 𝑡𝑖) ∝ (𝑡 − 𝑡𝑖).
This proportionality follows from Eqs. (36) and (37), and ignores the
ossible role of the self-gravity of the ring in affecting the windup rate.)
n Fig. 20, we plot the observed 𝑘2𝑧(𝑟0, 𝑡) and 𝑘0𝑧(𝑟0, 𝑡) from Table 6 as

a function of observation time 𝑡, for 𝑟0 = 75,500 km. The black solid
and dashed lines show the best fits to the individual RSS, UVIS, and
VIMS wavenumber values from Table 6, plotted as color-coded dots.
The fitted straight lines, extrapolated to 𝑘 = 0, yield the inferred impact
dates 𝑡𝑖 = 1983.747 ± 0.016 and 1983.691 ± 0.020 for the 𝑘2𝑧 and 𝑘0𝑧 modes,
respectively. This corresponds to Fit 1 in Table 7.

These results establish that the component modes of the 𝜆 ∼ 1 km
C ring ripples are some combination of 𝑚 = 0 and 𝑚 = 2 radial and
vertical modes. Fig. 20 includes the predicted time evolution of radial
nd vertical modes for other possible azimuthal wavenumbers 𝑚 =

−2,−1, 1, 3 and 4, all of which are far removed from the observations.
In contrast, the predictions for the 𝑚 = 0 and 𝑚 = 2 modes shown as
gray bands fall almost exactly along the fitted lines based solely on the
observed time dependence of the wavenumber measurements, with the
23 
fitted impact date from the 𝑘2𝑧 observations being 0.057 yr (i.e., ∼21
days) after the 𝑘0𝑧 result. (We will investigate this apparent time offset
in more detail below.)

A second approach to estimating the impact date is to use the
ynamically-based results of the power spectrum analysis that yield the

observed 𝑘0𝑧(𝑟0, 𝑡) and 𝑘2𝑧(𝑟0, 𝑡) for each event and observed time 𝑡. A
separate estimate of the impact time 𝑡𝑖 from the two vertical modes for
a given event follows directly from Eq. (37), based on the dispersion
relation for bending waves. The top panel of Fig. 21 shows the results
of this analysis, listed as Fit 2 in Table 7. The individually estimated
mpact times are plotted on the vertical axis, with the corresponding

observation date 𝑡 on the horizontal axis. The results are color-coded by
Cassini instrument (blue for RSS, orange for UVIS, and green for VIMS),
with filled and open symbols corresponding to impact dates derived
from 𝑘0𝑧(𝑟0, 𝑡) and 𝑘2𝑧(𝑟0, 𝑡), respectively. The average of all values (𝑡𝑖 =
1983.717 ± 0.029) is shown as a horizontal blue line. The results for the
two modes differ systematically: the mean value of the impact times
derived from the 𝑘2𝑧 measurements (𝑡𝑖 = 1983.743 ± 0.015) is significantly
later than that for the 𝑘0𝑧 measurements (𝑡𝑖 = 1983.691 ± 0.011),
with measurable trends in time for both modes, shown as the fitted
sloping dotted and dashed lines. The average slope of the combined
set of measurements is shown as a solid black line, and is almost
zero, but the systematic trends in the derived impact dates over the
observation period 2008 to 2017 suggest that the assumption that
(𝑡) ∝ (𝑡 − 𝑡𝑖) is oversimplified. This ignores the self-gravity of the ring,
which introduces small time-dependent terms of opposite signs into the
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Fig. 17. Results of power spectral analysis of the RSS_125I_X34 occultation. See caption for Fig. 16 and text for additional details.
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expressions for 𝑘2𝑧(𝑟) and 𝑘0𝑧(𝑟) given in Eqs. (49) and (51). Hedman et al.
(2011) showed that perturbations in the 𝑚 = 1 vertical corrugation
wavenumber were correlated with local gradients in the surface mass
density of the middle C ring, and we now explore the possibility that
ring self-gravity can similarly account for the systematic trends in the
top panel of Fig. 21.

We define a self-gravity parameter

𝜖(𝑟0) = 𝜋 𝐺
2𝑛

[

𝜎(𝑟0)
𝑟0

−
𝜕 𝜎(𝑟0)
𝜕 𝑟

]

(72)

(with units of yr−1) to represent the magnitude of the fractional change
n 𝑘2𝑧 or 𝑘0𝑧 resulting from ring self-gravity, evaluated at a reference
adius 𝑟0. (For the moment, we postpone the consideration of the rela-
ive contributions of the two surface mass density terms 𝜎∕𝑟0 and 𝜕 𝜎∕𝜕 𝑟
o the sum.) We generalized the power spectrum method illustrated in

Figs. 17–19 to solve for the impact date 𝑡𝑖 as a function of 𝜖, according
to

𝑘0𝑧 = 𝑘0𝑧0(1 + 𝜖 𝛥𝑡) (73)

and

𝑘2𝑧 = 𝑘2𝑧0(1 − 𝜖 𝛥𝑡), (74)

where 𝛥𝑡 = 𝑡 − 𝑡𝑖.
We repeated the full power spectrum analysis for all data sets for

a range of 𝜖 from 0 to 7 × 10−5 yr−1. The results are shown in Fig. 22.
In the top panel, we plot the standard deviation 𝜎 of the residuals of
inear fits to 𝑘0𝑧 and 𝑘2𝑧, both separately and when combined (𝑘0𝑧, 𝑘2𝑧).

The dispersion in the combined measurements reaches a minimum near
𝜖 = 3.25 × 10−5 yr−1, while the standard deviations for the fits for
the separate modes are only weakly dependent on 𝜖. We assign an
estimated uncertainty 𝜎(𝜖) = 1 × 10−5 yr−1. The middle panel of the
figure shows the derived impact times from the three separate linear
fits, as a function of 𝜖. Note that for 𝜖 = 3.25 × 10−5 yr−1, all three fits
24 
give nearly the same impact times, as shown in Table 7 for Fit 3 and the
ower panel of Fig. 21. Finally, in the bottom panel of Fig. 22, we plot

the slopes of the linear fits to the separate and combined observations
of the two modes. Once again, for the favored value of 𝜖 = 3.25 × 10−5
yr−1, the slopes of all three fits are nearly zero.

As an independent test of the validity of our assignment of the
𝑘0𝑧 and 𝑘2𝑧 modes as responsible for the C ring ripple structure, we
tested the alternative possibilities enumerated as Cases A, B, and D in
Section 4.2.2 by performing a suite of power spectral analyses for a
range of self-gravity parameters 𝜖 for each case. Compared to the sum-
mary results in Fig. 22, none of the three alternative mode assignments
esulted in a unique value of 𝜖 that simultaneously minimized the RMS

of the joint estimate for the impact date, yielded the same impact dates
for the two modes, and minimized the slopes of 𝑘(𝑡) to nearly zero.
Only the 𝑘0𝑧, 𝑘2𝑧 mode combination achieved this, lending support to
the proposal that the effects of ring self-gravity are detectable in the
occultation data.

To explore the influence of ring self-gravity on the empirical fits
to 𝑘0𝑧(𝑡) and 𝑘2𝑧(𝑡) (Fit 1), we performed quadratic fits with the same
functional form as Eqs. (73) and (74):

𝑘0𝑧(𝛥𝑡) = 𝑘0𝑧
′𝛥𝑡(1 + 𝜖 𝛥𝑡) (75)

and

𝑘2𝑧(𝛥𝑡) = 𝑘2𝑧
′𝛥𝑡(1 − 𝜖 𝛥𝑡), (76)

constraining 𝜖 to be the value from our adopted dynamical solution
but removing the requirement that the leading factors 𝑘0𝑧

′(𝑡) and 𝑘2𝑧
′(𝑡)

orrespond to the unperturbed values computed from the planet’s
ravity field using Eqs. (27) and (37). The results (Fit 4) yield fitted

impact dates for the two modes that are in excellent mutual agreement:
𝑡𝑖 = 1983.719 ± 0.020 and 1983.719 ± 0.016 for 𝑘0𝑧 and 𝑘2𝑧, respectively,
and very close to our adopted joint solution of 𝑡𝑖 = 1983.715 ± 0.015 (Fit
3).
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Fig. 18. Results of power spectral analysis of the UVIS_IotOri_159E occultation. The upper panel shows the radial optical depth profile over which the power spectrum was
computed, using a boxcar halfwidth 𝑤 = 125 km in steps of 5 km. Several clusters of measured points intermittently fall in the vicinity of the predict wavenumbers for 𝑚 = 0
vertical (upper line of points) and 𝑚 = 2 vertical (lower line) modes, assuming an impact date 𝑡𝑖 = 1983.7. See caption for Fig. 16 and text for additional details.
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Fig. 23 summarizes the results of the suite of fits given in Table 7.
The Fit 1 impact dates result from empirical linear fits to the ensem-
le of measurements of 𝑘0𝑧 and 𝑘2𝑧 as a function of time under the

assumption that the corrugation windup rates are constant in time.
Fit 2 gives the averages of the impact dates obtained from power
spectrum analysis of individual occultation events, using a dynamical
model for the windup rate of the vertical corrugations. Both Fits 1 and 2
ignore the possible effects of ring surface density, and show systematic
differences between the inferred impact dates derived separately from
the two modes. Fit 3 (our adopted solution) includes the predicted
effects of ring self-gravity, with a best-fitting value of the ring self-
gravity parameter 𝜖 = (3.25 ± 1.0) × 10−5 yr−1. The systematic differences
seen in Fits 1 and 2 between the impact times derived from the two
modes have been virtually eliminated, with a best-fitted mean impact
date 𝑡𝑖 = 1983.715 ± 0.015 (UTC 1983 Sep 19.25 ± 5.5 d). Fits 3 and 4
are in excellent agreement with the impact date 𝑡𝑖 = 1983.717 ± 0.11 (Fit
5, UTC 1983 Sep 20 ± 40 d) estimated by Hedman et al. (2011) from
an analysis of 𝑚 = 1 vertical corrugations, suggesting that the vertical
structure evident in the short-wavelength 𝑚 = 0 and 𝑚 = 2 corrugations

as produced within a few days at most of the 𝑚 = 1 structure.

4.6. Effects of ring self-gravity

Our adopted value for the impact time is based on the fit shown
n the lower panel of Fig. 21 that included ring self-gravity, chosen to

minimize the differences and systematic trends in the massless ring fit
shown in the upper panel. Here, we explore whether these results are
25 
consistent with the optical depth, surface density, and opacity of the
inner C ring. The two terms in 𝜖 related to surface density are 𝜎∕𝑎 and
𝜕 𝜎∕𝜕 𝑎. The first of these is quite small: assuming that the mean surface
density near R75.5 is 𝜎̄ = 1.5 g cm−2, from an analysis of density and
bending waves (Afigbo et al., 2025),6 and assuming 𝜕 𝜎∕𝜕 𝑎 = 0, we find
= 0.2 × 10−5 yr−1, much smaller than the fitted value of 𝜖 = 3.25 × 10−5
r−1 for our adopted solution (Fit 3) in Table 7. The more significant

gradient term in the definition of 𝜖 can be expressed in terms of the
corresponding fractional change in surface density over a given radial
range 𝛥𝑎: 1

𝜎̄
𝜕 𝜎
𝜕 𝑎 𝛥𝑎.

We now combine the inferred fractional decrease in surface density
rom the analysis of the 𝑚 = 0 vertical and radial modes and the mea-
ured slope in the normal optical depth to estimate the corresponding
ariation in ring opacity 𝐾 in this region.7 A trustworthy comparison

requires observations of exceptional photometric stability and SNR,
ideally with large | t an𝐵ef f | to minimize the visibility of the 𝑚 = 0

aves and the 𝑚 = 1 corrugations. Two such occultations are the
IMS_omiCet135I (Nicholson et al., 2020) and the UVIS_KapOri212I

observations, shown in Fig. 24 at ∼2 km and 1 km resolution, respec-
tively. The two data sets have very similar mean optical depth and
detailed radial structure, confirming that the observed variations are
intrinsic features of the ring and not artifacts of photometric variability

6 By comparison, Baillié et al. (2011) obtained 𝜎̄ = 0.58 ± 0.09 g cm−2 from
an analysis of the Mimas 4:1 density wave at 74,890 km.

7 We denote opacity as 𝐾 = 𝜏∕𝜎 instead of the more usual 𝜅 to avoid
possible confusion with the epicyclic frequency.
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Fig. 19. Results of power spectral analysis of the VIMS_alpOri277_1umI occultation. See caption for Fig. 16 and text for additional details.
Fig. 20. Linear fits to the measured values of 𝑘2𝑧(𝑡) and 𝑘0𝑧(𝑡) at a reference radius 𝑟0 = 75,500 km, determined from spectral analysis of region R75.5 for all events listed in
Table 6. The observations fall in four groups: early and late RSS events (blue), UVIS events in 2012 (orange), and post-2016 UVIS and VIMS events (orange and green). The solid
nd dashed lines show 𝑘𝑚𝑧 (𝑡) and 𝑘𝑚𝑟 (𝑡) for azimuthal wavenumbers 𝑚 = −2 through 4, computed from Eqs. (26) and (27) for an assumed impact time 𝑡𝑖 = 1983.7. The observed

points fall almost exactly on the predicted lines for 𝑚 = 0 and 𝑚 = 2, shown as the underlying gray bands for clarity. These results confirm the identification of the observed C
ing ripples as some combination of 𝑚 = 0 and/or 𝑚 = 2 radial and vertical modes. Note the near-commensurability of 𝑘−𝑚𝑟 ∼ 𝑘𝑚+2𝑧 (or, equivalently, 𝑘𝑚𝑧 ∼ 𝑘2−𝑚𝑟 ), for 𝑚 ≠ 1 (see

Appendix B), resulting in an ambiguity in the mode identification in the absence of additional information. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
o

in the observations. Over the radial range shown 𝛥𝑟 = 370 km, the
fractional change in the VIMS optical depth is (𝜕 𝜏𝑛∕𝜕 𝑟)∕𝜏𝑛 × 370 km
= −0.100, shown by the linear fit plotted in orange. The mean optical
depth is shown as a black line, and the derived fractional change in
surface mass density across the region for Fit 3 [(𝜕 𝜎∕𝜕 𝑟)∕𝜎̄ × 370 km] is
−0.068 (green), respectively, scaled in the figure to match the mean
optical depth at 𝑟0 = 75,500 km. Combining these results, we can
26 
estimate the corresponding fractional change in ring opacity 𝐾 = 𝜏𝑛∕𝜎
ver the range 𝛥𝑟:
1
𝐾̄
𝜕 𝐾
𝜕 𝑟 𝛥𝑟 =

1
𝜏𝑛

𝜕 𝜏𝑛
𝜕 𝑟 𝛥𝑟 −

1
𝜎̄
𝜕 𝜎
𝜕 𝑟 𝛥𝑟, (77)

where 𝐾̄ = 𝜏𝑛∕𝜎̄ = 0.025∕1.5 cm2 g−1 = 0.017 cm2 g−1, very similar
to estimates near this radial range from density waves associated with
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Table 6
Results of spectral analysis for region R75.5.

Event 𝑁2
𝑧 𝑤2

𝑧 (km) 𝑘2𝑧∕2𝜋 (1/km) 𝜆2𝑧 (km) 𝑁0
𝑧 𝑤0

𝑧 (km) 𝑘0𝑧∕2𝜋 (1/km) 𝜆0𝑧 (km) 𝑡𝑓 (yr) 𝑡𝑖 (yr)

RSS_056E_X34 72 200 0.70444 1.41956 2008.03931 1983.73086
52 125 0.76513 1.30698 2008.03931 1983.69280

RSS_057E_X43 68 200 0.70514 1.41815 2008.07195 1983.73931
76 200 0.76593 1.30561 2008.07195 1983.69996

RSS_060E_X26 38 200 0.70770 1.41303 2008.16594 1983.74520
59 125 0.76866 1.30097 2008.16594 1983.70708

RSS_060E_X14 71 200 0.70762 1.41319 2008.16594 1983.74793
63 125 0.76925 1.29996 2008.16594 1983.68811

RSS_063E_X63 74 200 0.70990 1.40865 2008.24975 1983.75299
59 200 0.77229 1.29485 2008.24975 1983.67516

RSS_064E_X43 22 200 0.71115 1.40617 2008.27598 1983.73608
73 200 0.77233 1.29478 2008.27598 1983.70016

RSS_067E_X14 76 200 0.71306 1.40240 2008.35447 1983.74862
RSS_123I_X34 66 200 0.76004 1.31572 2009.98326 1983.75638

76 125 0.82653 1.20987 2009.98326 1983.68277
RSS_123I_X43 53 200 0.76022 1.31541 2009.98326 1983.75016

76 125 0.82629 1.21022 2009.98326 1983.69036
RSS_123I_K34 63 200 0.76028 1.31531 2009.98326 1983.74819

76 125 0.82630 1.21021 2009.98326 1983.69007
RSS_125I_X43 76 125 0.76283 1.31090 2010.07070 1983.74738

76 200 0.82892 1.20639 2010.07070 1983.69433
RSS_125I_K34 76 200 0.76295 1.31071 2010.07070 1983.74339

76 125 0.82920 1.20598 2010.07070 1983.68524
RSS_125I_X34 76 200 0.76307 1.31049 2010.07070 1983.73900

76 200 0.82911 1.20612 2010.07070 1983.68824
RSS_125E_X63 68 200 0.76310 1.31045 2010.07116 1983.73873

76 200 0.82852 1.20697 2010.07116 1983.70741
RSS_125E_X55 61 200 0.76314 1.31037 2010.07116 1983.73720

76 200 0.82851 1.20699 2010.07116 1983.70781
RSS_125E_K55 75 200 0.76372 1.30937 2010.07116 1983.71706

68 200 0.82908 1.20616 2010.07116 1983.68972
RSS_133I_X15 57 200 0.77433 1.29143 2010.46258 1983.74238
RSS_133E_X34 65 200 0.77473 1.29077 2010.46304 1983.72906

76 200 0.84135 1.18856 2010.46304 1983.69091
RSS_133E_X43 64 200 0.77446 1.29122 2010.46304 1983.73844

76 125 0.84116 1.18883 2010.46304 1983.69700
RSS_133E_X25 69 200 0.77459 1.29100 2010.46304 1983.73386

76 125 0.84134 1.18858 2010.46304 1983.69128
RSS_133E_X15 73 200 0.77457 1.29104 2010.46304 1983.73479

76 125 0.84134 1.18858 2010.46304 1983.69127
RSS_133E_K34 74 200 0.77463 1.29094 2010.46304 1983.73273

76 125 0.84149 1.18837 2010.46304 1983.68651
RSS_133E_K25 65 200 0.77465 1.29090 2010.46304 1983.73174

76 125 0.84132 1.18860 2010.46304 1983.69183
UVIS_IotOri_159E 62 125 0.82112 1.21785 2012.00852 1983.67391

23 125 0.88919 1.12462 2012.00852 1983.71432
UVIS_AlpCMa168I 48 200 0.90604 1.10371 2012.49137 1983.66102
UVIS_GamOri234I 22 200 1.02453 0.97606 2016.25529 1983.65455
VIMS_alpOri268_1umE 74 200 0.97055 1.03035 2017.26341 1983.77238

76 125 1.05559 0.94734 2017.26341 1983.67428
VIMS_alpOri269_1umE 67 200 0.97171 1.02912 2017.28305 1983.75206

75 200 1.05557 0.94736 2017.28305 1983.69458
UVIS_AlpCMa274E 60 200 1.05840 0.94482 2017.36440 1983.68574
VIMS_alpCMa274_1umE 72 200 0.97420 1.02648 2017.36440 1983.74727

74 200 1.05907 0.94422 2017.36440 1983.66437
VIMS_alpOri277_1umI 76 200 0.97559 1.02502 2017.42505 1983.76006

76 200 1.06045 0.94300 2017.42505 1983.68132
VIMS_alpCMa281_1umI 76 200 0.97902 1.02143 2017.48772 1983.70431
VIMS_alpCMa281_1umE 74 200 0.97677 1.02378 2017.48792 1983.78206

76 200 1.06207 0.94156 2017.48792 1983.69247
UVIS_AlpCMa281E 68 200 0.97762 1.02289 2017.48792 1983.75288

74 200 1.06280 0.94091 2017.48792 1983.66939
Table 7
Summary of fits for date of impact 𝑡𝑖.

Fit # 𝑡𝑖(𝑘0𝑧) (yr) 𝑡𝑖(𝑘2𝑧) (yr) 𝑡𝑖(𝑘0𝑧 , 𝑘2𝑧) (yr) 𝜖 (10−5 yr−1) Description

1 1983.691 ± 0.020 1983.747 ± 0.016 0.0 Linear fits to 𝑘0𝑧(𝑡) and 𝑘2𝑧(𝑡) (Fig. 20)
2 1983.691 ± 0.011 1983.743 ± 0.015 1983.717 ± 0.029 0.00 Dynamical fits (Fig. 21 top)
3 1983.715 ± 0.019 1983.714 ± 0.009 1983.715 ± 0.015a 3.25 ± 1.00 Dynamical fits (Fig. 21 bottom) - adopted solution
4 1983.719 ± 0.020 1983.719 ± 0.016 [3.25] Quadratic fits to 𝑘0𝑧(𝑡) and 𝑘0𝑟 (𝑡) with 𝜖 from Fit 3
5 1983.717 ± 0.110b Hedman et al. (2011) 𝑚 = 1 vertical corrugations

a UTC 1983 Sep 19.25 ± 5.5 d.
b UTC 1983 Sep 20 ± 40 d.
27 
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Fig. 21. Estimated impact dates 𝑡𝑖 from two regional power spectrum analyses of the RSS, UVIS, and VIMS observations of region R75.5. Top: The inferred impact dates derived
separately from each observation, assuming that 𝑘(𝑡) ∝ (𝑡 − 𝑡𝑖) and ignoring any effects of ring self-gravity (i.e., 𝜖 = 0). Open symbols show the results from the 𝑘2𝑧 measurements
and filled symbols show the values for the 𝑘0𝑧 measurements. There are clear systematic differences between the two modes, with the 𝑚 = 2 vertical mode giving later impact dates
than the 𝑚 = 0 vertical mode. The sloping lines show linear fits over time to the inferred impact dates. Bottom: The corresponding results for an analysis in which the self-gravity
f the ring was included, where the adopted value of 𝜖 = 3.25 × 10−5 yr−1 was chosen to minimize the systematic residual trends seen in the top panel, under the assumption that
he two modes originated at the same time 𝑡𝑖. Note that the slopes of the fits to 𝑘0𝑧 and 𝑘2𝑧 are nearly zero. (For interpretation of the references to color in this figure legend, the
eader is referred to the web version of this article.)
planetary resonances (Baillié et al., 2011; Afigbo et al., 2025). Numer-
cally, [(𝜕 𝐾∕𝜕 𝑟)∕𝐾 × 370 km] = −0.032 ± 0.021 for Fit 3, taking account

of the uncertainty in 𝜖. These results are summarized in Table 8.
The inferred few percent decrease in ring opacity with radius across

R75.5 is only marginally statistically significant. If real, it might re-
lect a modest increase in the average ring particle size over this
ange. Colwell et al. (2018) found no systematic trends in the ef-
ective particle size 𝑎ef f at this location from UVIS photon statistics,
hereas (Jerousek et al., 2020) found a slight increase in the maximum
article size 𝑎max, although this parameter is only weakly constrained

by the differential opacity measurements from Cassini VIMS, UVIS, and
SS occultations. Given the uncertainties, the best we can say is that

he proposed opacity gradient is not ruled out by this pair of studies.
Probably the most important conclusion is that the modest ring surface
density gradient required to offset the systematic errors in the gravity-
free analysis of the C ring ripples is physically plausible and does not
require substantial variations in ring particle properties in this region
of generally uniform optical depth.

4.7. Revisiting the early impact hypothesis

The Voyager RSS Saturn ring occultation observations of 1980 Nov
13 provide a critical test of the original suggestion by Marouf et al.
28 
Table 8
Ring opacity estimates for R75.5a.

Quantity Value Note

𝜏𝑛 0.025 VIMS_omiCet135I
𝜎̄ 1.5 g cm−2 (Afigbo et al., 2025)
𝐾̄ 0.017 cm2 g−1 𝜏𝑛∕𝜎̄
𝛥𝑟 370 km R75.5
1
𝜏𝑛

𝜕 𝜏𝑛
𝜕 𝑟 𝛥𝑟 −0.100 Fit to VIMS_omiCet135I

1
𝜎̄
𝜕 𝜎
𝜕 𝑟 𝛥𝑟 −0.068 ± 0.021 Fit 3 (𝜖 = (3.25 ± 1.00) × 10−5 yr−1)

1
𝐾̄

𝜕 𝐾
𝜕 𝑟 𝛥𝑟 −0.032 ± 0.021 Fit 3 (𝜖 = (3.25 ± 1.00) × 10−5 yr−1)

𝜕 𝜎
𝜕 𝑟 −0.276 ± 0.085 g cm−2 (1000 km)−1

𝜕 𝐾
𝜕 𝑟 −0.00020 ± 0.00012 cm2 g−1 (1000 km)−1

a Radial range 75,300–75,670 km, 𝛥𝑟 = 370 km.

(2011) that the C ring ripples were produced by two impacts several
centuries ago. If this were the case, then there would have been
relatively little change in the wavelengths of the ripples over the 28–37
year interval between the Voyager epoch and the Cassini observations
considered here, which is a small fraction of several hundred years.
The Voyager occultation was observed at low incidence angle (𝐵∗ =
5.93◦, t an𝐵ef f = −0.239), comparable to the Cassini low-incidence RSS
observations, providing high sensitivity to vertical structure. Fig. 25
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Fig. 22. Sensitivity of the derived impact dates to the ring self-gravity parameter 𝜖. Top: The standard deviation 𝜎 of the residuals of linear fits to the ensemble of individual
stimates of the impact dates based on 𝑘2𝑧(𝑡), 𝑘0𝑧(𝑡), and both (𝑘2𝑧(𝑡), 𝑘0𝑧(𝑡)), as a function of 𝜖. Fit 2 corresponds to the top panel of Fig. 21, with 𝜖 = 0 (no ring self-gravity). The

best fit to (𝑘2𝑧, 𝑘0𝑧) corresponds to 𝜖 = (3.25 ± 1.0) × 10−5 yr−1, marked by a vertical solid line in each panel (Fit 3, shown in the lower panel of Fig. 21). Middle: Impact dates 𝑡𝑖
omputed separately for the 𝑚 = 0 and 𝑚 = 2 vertical modes, and jointly for both modes, as a function of 𝜖. For Fit 3, the impact dates for the two modes are virtually identical.
ottom: Slopes of the individual and combined fits to 𝑘2𝑧(𝑡) and 𝑘0𝑧(𝑡), reaching a minimum in absolute value near 𝜖 = 3.25 × 10−5 yr−1.
s
a
d

shows the Voyager 1 RSS optical depth profile of the inner C ring at a
resolution of 0.2 km. Although somewhat noisier than the Cassini obser-
vations, which benefited from an exquisite USO (ultra-stable oscillator)
that permitted accurate diffraction correction at high spatial resolution,
the SNR is adequate to have revealed 1-km periodic structure in the
inner C ring similar to what is shown in Fig. 1. No such structure is
isible in the data.

Further confirmation of the absence of evidence for a centuries-old
impact event is provided by Fig. 26, which shows the power spectrum
for the Voyager RSS profile over the range 75,300–75,635 km. The
predicted wavelengths for 𝑚 = 1 vertical and radial modes, assuming
an impact date 𝑡𝑖 = 1300, are marked by vertical lines. (The date is
chosen such that the windup of the 𝑚 = 1 pattern would produce radial
structure with a wavelength 𝜆 ∼ 1 km characteristic of the observed C
ring ripple structure.) The upper panel shows the raw power spectrum,
 s

29 
and the bottom panel is the CFT with the radius scaled appropriately for
𝑚 = 1 waves with a pattern speed given by the nodal precession rate.
There are no sharp peaks in the vicinity of the predicted wavenumber,
unlike Fig. 12. Peaks near 𝜆 = 1.9 km and 2.8 km are of comparable
trength to additional peaks for 𝜆 > 3 km (off-scale in the figure) and
re far removed from the 𝜆 ∼ 1-km ripples observed in the Cassini
ata.

The absence of any sign of short-wavelength periodic structure in
the 1980 Voyager observations is consistent with our inference that
the C ring ripple structure visible in the Cassini occultation data re-
sulted from an impact that occurred in 1983, several years after the
Voyager encounter with Saturn. A final compelling argument against a
centuries-old origin is provided by estimates of vertical wave damping
rates obtained from N-body collisional simulations in Section 6, which
how that for any plausible initial 𝑚 = 1 wave amplitude and ring
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Fig. 23. Impact dates 𝑡𝑖 estimated from the series of fits listed in Table 7. The thick vertical bar at left has length ±10 days. The dotted horizontal line corresponds to the impact
ate from Fit 3, our adopted fit. Dashed error bars correspond to empirical fits to the observed 𝑘0𝑧(𝑡) and 𝑘2𝑧(𝑡) shown in Fig. 20. Solid error bars correspond to fits for 𝑡𝑖 based
n the averages of dynamical fits to 𝑘0𝑧(𝑟0) and 𝑘2𝑧(𝑟0) derived separately from power spectral analysis of individual occultation profiles. Fit 5 corresponds to the (Hedman et al.,

2011) impact date inferred from an analysis of the 𝜆 ∼ 30 km 𝑚 = 1 vertical corrugations visible in Cassini ISS images.
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Fig. 24. VIMS_omiCet135I (black) and UVIS_KapOri212I (blue) optical depth profiles
or region R75.5, showing very similar mean optical depth and detailed radial structure.
he mean optical depth of the VIMS profile over this region is shown as a black line,
nd a linear fit is shown as an orange line, with a fractional change in optical depth of
0.100 across the 370 km-wide range. The fractional change in surface density derived

rom the adopted Fit 3 is plotted as a green line, with a variation of −0.068 across the
egion. (For interpretation of the references to color in this figure legend, the reader
s referred to the web version of this article.)

particle properties, the final amplitude ∼700 years later would be
ffectively zero.

5. Amplitudes of the 𝒎 = 𝟎 and 𝒎 = 𝟐 vertical waves across the
nner C ring

In this section, we describe several methods to estimate the vertical
amplitudes 𝐴0

𝑧 and 𝐴2
𝑧 of the 𝑚 = 0 and 𝑚 = 2 vertical corrugations, and

heir temporal and spatial variability. Hedman et al. (2011) showed
that the inferred 1983 impact produced 𝑚 = 1, 𝜆 = 30 km corrugations
in Saturn’s rings with vertical amplitudes ranging from as much as
25 m in the low optical depth inner C ring (75,000–78,000 km) to as
little as 2 m near 83,000 km, where the optical depth reaches a local
maximum over a region ∼1000 km in radial extent. Assuming that the
shorter-wavelength ripples visible in the inner C ring were produced
during the same impact event as the 𝑚 = 1 corrugations, a comparison
of the relative amplitudes of these structures could provide important
constraints on the detailed characteristics of the impact itself.

We begin with an overview of the regional variation in the esti-
ated amplitudes 𝐴0 and 𝐴2 derived from power spectra of the optical
𝑧 𝑧 f

30 
depth profiles. For each region shown in Fig. 1, we computed the
CFT spectrum for each occultation event and identified the maximum
observed power within a narrow range of wavelengths centered on the
predicted wavenumbers 𝑘0𝑧 and 𝑘2𝑧, assuming an impact date 𝑡𝑖 = 1983.7.

hen, as we described in Section 4.3 and illustrated in Fig. 12, we
solved iteratively for the model amplitudes 𝐴0

𝑧 and 𝐴2
𝑧 that matched the

bserved CFT power at the two predicted wavelengths, retaining only
hose cases in which the CFT of the observations showed statistically
ignificant power near the expected locations. This idealized approach
s likely to underestimate the true mode amplitudes because the actual
ipple patterns are not perfectly phase-coherent across the 370 km
indow used for the CFT, as can be seen from the wavepacket examples

n Fig. 7. Nevertheless, they provide useful metrics of comparative
amplitudes with time and from region to region.

Fig. 27 shows the results of this procedure for the low-inclination
RSS events (revs 123–133) from 2010 and VIMS events from 2017. In
the upper panel, we show a representative RSS optical depth profile
from this set, with each region marked. Below, we show the RSS
(middle panel) and VIMS (lower panel) mode amplitudes. The thin
blue and orange horizontal lines show the inferred average vertical
amplitudes 𝐴0

𝑧 and 𝐴2
𝑧, respectively, for each region. The mean values

or each region are shown by the thick horizontal lines. The amplitudes
re largest in the low optical depth R76.6 and R77.7 regions and
maller in R74.9, R76.9, and R77.3, where the mean optical depth is
enerally higher.

The scatter in the amplitude measurements in Fig. 27 for each
region is surprisingly large, especially for the RSS observations. Upon
loser inspection, we find that the inferred vertical amplitudes are
trongly correlated with t an𝐵ef f , as illustrated in Fig. 28. Here, we show

the measured amplitudes 𝐴0
𝑧 for RSS (blue) and VIMS (orange) as a

function of t an𝐵ef f for four regions (R74.9, R75.2, R75.5, and R76.6)
or which this correlation is particularly evident. The overplotted lines
how the best-fitting linear regression, with the corresponding corre-
ation coefficient ranging from 𝜌 = 0.54 to 0.92. The RSS observations
pan a larger range of t an𝐵ef f than the VIMS measurements, accounting
or the larger scatter in measured amplitudes just noted. We choose
t an𝐵ef f = 0.4 as a reference value at which to compute the ratio of
the RSS to VIMS amplitudes, computed from the best-fitting linear fits
to each set of measurements, yielding 𝐴0

𝑧(RSS 2010)∕𝐴0
𝑧(VIMS 2017) =

1.94 − 2.54 for these four regions.
The empirical correlation between the estimated vertical amplitudes

nd t an𝐵ef f is somewhat surprising, since our simple geometric model
or the ring optical depth is designed to account for the effects of
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Fig. 25. The radial normal optical depth profile of the inner C ring, from the Voyager 1 RSS X-band occultation of 1980 Nov 13 observed at low incidence angle
(𝐵∗ = 5.93◦ , t an𝐵ef f = −0.239). The RSS data were diffraction-corrected with a processing resolution of 0.2 km. No ripple structure is visible. Compare to Fig. 1.

Fig. 26. CFT spectra of the Voyager RSS Saturn ring occultation profile for R75.5 and a reference radius 𝑟0 = 75,500 km, over a wavelength range chosen to reveal any 1-km
wavelength periodic structure comparable to what is visible in the more recent Cassini observations. The predicted 𝑚 = 1 vertical and radial mode wavelengths are marked for an
assumed impact date 𝑡𝑖 = 1300. The top panel shows the power spectrum using the nominal radius scale, with no evident power in the vicinity of 𝜆 ∼ 1 km. In the bottom panel,
the radius has been scaled to account for the predicted radial dependence of an 𝑚 = 1 spiral structure. Unlike the case for the Cassini observations shown in Fig. 12, there are no
sharpened narrow peaks in the power spectrum characteristic of spiral structure with the expected radial dispersion.

Icarus 431 (2025) 116463 
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Fig. 27. Average mode amplitudes 𝐴0
𝑧 and 𝐴2

𝑧 for each of the regions labeled in the optical depth profile in the upper panel, computed from RSS observations in 2010 (middle
anel) and VIMS observations in 2017 (lower panel). For each labeled region, the CFT power spectrum was computed for each data set and the mean amplitudes 𝐴0

𝑧 and 𝐴2
𝑧 were

stimated by comparing the observed power peaks near the predicted wavenumbers with values from an idealized composite wave model. The individual estimates from each data
set are shown as thin horizontal lines, color-coded by mode, and the mean values for each region are shown as bold horizontal lines. Generally, the amplitudes are anticorrelated

ith ring optical depth. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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viewing geometry (see Eqs. (62) and (63)). However, a similar corre-
ation is present in the estimates of the 𝑚 = 1 corrugation amplitude
erived from near-equinox images (Hedman et al., 2011). In particular,
he brightness variations shown in Figure S2 of that paper, which are

derived from observations obtained at t an𝐵ef f > 0.3, yield corrugation
amplitudes roughly a factor of two greater than those derived from
bservations obtained closer to equinox at t an𝐵ef f < 0.25. We have

not yet identified a sensible way to model these variations of the
inferred vertical amplitude on the effective ring opening angle, and so

e leave that task for future work. Instead, we will simply make use of
he RSS/VIMS amplitude ratios at a common t an𝐵ef f (as illustrated in

Fig. 28) to estimate the time history of the mode amplitudes since the
original impact.

The estimates shown in Fig. 27 are useful for revealing general
trends in the 𝐴0

𝑧 and 𝐴2
𝑧 mode amplitudes across the entire inner C

ing, but to get a more detailed view of radial variations, we make use
f the regional power spectral analysis of R75.5, which provides an
stimate of 𝐴0

𝑧 and 𝐴2
𝑧 for each position of the sliding boxcar window.

he overlap of the data included in successive boxcar windows limits
he radial resolution, but the averaging process increases the accuracy
f the mean amplitudes. Fig. 29 compares the radial profiles of 𝐴0

𝑧(𝑟)
nd 𝐴2

𝑧(𝑟) for the early RSS events (revs 057–067) from 2008, the
ater RSS events (revs 123–133) from 2010, and the VIMS observations
revs 268–274) from 2017. Each amplitude profile is derived from a
eparate occultation data set, and the figure includes results from a
ange of t an𝐵ef f . Note that the amplitudes are somewhat larger than
hose shown in Fig. 27 because the ripples are more phase-coherent

over the limited boxcar radial width than over the full range used
or the power spectrum amplitude estimates. For all three periods, the

amplitudes of both modes rise gradually to a maximum value near
 o

32 
75,600 km. There is also a notable decrease in amplitude with the
assage of time across the three panels. We will return to this pattern in

Section 6 below, when we characterize the temporal damping behavior
of the 𝐴0

𝑧 and 𝐴2
𝑧 amplitudes.

We noted above that power spectrum method of determining wave
amplitudes provides average values that may well underestimate
locally-determined amplitudes, since they are based on a constant-
amplitude model that perfectly matches the normalized radius scale
used to compensate for the dispersion of the wave across the radial
range of the spectrum. An alternative approach is to perform wave-
packet fits similar to those in Fig. 7 for all such features in the
observations, using a two-component model for 𝜏(𝑟) computed for the
eometry of each event and radial location. We identified a set of radial
indows that contained such wavepackets and performed a series of

obust least-squares fits designed to span the full range of parameter
pace and thereby avoid false convergence to a local minimum. Fig. 30

shows the results of this ensemble of fits. The top row shows the results
or R75.5, with fitted amplitudes 𝐴0

𝑧 from each wavepacket fit shown
t left and the corresponding 𝐴2

𝑧 shown at right. RSS observations from
evs 123–133 are plotted in blue, with typical values of ∼5 m (similar to
hose seen in Fig. 14 for R75.5), and VIMS events from 2017 are shown

in orange. For comparison, we include the amplitude profiles obtained
from power spectral analysis (Fig. 29) for these two sets of observations.

he wavepacket fits give somewhat larger local amplitudes than the
egional averages by a factor of about 2. In the bottom row of the
igure, we show the wavepacket results for region R77.7, which exhibit

somewhat higher amplitudes, with typical values of ∼10 m (similar to
those seen in Fig. 14 for R77.7) and reaching 30 m in some cases.
There are no obvious systematic differences between the amplitudes
f the 2010 RSS wavepacket fits and the VIMS results from 2017, but
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Fig. 28. Trends in the inferred RSS (2010) and VIMS (2017) mode amplitudes 𝐴0
𝑧 with t an𝐵ef f , for radial regions R74.9, R75.2, R75.5, and R76.6 (from upper left to lower right).

he best-fitting linear model to each set of observations is shown as a solid line, with correlation coefficient 𝜌 as given in the legend. The ratio of the RSS (2010) and VIMS (2017)
ode amplitudes is estimated in each case from the values of the fitted lines at t an𝐵ef f = 0.4, shown by the vertical dashed lines, with 𝐴0

𝑧(RSS 2010)∕𝐴0
𝑧(VIMS 2017) = 1.94 − 2.54

or these four regions. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 29. Mode amplitudes 𝐴0
𝑧 and 𝐴2

𝑧 derived from regional power spectra of region R75.5 (75,300–75,670 km) for three time periods: the 2008 early RSS observations (revs
57–067) at left, the later 2010 low-inclination RSS events (revs 123–133) in the middle panel, and the 2017 series of VIMS observations (revs 268–274) at right. A window
alfwidth 𝑤 = 200 km was used in all cases. Both modes show a gradually rising amplitude with radius, reaching a peak near 75,575 km. There is a significant decline in the
mplitudes of both modes over the nine year interval from left to right, suggesting that there has been detectable damping on a decadal timescale. (Note that the observations
pan a range of t an𝐵ef f , which as shown in Fig. 28 has a systematic effect on the inferred amplitudes.) (For interpretation of the references to color in this figure legend, the
eader is referred to the web version of this article.)
a

as a reminder the two sets of observations sample different ranges of
t an𝐵ef f , which systematically affects the inferred amplitudes, as shown
in Fig. 28.

6. Damping behavior

In this section we address the damping of vertical and radial kine-
atic waves via direct collisional simulations. We employ a local
33 
method based on a co-moving simulation region with periodic bound-
ry conditions (Salo et al., 2018). In local simulations, only the 𝑚 = 0

mode can be directly analyzed. However, due to the small pitch angle
of the 𝑚 ≠ 0 waves we may assume that their damping behavior is
similar to the axisymmetric mode. Due to the periodic boundaries, the
radial wavelength of the simulated wave must be an integer fraction of
the radial size of the calculation region. In the actual rings, kinematic
perturbations wind up with time, with a rate determined by the local
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Fig. 30. Mode amplitudes 𝐴0
𝑧 and 𝐴2

𝑧 derived from model fits to individual wavepackets. The top row shows the results for region R75.5, with the radial location of each wavepacket
on the horizontal axis and the corresponding fitted mode amplitudes 𝐴0

𝑧 and 𝐴2
𝑧 shown in the left and right panels. Blue symbols mark RSS observations from 2010 and orange

symbols mark VIMS observations from 2017. For comparison, the radial trends in amplitude computed from regional power spectra (Fig. 29) are included as dashed lines. The
bottom panels show the results of wavepacket fits for region R77.7, with somewhat larger average amplitudes than in R75.5. Similar results are visible in Fig. 14, which shows
∼1 km wavelength ripples with vertical amplitudes of ∼5–10 m, and somewhat larger amplitudes for R77.7 than for R75.5.
t

gradient of 𝜅 and 𝜇 for radial and vertical modes, respectively (see
qs. (8) and (9)). Our strategy is to measure the damping rate using
imulations with various fixed radial extents, and to determine how

the amplitude decay rates scale with the viscosity of the system and
the instantaneous wavelength of the wave. This enables us to deduce
the expected time evolution of the wave amplitude, which can then be
compared with the radial amplitude variations derived from occultation
observations.

Since self-gravity has only a small effect (quantified below) on
he viscosity of low optical depth regions of the C ring, most of
ur simulations assume non-gravitating particles. For simplicity, the

collisions assume a constant coefficient of restitution 𝜖𝑛, in which
case the simulated viscosities scale with 𝑅2𝛺, where 𝑅 is the particle
radius and 𝛺 the angular velocity. The proportionality factor depends
on the dynamical optical depth 𝜏 and the assumed value of 𝜖𝑛, with
viscosity increasing for less dissipative impacts. For small 𝜏 ≲ 0.5,
viscosity increases linearly with 𝜏. We may thus easily scale simulations
performed with a given set of 𝑅, 𝜏, and 𝛺 to other cases. For our
nominal parameters we use 𝑅 = 1 m, 𝜏 = 0.05 (corresponding to 𝜏𝑅𝑆 𝑆 =
0.1), and a reference orbital radius 𝑎 = 75,000 km. In the standard
34 
𝜏 = 0.05 simulation, the number of test particles is N = 4000, the radial
size of the simulation region is 𝐿𝑥 = 1000 particle radii and tangential
size is 𝐿𝑦=251.32 particle radii. For some simulations, we used larger
𝑁 . We present most of the simulation results in a non-dimensional
form, except when compared directly to observations.

A typical simulation example of wave amplitude damping is shown
in Fig. 31. A radially-dependent sinusoidal perturbation was imposed
in either the z-coordinate (left) or the radial velocity (right) of the
particles, with wavelength equal to the radial size of simulation region
(500 m). The initial epicyclic amplitude was 20 m in both cases. Labels
indicate the time since the perturbation, measured in orbital periods;
before the perturbation was applied, the system was evolved for 100
orbital periods to ensure that a steady state had been reached. Notice
the substantial vertical and radial damping over just 2000 orbital
periods (a bit more than a year) for this high-viscosity case.

In the hydrodynamic approximation, ignoring the ring’s self-gravity,
he amplitude 𝑍 of a vertical corrugation satisfies the equations
𝜕2𝑍 = −𝜇2𝑍 + 𝜈𝑧

𝜕2𝑊 (78)

𝜕 𝑡2 𝜕 𝑟2
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Fig. 31. Example of wave damping in N-body collisional simulations, for dynamical optical depth 𝜏 = 0.05, coefficient of restitution 𝜖𝑛 = 0.5, and particle radius 𝑅 = 1 m. A
adially-dependent sinusoidal perturbation was imposed in either the z-coordinate (left) or the radial velocity (right) of the particles, with wavelength equal to the radial size of
imulation region. Labels indicate the time since the perturbation, measured in orbital periods. In this simulation, the self-gravity of ring particles was not included. However,
imilar damping behavior is seen in simulations with self-gravity. See text for details.
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𝑊 = 𝜕 𝑍
𝜕 𝑡 . (79)

This system has a solution of an exponentially damped sinusoidal
scillation:

𝑍(𝑡) = 𝑍(0) cos(𝜔𝑡 + 𝑘𝑧𝑟)𝑒−𝛾 𝑡, (80)

where

𝜔2 = 𝜇2 − 𝛾2 (81)

and

𝛾 = 1
2
𝜈𝑧𝑘

2
𝑧 (82)

In practice, 𝛾 ≪ 𝜇 and the wave oscillation frequency 𝜔 ≈ 𝜇,
whereas the exponential damping rate depends on viscosity 𝜈 and the
wavenumber squared 𝑘2𝑧.

6.1. Simulation results

To confirm the anticipated 𝑘2𝑧 dependence of the damping rates and
to measure the viscosities 𝜈𝑧, we performed simulations where a vertical
perturbation was added to the positions and velocities of the particles,
depending on their radial 𝑥 position as

𝛥𝑧 = 𝐴𝑧 sin(𝑘𝑧𝑥) (83)
𝛥𝑣𝑧 = 𝐴𝑧𝛺 cos(𝑘𝑧𝑥), (84)

which produces a traveling sinusoidal wave with 𝑍(0) = 𝐴𝑧. In most
f our simulations, 𝑘 = 2𝜋∕𝐿 , where 𝐿 is the radial extent of
𝑧 𝑥 𝑥

35 
the calculation region, corresponding to one wavelength. The above
erturbation is applied after the simulation system has settled to a
teady state, characterized by a velocity dispersion determined by the
ssumed 𝜖𝑛. For small 𝜏 → 0, the velocity dispersion does not depend
n optical depth. During the simulation, a radial Fourier fit to the

mean vertical position of the particles is performed (see Fig. 31) and
tabulated as a function of time; in the case of a traveling wave, the
itted instantaneous Fourier amplitude equals the wave amplitude. We

then perform an exponential fit to the wave amplitude versus time:

𝐴𝑧(𝑡) = 𝐴𝑧(0)𝑒−𝛾 𝑡 (85)
= 𝐴𝑧(0)𝑒−𝑡∕𝑡𝑒𝑧 , (86)

where 𝑡𝑒𝑧 is the e-folding time of vertical amplitude. In non-dimensional
form,

𝑇𝑒𝑧 = 𝑡𝑒𝑧∕𝑡𝑝𝑒𝑟 =
2

(2𝜋)3
( 𝜈𝑧
𝛺 𝑅2

)−1
(

𝜆𝑧
𝑅

)2
, (87)

where 𝜆𝑧 = 2𝜋∕𝑘𝑧 and 𝑡𝑝𝑒𝑟 = 2𝜋∕𝛺 is the orbital period.
In the hydrodynamic treatment of vertical waves, the damping

factor 𝜈𝑧 is often identified with the kinematic viscosity 𝜈, related
o the radial transport rate of angular momentum. However, since
ydrodynamics provides only an approximation for the ring behavior
see, e.g., Latter and Ogilvie, 2008 and Schmidt et al., 2009), we will

simply refer to 𝜈𝑧 as the vertical viscosity. In our simulations, the
derived value of 𝜈𝑧 provides a direct measure of the rate of wave
damping, which is the quantity we want to compare with observations.
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Fig. 32. Damping of vertical (solid curves) and radial (dashed curves) oscillation amplitudes. Left panel: Each curve corresponds to time evolution in a separate run, with a
different radial size of the local simulation region. A radius-dependent sinusoidal perturbation was imposed in either the z-coordinate or the radial velocity of the particles, after
𝑇 = 100 orbital periods, with wavelength equal to radial size of simulation region, and initial amplitude corresponding to 20 particle radii. The e-folding times of exponential
decay were obtained from linear fits of the logarithm of amplitude versus time, over the range indicated by thicker lines (the same time range was used for runs with radial
nd vertical perturbations; for clarity, these are marked only in 𝐴𝑟). Right panel: The e-folding time of the perturbation, measured in orbital periods. A constant coefficient of
estitution 𝜖𝑛 = 0.5 and the dynamical optical depth 𝜏 = 0.05 were assumed. In case of constant 𝜖𝑛 the viscosities scale proportionally to 𝛺 𝑅2. The lines indicate the quadratic
ependence between 𝑇𝑒 and 𝜆 using the fitted values of 𝜈𝑧 and 𝜈𝑟 indicated by the labels.
0

s

For the damping of radial waves, a similar equation applies:

𝑇𝑒𝑟 = 𝑡𝑒𝑟∕𝑡𝑝𝑒𝑟 =
2

(2𝜋)3
( 𝜈𝑟
𝛺 𝑅2

)−1
(

𝜆𝑟
𝑅

)2
, (88)

where 𝜆𝑟 = 2𝜋∕𝑘𝑟. In the hydrodynamic approximation, the 𝜈𝑟 term
n Eq. (88) is replaced by 7𝜈∕3 + 𝜉, where 𝜉 is the bulk viscosity (Shu,

1984). The identification of 𝜈𝑟 with the hydrodynamic counterpart is as
problematic as that of 𝜈𝑧, even more so due to ambiguity in the meaning
f bulk viscosity for planetary rings. In principle, 𝜉 can be directly
easured in N-body simulations, as a proportionality factor between

adial compression and the deviation of pressure from its steady-state
alue (Salo et al., 2001; Schmidt et al., 2001). However, in practice,
acts merely as a proxy for the energy exchange between various

omponents of velocity ellipsoid induced by compression (Latter and
gilvie, 2008), and is not properly captured by the hydrodynamic treat-

ment, which assumes an isotropic velocity distribution. Regardless of
ts hydrodynamic interpretation, the radial viscosity 𝜈𝑟 derived directly
rom simulations is the quantity we want to compare to observations.

For practical reasons, when measuring the radial damping, the
initial perturbation is added only to radial velocities

𝛥𝑣𝑥 = 𝐴𝑟𝛺 cos(𝑘𝑟𝑥), (89)

rather than to particle positions, since adding radial displacements
ould result in particle overlaps. The radial wave produced in this man-

ner is a standing wave, and its instantaneous amplitude derived from
the Fourier fit equals the wave amplitude only after an integer number
of perturbation half-periods. Since our applied sampling interval of
ourier amplitudes (roughly 40 times/orbit) is not an exact fraction of
rbital period, we first tabulate the maximum of radial velocity Fourier

amplitudes over five orbital periods and fit these maximum values over
36 
the corresponding tabulation times, prior to performing an exponential
fit to the decay of 𝐴𝑟 with time.

Fig. 32 compares the amplitude damping over time for different
perturbation wavelengths. In the left panel the time evolution of ver-
tical (solid) and radial amplitudes (dashed) is shown, while in the
right panel the fitted damping parameters, converted to 𝑇𝑒, are plotted
as a function of 𝜆∕𝑅. (The examples shown in Fig. 31 are from the
𝜆∕𝑅 = 500 simulations.) The simulated decay rates clearly confirm
the expected quadratic trend predicted by a hydrodynamic treatment.
The labels indicate the fitted values of 𝜈𝑧 and 𝜈𝑟, corresponding to the
lines shown overplotted on the individual damping coefficients derived
for various wavelengths. As a general result, the ratio 𝜈𝑟∕𝜈𝑧 ≈ 1.4,
consistent with the faster decay of the radial perturbation seen in
Fig. 31.

Fig. 33 summarizes the fitted values of 𝜈𝑧 and 𝜈𝑟 from simulations
performed with different values of 𝜖𝑛 and 𝜏. For less dissipative particles
(larger 𝜖𝑛) the steady-state velocity is larger, which leads to strongly
increased 𝜈𝑧 and 𝜈𝑟. Roughly, viscosities are proportional to the square
of the velocity dispersion. Measured in terms of effective vertical

thickness 𝐻 =
√

12𝑧2 (which is proportional to the velocity dispersion),
𝐻∕𝑅 = 2.5 for 𝜖𝑛 = 0.1, increasing to 𝐻∕𝑅 ≈ 6 and 12 for 𝜖𝑛 = 0.5 and
.6, respectively. Over this range of elasticity, the ratio 𝜈𝑧∕𝐻2 varies

by less than 10%. This behavior of 𝜈𝑧 and 𝜈𝑟 is consistent with the
imilar trends of kinematic viscosity (Salo et al., 2018), although the

magnitudes are different: the fitted 𝜈𝑧 is roughly a factor ten larger
than the kinematic viscosity measured from the same simulations. The
expected small-𝜏 linear dependence of viscosities on optical depth is
also confirmed (see the inset figure).
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Fig. 33. The dependence of measured 𝜈𝑧 and 𝜈𝑟 on 𝜖𝑛, for three different optical depths.
The inset figure shows 𝜈𝑧 as a function of 𝜏 for 𝜖𝑛 = 0.1, 0.3, 0.5, highlighting the linear
dependence on optical depth. In all cases 𝜈𝑟∕𝜈𝑧 ∼ 1.4.

Fig. 34. Effect of damping on the initial 𝑚 ≠ 1 perturbation amplitude. The time
evolution of vertical (solid curves) and radial (dashed) amplitudes is shown for 𝜖𝑛 = 0.50
and 𝜏 = 0.05. Five simulations are compared, using larger and larger initial amplitudes;
the black curves correspond to Fig. 32 with 𝐴(0)∕𝜆 = 0.02. Doubling the fractional
mplitude to 0.04 leads to nearly identical exponential decay (note that here log–log
xes are used). However, for still larger 𝐴(0)∕𝜆 the amplitudes show an increasingly
rastic initial drop. This collapse is particularly strong for the vertical amplitudes and
akes place when 𝐴(0)∕𝜆 ≳ 0.08.

In all of the above examples, the initial perturbation had a small
epicyclic amplitude compared to the radial wavelength of the distur-
bance. In this case the decay of amplitudes followed the expected
exponential trend. Fig. 34 explores what happens if the initial ampli-
tude is large. Compared to the nominal case of Fig. 32, where 𝐴(0)∕𝜆𝑧 =
0.02, this ratio is increased by successive factors of two. Doubling the
𝐴(0)∕𝜆𝑧 ratio yields identical behavior, but when 𝐴(0)∕𝜆𝑧 is further
increased, there is a rapid initial collapse of the amplitude. Signs of
this are evident when the vertical amplitude reaches 𝐴(0)∕𝜆𝑧 = 0.08
(note that this corresponds to a large maximal slope, 𝜕 𝛥𝑧

𝜕 𝑥 = 2𝜋 𝐴(0)∕𝜆 ≈
0.5), and become catastrophic for larger values of 𝐴(0)∕𝜆𝑧. For radial
erturbations, the amplitude drop is weaker but still pronounced when
(0)∕𝜆𝑟 ≳ 0.16.

As tests of our numerical results, we confirmed that the decay rates
f vertical and radial amplitudes are unaffected if both waves are
imultaneously present (using initial amplitudes 𝐴(0)∕𝜆 = 0.02). We
lso confirmed that the tangential size of the calculation region was
arge enough not to affect damping rates, and that simulating waves
 d

37 
with several wavelengths within the calculation region gave similar
esults to that of a single wavelength.

The simulations just described did not include the effects of ring
self-gravity. In the case of the C ring, the contribution of gravitational
viscosity due to self-gravity wakes can be expected to be insignifi-
cant compared to total viscosity, in particular when such small opti-
cal depths (𝜏 < 0.5) are considered.8 However, even at low optical
depths, the gravitational binary encounters between particles modify
the steady-state velocity dispersion and impact frequency, and thereby
also change somewhat the local and non-local contributions to viscos-
ity. To quantify this effect on the expected damping rates, we carried
out additional N-body simulations that included self-gravity, with 𝜏 =
0.05, 𝜌 = 900 kg m−3, and 𝑎 = 75,000, covering 𝜖𝑛 = 0.1 − 0.6. As
shown in Fig. 35, for 𝜖𝑛 < 0.4 the inclusion of self-gravity enhances
both 𝜈𝑧 and 𝜈𝑟, by as much as a factor of two for 𝜖𝑛 = 0.1. This follows
rom the gravitational scattering in close binary encounters, which

correspond to completely elastic impacts, so that the combined effect
of dissipative physical impacts and gravitational encounters is similar
to that obtained by using a somewhat larger effective 𝜖𝑛 (see Hämeen-

nttila and Salo, 1993). However, gravitational scattering is effective
nly as long as the velocity dispersion is less than or of the order of

the mutual escape velocity of particle pairs. Thus the increase in 𝜈𝑧
and 𝜈𝑟 gets smaller for larger 𝜖𝑛, as the velocity dispersion maintained
y impacts alone becomes comparable to or larger than the mutual
scape velocity. Furthermore, for 𝜖𝑛 > 0.5, the inclusion of self-gravity
ctually reduces the steady-state velocity dispersion and thereby also
𝑟 and 𝜈𝑧. This follows from the gravitational speed-up of physical
mpact velocities, leading to slightly enhanced dissipation and thereby
 reduced steady-state velocity dispersion, and consequently to smaller
iscosities.

Overall, the inclusion of self-gravity makes the damping rates some-
what less dependent on 𝜖𝑛. The scaling of damping rates with particle
size and optical depth (as long as 𝜏 is small) is similar to that in non-
gravitating simulations, with 𝜈𝑟∕𝑧 ∝ 𝜏 𝑅2. Note that the changes due
to self-gravity shown in Fig. 35 represent a maximum effect one can
xpect, as the actual ring particles are likely to have lower internal
ensity than that of solid ice, as assumed in the simulations.

6.2. Application to observations

From our N-body simulations of vertical and radial wave perturba-
tions, we have established how the damping behavior depends on the
nstantaneous perturbation wavelength as a function of 𝜏, 𝑅 and 𝜖𝑛. We

now estimate the time dependence of the damping. Since the timescale
of wavelength evolution is long (years) compared to the establishment
of ring steady-state (less than 50 orbital periods, or about a week, even
for 𝜏 as small as 0.05), we can combine Eq. (86) for the amplitude
decay,

𝑑 𝐴∕𝑑 𝑡 = −𝛾 𝐴 (90)

= −1
2
𝜈 𝑘2𝐴 (91)

with the time evolution of the wavenumber of the perturbation,

𝑘(𝑟, 𝑡) = 𝑘0(𝑟) + 𝑘̇(𝑟)𝑡, (92)

where 𝑘0 is the initial wavenumber at 𝑡 = 0, and 𝑘̇ is the windup rate
depending on the type of perturbation (see Eqs. (31), (32), (36), and
(37)). Combining these equations gives

𝑑 𝐴∕𝐴 = −1
2
𝜈(𝑘0 + 𝑘̇𝑡)2𝑑 𝑡, (93)

8 See, for example, Fig. 11 in Salo et al. (2018), or Fig. 7 in Daisaka et al.
(2001); assuming an internal density 𝜌 < 900 kg m−3 and Saturnocentric
istance 75,000 km corresponds to 𝑟 < 0.62.
ℎ
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Fig. 35. The effect of self-gravity on the viscosity factors 𝜈𝑟 and 𝜈𝑧, as a function of
particle elasticity 𝜖𝑛. The thick lines are the same non-gravitating curves for 𝜏 = 0.05
as in Fig. 33. The thin lines are the same when including self-gravity, assuming a
Saturnocentric distance 75,000 km and particle internal density 𝜌 = 900 kg m−3.
For smaller 𝜌 or smaller distance, the self-gravitating curve would be closer to non-
gravitating curve. The effect of self-gravity is to reduce the dependence of 𝜈𝑟 and 𝜈𝑧
on 𝜖𝑛. The scaling of viscosity factors with particle size and optical depth is similar to
the non-gravitating case.

which integrates to
𝐴(𝑡) = 𝐴(0) exp

[

−1
2
𝜈
( 1
3
𝑘̇2𝑡3 + 𝑘̇𝑘0𝑡2 + 𝑘02𝑡

)]

(94)

= 𝐴(0) exp
[

−1
6
𝜈𝑘̇2𝑡3

]

, (95)

where the second expression follows from setting the initial wavenum-
er 𝑘0 to zero (infinite wavelength), and 𝜈 is set to 𝜈𝑧 or 𝜈𝑟, depending
n the assumed perturbation.9

Fig. 36 applies Eq. (95) to estimate the damping of the initial
perturbation amplitude in 2017.5 (i.e., 33.8 years since the perturbation
n 1983.7). The fractional amplitude is calculated using viscosities
ased on the 𝜏𝑅𝑆 𝑆 profile of the observed C ring region, utilizing the
𝜈𝑧 and 𝜈𝑟 values derived above for 𝜏 = 0.05, the assumed coefficient
of restitution 𝜖𝑛, and particle radius 𝑅. At the upper left, we assume
𝜖𝑛 = 0.5 and 𝑅 = 1 m. In this case, in regions with 𝜏𝑅𝑆 𝑆 = 2𝜏 ∼ 0.05,
the current vertical amplitudes are estimated to be ∼20% of the initial
values, whereas the surviving radial amplitudes are only half of that.
Because of the 𝜏 dependence of viscosities, in regions of 𝜏𝑅𝑆 𝑆 ≳ 0.1 the
nitial perturbation has been damped nearly completely. At the upper
ight, 𝜖𝑛 is reduced to 0.3, resulting in substantially less damping than
or 𝜖𝑛 = 0.5. On the other hand, increasing the particle size to 𝑅 = 2 m
lower left) results in very strong damping across the entire inner C
ing. For comparison, the lower right shows the estimated damping of
n 𝑚 = 1 pattern over a time span of 25.9 yr (appropriate for the Cassini
ow-inclination images used in the Hedman et al., 2011 analysis). We

have assumed that the measured behavior of 𝑚 ≠ 1 waves can be

9 It is of interest to compare the 𝑒−(𝑡∕𝑡𝑑 )3 dependence in Eq. (95), where
𝑡𝑑 3 = 6∕(𝜈𝑟𝑘̇2) = 8∕3 𝑎2∕(𝜈𝑟𝛺2), to Eq. (65) in Hedman et al. (2022), having a
similar form with 𝑡𝑑 3 = 8∕7 𝑎2∕(𝜈 𝛺2) for 𝑚 = 0 or 2, when letting 𝜅𝐿 = 𝛺 and
𝑟𝐿 = 𝑎. These are equal if we identify 𝜈𝑟 = 7∕3 𝜈+𝜉, and omit the bulk viscosity
𝜉, as done by Hedman et al. (2022). In our case, the 𝑒−(𝑡∕𝑡𝑑 )3 dependence
follows from the wrapping of the kinematic wave with time, while in the
ase of a forced density wave (or bending wave), the wavelength is reduced
hen the wave propagates away from the exact resonance. This leads to a
ave amplitude proportional to 𝑒−(𝑥∕𝑥vis)3 (Shu, 1984 Eq. (98)), where 𝑥 is the

radial displacement from exact resonance. Converting the radial displacement
to time by dividing by the wave group velocity leads to the time dependence
in Hedman et al. (2022) Eq. (65), or Eqs. (63) and (98) in Shu (1984).
38 
directly applied to an 𝑚 = 1 perturbation, and used the appropriately
corrected windup rate, with the radial gradient of 𝛺̇ replacing gradient
of 𝜇 for vertical and gradient of 𝜛̇ instead of gradient of 𝜅 for radial
wavelength evolution. Clearly, even for this quite viscous case (𝜖𝑛 =
.50, 𝑅 = 2 m), the expected damping is negligible because of the much
onger wavelength of the wave pattern.10

6.3. Ring particle properties and initial perturbation amplitudes

The systematic decrease in mode amplitudes seen between the 2008
SS and the 2017 VIMS observations suggests that substantial mode
amping has occurred on a decadal timescale. We now compare the
bserved damping behavior to theoretical models of the wavelength-
ependent damping rates to estimate the mode amplitudes 𝐴0

𝑧 and 𝐴2
𝑧

t the time of their formation, and their sensitivity to the assumed
lasticity and viscosity of the rings. Fig. 37 shows the vertical 𝑚 =
0 amplitude damping factor as a function of radius for four N-body
simulations, in the same format as Fig. 36. In each panel, the observed
average 𝑚 = 0 vertical mode amplitude 𝐴0

𝑧 from the late RSS obser-
vations, normalized to match the amplitude damping factor for R75.5,
is shown as a horizontal bar spanning the radial range of each of the
eight defined regions in Fig. 1. In the upper left panel, 𝜖𝑛 = 0.5 and

= 1 m. The next two panels show the corresponding results for less
lastic particles, with 𝜖𝑛 = 0.3 (upper right) and 𝜖𝑛 = 0.1 (lower left).

In these successive runs, 𝜈𝑧 decreases, damping is reduced, and the
amplitude damping factor in R75.5 systematically increases (i.e., the
mode amplitude after 33.8 years is closer to the initial amplitude as 𝜈𝑧
and 𝜖𝑛 are decreased). For comparison, we include a final example with
𝜖𝑛 = 0.30 and particle radius 𝑅 = 2 m, showing substantial damping.

he simulations in Fig. 36 did not include self-gravity. However, based
n Fig. 35, the upper-left plot for 𝑅 = 1 m and 𝜖𝑛 = 0.50 would

be essentially unchanged if self-gravity were included, and that of the
pper-right plot with 𝜖𝑛 = 0.3 with no self-gravity would be very similar
o the case of 𝜖𝑛 = 0.1 with self-gravity.

Qualitatively, the most elastic simulation in Fig. 37, with 𝜖𝑛 = 0.5,
comes closest to matching the radial variations in the scaled regionally
averaged amplitudes 𝐴0

𝑧 obtained from 2010 RSS observations. The
damping factor in R75.5 is ∼0.2, and the observed scaled amplitudes
(the horizontal bars) for most regions are in reasonable agreement with
the blue curve showing the amplitude damping factor computed using
the observed optical depth profile plotted below. The agreement is less
satisfactory for 𝜖𝑛 = 0.3, while the inelastic 𝜖𝑛 = 0.1 simulation gives
the poorest match: the predicted amplitude damping factors in high
optical depth regions such as R74.9, R76.9, and R77.3 fall above the
observations, while they fall below the observations for the low optical
depth region R76.6.

To refine this assessment, we now compare the observed time
variability of 𝐴0

𝑧 and 𝐴2
𝑧 with the predicted trends from Eq. (95). Fig. 38

shows the observed amplitudes in region R75.5 for the three separate
time periods corresponding to the 2008 and 2010 RSS events and the
2017 VIMS events for t an𝐵ef f = 0.4, taking account of the observed
dependence of the inferred mode amplitude on t an𝐵ef f for t an𝐵ef f ≤ 0.5
hown in Fig. 28, along with the theoretical damping curves computed

from the model parameters assumed for an expanded suite of models
such as those shown in Fig. 37. All observed and model amplitudes have
been normalized to unity at the average date of the VIMS observations
in 2017. These are best matched by the 𝜖𝑛 = 0.5 N-body results,

10 The results would be quite different, however, for the scenario in which
the C ring ripples resulted from a closely-spaced pair of initial 𝑚 = 1 vertical
disturbances several centuries ago (Marouf et al., 2011), owing to the cubic
dependence on time in the exponent of the expression for the damping factor
in Eq. (95). In this case, for R75.5, the computed vertical damping factor is
a vanishingly small ∼10−45, indicating that no evidence would remain of the
initial disturbance during the Cassini era, independent of the initial amplitudes
of the perturbations or the details of the assumed particle properties.
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Fig. 36. Amplitude damping factors after 33.8 years for a variety of assumed ring particle properties, using the approximation that 𝜈𝑧 and 𝜈𝑟 are directly proportional to optical
depth 𝜏𝑛. Upper left: The non-dimensional values of 𝜈𝑧 and 𝜈𝑟 are scaled to physical units assuming a particle size 𝑅 = 1 m and 𝛺 scaled appropriately with the orbital radius. The
estimated viscosities are derived from the numerical simulations for 𝜖𝑛 = 0.50. For comparison, the RSS_133E_K25 optical depth profile is shown on the same radial scale (𝜏𝑅𝑆 𝑆 = 2𝜏
is assumed). Upper right: same except using viscosities for 𝜖𝑛 = 0.3. Lower left: 𝜖𝑛 = 0.3 but with 2 m particles. Lower right: damping of 𝑚 = 1 waves after 25.9 years, using the
viscosities for 𝜖𝑛 = 0.5 with 𝑅 =2 m particles. (Note the change in vertical scale.)
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consistent with our qualitative inference from examination of the trends
n Fig. 37. For 𝜖𝑛 ≤ 0.4, the predicted damping between 2008 and
017 is much smaller than observed, while for the larger particle case

(𝜖𝑛 = 0.3, 𝑅 = 2 m) the predicted damping is far too large. These
results suggest that the initial amplitudes of the 𝐴0

𝑧 and 𝐴2
𝑧 modes at

the time of formation were ∼4 to 7 times larger than the observed
2017 VIMS values. Assuming 𝑅 = 1 m and 𝜖𝑛 = 0.5, the corresponding
viscosities from the N-body simulations are 𝜈𝑧 = 1.6 cm2 s−1 and
𝜈𝑟 = 2.2 cm2 s−1, for R75.5. For comparison, Afigbo et al. (2025) found
𝜈𝑟 ≃ 3 − 20 cm2 s−1 from an analysis of density waves in the inner C
ing between 74,500–77,300 km.

7. Considerations for the impact formation mechanism

We have shown that the 𝑚 = 0 and m = 2 vertical modes responsible
or the 𝜆 ∼ 1 km ripple structure evident in Cassini occultation profiles
f the inner C ring originated at nearly the same time (within a few
ays of each other at most), and are likely to have had a common origin
ith the longer-wavelength (𝜆 ∼ 30 km) vertical corrugations visible in
assini images and attributed to an impact swarm in 1983.7 (Hedman
t al., 2011). Similarly, the ripples are vertical corrugations resulting
rom the windup of 𝑚 = 0 and 𝑚 = 2 vertical modes with slightly differ-
nt pattern speeds, producing prominent beat patterns in wavepackets
bserved in the low-optical depth inner C ring. One may think of the
= 0, 1, and 2 vertical modes conceptually as Fourier components of

he original vertical distortion of the ring plane by an impact swarm,
ith the relative initial amplitudes of the modes implied by our analysis
roviding constraints on the details of the formation mechanism. We
 h

39 
find no signatures for 𝑚 = 3 vertical modes in the occultation data,
ut the predicted wavelength (𝜆 ∼ 0.5 km) is below the resolution
imit of many of the data sets. Significantly, no counterpart 𝜆 ∼ 1
m radial modes with 𝑚 = 0 or 𝑚 = 2 have been found in the
ccultation observations, with an estimated upper limit in amplitude
f a few m. This may reflect a relative inefficiency in the production of
adial modes for the actual geometry of the impact. Supporting this
ossibility, Hedman et al. (2015) found from an analysis of D ring
bservations that vertical motions induced by the 1983.7 event were
.3 ± 0.5 times larger than the corresponding in-plane motions. On the
ther hand, we have shown from N-body simulations that the radial
iscosity is larger than the vertical viscosity (𝜈𝑟 ≃ 1.4𝜈𝑧). For elastic
ollisions (see Fig. 36, 𝜖𝑛 = 0.5), the observed 2017 amplitudes for
𝑚 ≠ 1 vertical modes are ∼20% of the initial values, whereas the
surviving radial amplitudes are only half of that. Thus, it is possible
than any initial radial disturbances have been damped below the level
of detectability in the occultation data.

When comparing observed mode amplitudes with predictions from
impact swarm models, recall that most of our amplitude estimates
esult from power spectrum analysis of regions more than 100 km in

radial extent, and that even taking into account the radial dependence
of the mode windup rate, the phase coherence of 𝜆 ∼1 km waves across
he region is imperfect. Consequently, these average amplitudes are
ikely to be underestimates of the actual local vertical excursions. As
e noted above, such local estimates from wavepacket fits are up to
 factor of two or more larger than the regional averages. Under the
ssumption that the initial 𝑚 = 0 and 𝑚 = 2 vertical amplitudes were
igher by a factor of ∼4 − 7 than in 2017, the wavepacket fits shown in
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Fig. 37. Amplitude damping factors for an 𝑚 = 0 vertical mode from N-body simulations, with 𝜖𝑛 = 0.5 (upper left), 𝜖𝑛 = 0.3 (upper right), and 𝜖𝑛 = 0.1 (lower left, with radial
ranges labeled), all assuming a particle size 𝑅 = 1 m. For comparison, 𝜖𝑛 = 0.3 and 𝑅 = 2 m in the simulation at lower right. In each panel, the observed average 𝑚 = 0 vertical
mode amplitude 𝐴0

𝑧 from the 2010 RSS observations, normalized to match the amplitude damping factor for R75.5, is shown as a horizontal bar spanning the radial range of each
of the eight regions defined in Fig. 1. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 30 imply typical initial amplitudes of the eventual ripple structure
f 10–30 m, and possibly as large as 100 m in the outer regions of
77.7.

From direct inversion of a sample wavepacket (Fig. 14), we showed
that the vertical structure of the ring in region R77.7 includes both
the short-wavelength corrugations and a 𝜆 ∼ 25 − 30 km periodic
signature of amplitude 𝐴𝑧 ∼ 75 m, a factor of several larger than
the average 𝑚 = 1 amplitude for this region found by Hedman et al.
(2011). However, all of these estimates are predicated on a simple
model for the variation in predicted wave optical depth with viewing
geometry that appears to be contradicted by the observations shown
n Fig. 28, suggesting that we may be missing something fundamental
n our understanding of ring vertical structure. Our estimates of the
elative mode amplitudes for a given t an𝐵ef f are probably more reliable
hat the amplitudes themselves.

Finally, we note that 𝑚 = 0 and 𝑚 = 2 perturbations on the ring will
freely oscillate on timescales comparable to an orbit period (∼8 h), and
roducing such a global pattern with an impact swarm may be impeded
f the impacting particles take too long to pass through the rings.

8. Conclusions

Our principal conclusions are as follows:

• Short-wavelength (𝜆 ∼ 1 km) ripple structure seen in low-
inclination Cassini RSS, VIMS, and UVIS observations of the inner
40 
C ring (74,500–77,765 km) is associated with vertical corruga-
tions produced by simultaneous 𝑚 = 0 and 𝑚 = 2 vertical modes
with slightly different pattern speeds, resulting in a characteristic
beating pattern in the optical depth profiles. The pattern speeds
are consistent with these modes and not others when looking
at observations at different times (see Figs. 8 and 9), and the
amplitudes of the ripples in the optical depth profile weaken
with higher ring opening angle, as expected for vertical modes,
but not radial modes. As shown in Fig. 20, only 𝑚 = 0 and
𝑚 = 2 modes are consistent with the observed ripple wavelengths
and a date near 1983, consistent with Hedman et al. (2011).
Finally, when correcting for the effects of ring self-gravity, only
this combination of modes results in similar impact dates for both
modes, as illustrated in Fig. 22.

• The hypothesis that the observed disturbance resulted from two
separate impacts with the rings several centuries ago is ruled out
by the observed radial dependence of the component waves, the
absence of similar C ring structure in the Voyager RSS occultation
observations in 1980, and numerical simulations showing that the
putative waves would have been completely damped by the time
of the Cassini observations. (See Figs. 25 and 26.)

• From fits to the wavenumbers 𝑘2𝑧(𝑡) and 𝑘0𝑧(𝑡) of the two modes,
and from power spectral analysis of the regional variation of
wavenumber over time and orbital radius, we infer an impact date
𝑡𝑖 = UTC 1983 Sep 19.25 ± 5.5 d, taking into account a plausibly
small contribution of ring self-gravity to the windup rates of the
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Fig. 38. Predicted time dependence of mode amplitudes since the assumed impact date
1983.7, for a suite of assumed 𝜖𝑛, particle radius 𝑅, and the corresponding viscosities
𝜈𝑧 from N-body simulations (see Fig. 32), compared to the observed amplitudes 𝐴0

𝑧
nd 𝐴2

𝑧 obtained from power spectral analysis of early RSS (2008), late RSS (2010),
nd VIMS (2017) observations for region R75.5. The particle radius is 𝑅 = 1 m for all

cases except for the 𝜖𝑛 = 0.3, 𝑅 = 2 m model plotted as a dashed line. All observed
and model amplitudes have been normalized to unity at the average date of the VIMS
observations in 2017. The observed RSS observed amplitudes 𝐴0

𝑧 and 𝐴2
𝑧 are ∼4 times

larger than the 2017 VIMS amplitudes for 2008, and ∼2 − 3 times larger for 2010. These
are best matched by the 𝜖𝑛 = 0.5 N-body results (orange curve) and imply that the
initial amplitudes of the 𝐴0

𝑧 and 𝐴2
𝑧 modes at the time of formation were ∼4 to 7 times

larger than the observed values in 2017. For 𝑅 = 1 m and 𝜖𝑛 = 0.5, the corresponding
viscosities from the N-body simulations are 𝜈𝑧 = 1.6 cm2 s−1 and 𝜈𝑟 = 2.2 cm2 s−1. (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

corrugations. For comparison, Hedman et al. (2011) found 𝑡𝑖 =
UTC 1983 Sep 20 ± 40 d from analysis of the 𝑚 = 0 vertical mode
seen in Cassini images. (See Figs. 21–23.)

• No convincing signatures for radial modes with 𝑚 = 0 or 𝑚 = 2,
or for vertical modes with 𝑚 ≥ 3, are detectable in the occultation
data. Quasiperiodic 𝑚 = 1 structure with 𝜆 ∼ 25–35 km is
visible in the occultation profiles and power spectra that may also
originate from the 1983 impact, although the phase coherence
in the optical depth profiles is less convincing than was found
by Hedman et al. (2011) in their analysis of Cassini ISS images.
Direct inversion of wavepackets to derive the vertical profile of
the ring shows evidence of 𝜆 ∼ 30 km structure with vertical
amplitude 𝐴𝑧 of order 75 m. (See Fig. 14.)

• The measured amplitudes 𝐴2
𝑧 and 𝐴0

𝑧 (1–10 m) have comparable
values at any given radius, and are anti-correlated with the ring
optical depth. (See Figs. 27 and 30.)

• We detect a significant decrease in the amplitudes of both modes
over the time interval 2008–2017 of their detectability in the
Cassini occultation data. (See Figs. 28 and 38.)

• N-body ring particle collisional simulations provide constraints on
the viscosity and coefficient of restitution 𝜖𝑛 that are compatible
with the observed radial trend of the 𝐴2

𝑧 and 𝐴0
𝑧 mode amplitudes

and their damping over time. Damping of radial waves is faster
than that of vertical, with the ratio of radial to vertical ring par-
ticle viscosities being 𝜈𝑟∕𝜈𝑧 ∼ 1.4 for a wide range of simulation
conditions. (See Figs. 32–35.)

• The 𝑚 = 1 corrugation amplitude variations with ring radius and
optical depth observed by Hedman et al. (2011) are unlikely to
have suffered much damping since their formation, owing to their
long wavelength. The initial amplitudes of the 𝑚 = 0 and 𝑚 = 2
vertical modes are estimated to be ∼4 to 7 times their present
41 
values at a radius of 75,500 km. (See Figs. 37 and 38.)
• The observed linear dependence of the inferred vertical mode

amplitudes 𝐴2
𝑧 and 𝐴0

𝑧 on t an𝐵ef f suggests that our adopted model
for the vertical structure of the rings and the effect of viewing
geometry (based on Gresh et al., 1986 and Hedman et al., 2011,
2015) is oversimplified. Our estimates of the relative mode am-
plitudes for a given t an𝐵ef f are probably more reliable that the
amplitudes themselves. (See Fig. 28.)

• No short-wavelength ripple structure is found beyond a radius of
77,765 km, where the higher average optical depth limits the
detectability of the low vertical amplitudes predicted for this
region, based on the 𝑚 = 1 observations (Hedman et al., 2011).

• These results provide important initial conditions for future de-
tailed dynamical models of the 1983 impact with Saturn’s rings
that attempt to account for the origin and evolution of the newly-
identified 𝑚 = 0 and 𝑚 = 2 vertical modes, the longer-wavelength
𝑚 = 1 corrugations, and the absence of 𝑚 = 0 and 𝑚 = 2 radial
modes and of vertical modes with 𝑚 ≥ 3. The creation of a
coherent 𝑚 = 0 and 𝑚 = 2 vertical perturbations with free periods
of ∼8 h by a swarm of impacting particles might imply that the
initial disturbance was quite short.

CRediT authorship contribution statement

Richard G. French: Writing – original draft, Visualization, Val-
dation, Supervision, Software, Project administration, Methodology,

Investigation, Formal analysis, Data curation, Conceptualization. Philip
D. Nicholson: Writing – original draft, Methodology, Investigation,
Funding acquisition, Conceptualization. Matthew M. Hedman: Writ-
ing – review & editing, Methodology, Investigation, Data curation,

onceptualization. Heikki Salo: Writing – original draft, Methodol-
ogy, Investigation, Formal analysis. Essam A. Marouf: Data curation,

onceptualization. Colleen A. McGhee-French: Data curation. Nicole
appaport: Data curation. Joshua Colwell: Data curation. Richard

Jerousek:Writing – review & editing, Data curation. Victor M. Afigbo:
Investigation. Sophia Flury: Software, Methodology, Data curation.
Jolene Fong: Software, Data curation. Ryan Maguire: Software, For-
mal analysis, Data curation. Glen Steranka: Software, Data curation.
Matthew S. Tiscareno: Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

This work was supported in part by NASA CDAP, USA grant
80NSSC23K0217. We especially thank an anonymous reviewer for de-
ailed comments and many helpful suggestions, which led us to clarify
nd justify several key results and assumptions. We are also grateful
o the Cassini RSS, VIMS, and UVIS science and engineering teams for
lanning, observing, and reducing the occultation observations that are
he basis of this work.

Appendix A. Corrections for ring self-gravity

Here we derive the corrections to the expressions for 𝑘𝑚𝑟 (𝑎, 𝑡) and
𝑘𝑚𝑧 (𝑎, 𝑡) for the effect of ring self-gravity, Eqs. (48)–(51), following the
rescription of Hedman et al. (2011, 2015) for 𝑚 = 1 perturbations in

images of the C and D rings. We use the density wave and bending
ave dispersion relations to estimate corrections to 𝛺𝑃 𝑟 and 𝛺𝑃 𝑧, and

thence to 𝑘𝑚 and 𝑘𝑚 for ring self-gravity. The dispersion relation for
𝑟 𝑧



R.G. French et al.

t

t

f

s
r

i

t

Icarus 431 (2025) 116463 
free radial waves is given by Shu (1984), Eq. (37):

(𝜔𝑟 − 𝑚𝑛)2 = 𝜅2 − 2𝜋 𝐺 𝜎0|𝑘𝑚𝑟 |. (A.1)

Solving for 𝜔𝑟, we have

𝜔𝑟 = 𝑚𝛺𝑃 𝑟 = 𝑚𝑛 ± 𝜅[1 − 2𝜋 𝐺 𝜎0|𝑘𝑚𝑟 |∕𝜅2]1∕2 (A.2)

If 2𝜋 𝐺 𝜎0|𝑘𝑚𝑟 | ≪ 𝜅2, and we take the minus sign to match Eq. (2) for
he limit where 𝜎0 → 0, we obtain
𝑚𝛺𝑃 𝑟 ≃ 𝑚𝑛 − 𝜅[1 − 𝜋 𝐺 𝜎0|𝑘𝑚𝑟 |∕𝜅2]

≃ 𝑚𝑛 − 𝜅 + 𝜋 𝐺 𝜎0|𝑘𝑚𝑟 |∕𝜅
≃ 𝑚𝛺0

𝑃 𝑟 + 𝜋 𝐺 𝜎0|𝑘𝑚𝑟 |∕𝜅 ,
(A.3)

where 𝛺0
𝑃 𝑟 is the free (i.e., unforced) pattern speed. Using Eq. (26) as

he 0t h-order approximation for 𝑘𝑚𝑟 ,

𝑚𝛺𝑃 𝑟 ≃ 𝑚𝛺0
𝑃 𝑟 +

𝜋 𝐺 𝜎0𝑚
𝜅

|

|

|

𝜕 𝛺0
𝑃 𝑟

𝜕 𝑎
|

|

|

𝛥𝑡. (A.4)

𝛺𝑃 𝑟 is now time-dependent due to the windup of the corrugation, and
rom Eq. (S14) of Hedman et al. (2011), Eq. (26) is replaced by

𝑘𝑚𝑟 = −𝑚 𝜕
𝜕 𝑎

(

∫

𝑡

𝑡𝑖
𝛺𝑃 𝑟𝑑 𝑡

)

= −𝑚(𝜕 𝛺0
𝑃 𝑟∕𝜕 𝑎)𝛥𝑡 −

𝑚𝜋 𝐺
2

𝜕
𝜕 𝑎

[

𝜎0
𝜅
|

|

|

𝜕 𝛺0
𝑃 𝑟∕𝜕 𝑎

|

|

|

]

𝛥𝑡2

= 𝑘𝑚𝑧0
{

1 − 𝜋 𝐺
2
𝜕(𝜎0∕𝜅)
𝜕 𝑎 𝛥𝑡 −

𝜋 𝐺 𝜎0
2𝜅

𝜕|𝜕 𝛺0
𝑃 𝑟∕𝜕 𝑎|
𝜕 𝑎

𝛥𝑡
|𝜕 𝛺0

𝑃 𝑟∕𝜕 𝑎|
}

.

(A.5)

Expanding the differentials,

𝑘𝑚𝑟 = 𝑘𝑚𝑧0

[

1 + 𝜋 𝐺 𝜎0
2𝜅2

𝜕 𝜅
𝜕 𝑎 𝛥𝑡 −

𝜋 𝐺
2𝜅

𝜕 𝜎0
𝜕 𝑎 𝛥𝑡 +

𝜋 𝐺 𝜎0
2𝜅

|𝜕2𝛺0
𝑃 𝑟∕𝜕 𝑎2|

|𝜕 𝛺0
𝑃 𝑟∕𝜕 𝑎|

𝛥𝑡

]

. (A.6)

For 𝑚 ≠ 1 or 0,

𝛺𝑃 𝑟 ∼ 𝑚 − 1
𝑚

𝑛(𝑎) ∝ 𝑎−3∕2, (A.7)

𝜕 𝛺0
𝑃 𝑟∕𝜕 𝑎 ≃ −3

2
𝛺𝑃 𝑟∕𝑎 ∝ 𝑎−5∕2, (A.8)

and

𝜕2𝛺0
𝑃 𝑟∕𝜕 𝑎2 ≃ −5

2
(𝜕 𝛺𝑃 𝑟∕𝜕 𝑎)∕𝑎 (A.9)

≃ 15
4
𝛺𝑃 𝑟∕𝑎2 ∝ 𝑎−7∕2. (A.10)

Therefore,

𝑘𝑚𝑟 = 𝑘𝑚𝑟0

[

1 − 3𝜋 𝐺 𝜎0
4𝜅 𝑎 𝛥𝑡 − 𝜋 𝐺

2𝜅
𝜕 𝜎0
𝜕 𝑎 𝛥𝑡 +

5𝜋 𝐺 𝜎0
4𝜅 𝑎 𝛥𝑡

]

(A.11)

or

𝑘𝑚𝑟 (𝑎) = 𝑘𝑚𝑟0(𝑎)

[

1 + 𝜋 𝐺
2𝜅

(𝜎0
𝑎

−
𝜕 𝜎0
𝜕 𝑎

)

𝛥𝑡

]

. (A.12)

The dispersion relation for free vertical waves is given by Shu
(1984), Eq. (84):

(𝜔𝑧 − 𝑚𝑛)2 = 𝜇2 + 2𝜋 𝐺 𝜎0|𝑘𝑚𝑧 |, (A.13)

where 𝜇 is the vertical epicyclic frequency. The development is the
ame as for radial waves except for the sign of the second term on the
ight hand side, with the result

𝑘𝑚𝑧 (𝑎) = 𝑘𝑚𝑧0(𝑎)

[

1 − 𝜋 𝐺
2𝜇

(𝜎0
𝑎

−
𝜕 𝜎0
𝜕 𝑎

)

𝛥𝑡

]

. (A.14)

For radial perturbations with 𝑚 = 0, we have the dispersion relation

(𝜔0
𝑟 )

2 = 𝜅2 − 2𝜋 𝐺 𝜎0|𝑘0𝑟 |, (A.15)

or
𝜔0
𝑟 = ±𝜅[1 − 2𝜋 𝐺 𝜎𝑜|𝑘0𝑟 |∕𝜅2]1∕2, (A.16)

42 
but here we take the ‘+’ sign to match Eq. (8) when 𝜎0 → 0:
𝜔0
𝑟 ≃ 𝜅 − 𝜋 𝐺 𝜎0|𝑘0𝑟0|∕𝜅
= 𝜔0

𝑟0 − 𝜋 𝐺 𝜎0|𝑘0𝑟0|∕𝜅 .
(A.17)

This is identical to the expression for 𝑚𝛺𝑃 𝑟 in Eq. (A.3) except for the
sign of the correction. For |𝑘0𝑟0| we use the 0t h-order approximation in
Eq. (36)

|𝑘0𝑟0| = |𝜕 𝜔0
𝑟∕𝜕 𝑎|𝛥𝑡, (A.18)

so

𝜔0
𝑟 ≃ 𝜔0

𝑟0 −
𝜋 𝐺 𝜎0
𝜅

|𝜕 𝜔0
𝑟∕𝜕 𝑎|𝛥𝑡. (A.19)

The modified version of 𝑘0𝑟 that accounts for the ring’s self-gravity
s

𝑘0𝑟 = − 𝜕
𝜕 𝑎

(

∫

𝑡

𝑡𝑖
𝜔0
𝑟𝑑 𝑡

)

= −(𝜕 𝜔0
𝑟∕𝜕 𝑎)𝛥𝑡 +

𝜋 𝐺
2

𝜕
𝜕 𝑎

[

𝜎0
𝜅
|

|

|

𝜕 𝜔0
𝑟∕𝜕 𝑎||

|

]

𝛥𝑡2

= 𝑘0𝑟0
{

1 + 𝜋 𝐺
2
𝜕(𝜎0∕𝜅)
𝜕 𝑎 𝛥𝑡 +

𝜋 𝐺 𝜎0
2𝜅

𝜕|𝜕 𝜔0
𝑟∕𝜕 𝑎|
𝜕 𝑎 𝛥𝑡∕|𝜕 𝜔0∕𝜕 𝑎|

}

.

(A.20)

As above,

𝜔0
𝑟 ∼ 𝜅 ∝ 𝑎−3∕2, (A.21)

𝜕 𝜔0
𝑟∕𝜕 𝑎 ≃ −3

2
𝜅∕𝑎 ∝ 𝑎−5∕2, (A.22)

and

𝜕2𝜔0
𝑟∕𝜕 𝑎2 ≃ −5

2
(𝜕 𝜔0

𝑟∕𝜕 𝑎)∕𝑎

≃ 15
4
𝜅∕𝑎2 ∝ 𝑎−7∕2.

(A.23)

Thus, we for 𝑚 = 0 the radial self-gravity correction is the same as for
𝑚 > 1 but of the opposite sign:

𝑘0𝑟 (𝑎) = 𝑘0𝑟0(𝑎)

[

1 − 𝜋 𝐺
2𝜅

(𝜎0
𝑎

−
𝜕 𝜎0
𝜕 𝑎

)

𝛥𝑡

]

. (A.24)

For 𝑚 = 0 bending waves, the dispersion relation is
(𝜔0

𝑧)
2 = 𝜇2 + 2𝜋 𝐺 𝜎0|𝑘0𝑧|, (A.25)

and so
𝜔0
𝑧 = ±(𝜇2 + 2𝜋 𝐺 𝜎0|𝑘0𝑧|)1∕2. (A.26)

Taking the ‘+’ sign so that 𝜔𝑧 → 𝜈 as 𝜎0 → 0 (Eq. (9)), we have

𝜔0
𝑧 = 𝜇[1 + 2𝜋 𝐺 𝜎0|𝑘0𝑧|∕𝜇2]1∕2. (A.27)

This is of the same form as Eq. (50) except for the sign of the second
erm, and by symmetry the vertical self-gravity correction is therefore

𝑘0𝑧(𝑎) = 𝑘0𝑧0(𝑎)

[

1 + 𝜋 𝐺
2𝜇

(𝜎0
𝑎

−
𝜕 𝜎0
𝜕 𝑎

)

𝛥𝑡

]

. (A.28)

Appendix B. Explicit wavenumber formulae

It is sometimes convenient to have explicit, if only approximate,
expressions for the radial wavenumbers 𝑘𝑚𝑟 and 𝑘𝑚𝑧 that appear in
many of the equations in this paper, as well as approximate numerical
values for their wavelengths and dimensionless ratios 𝑘𝑚∕𝑘𝑚. We begin
𝑧 𝑟
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with Eqs. (26), (27), (31), (32), (36), and (37), based on deriva-
ions by Hedman et al. (2011, 2015), for the time-dependent radial
avenumbers of the radial (𝑘𝑚𝑟 ) and vertical (𝑘𝑚𝑧 ) perturbations for
ifferent values of 𝑚, the azimuthal wavenumber of the perturbations

(i.e., the number of spiral arms in the pattern). These in turn depend on
radial derivatives of the frequencies for the various modes, as specified
in Eqs. (2), (5), (8), and (9), as well as the time interval between
the initial impact and the observation, 𝛥𝑡 = 𝑡 − 𝑡0. We first treat the
special cases of 𝑚 = 0 and 𝑚 = 1, and then deal with the more general
expressions for other values of 𝑚.

B.1. 𝑚 = 0

For 𝑚 = 0, corresponding to an axisymmetric ripple pattern, there is
no pattern speed, per se, but the temporal frequencies of free radial (𝜅)
and vertical (𝜇) oscillations in the rings 𝜔0

𝑟 and 𝜔0
𝑧 are given by Eqs. (8)

nd (9):
𝜔0
𝑟 (𝑎) = 𝜅 = 𝑛 − 𝜛̇sec
0
𝑧(𝑎) = 𝜇 = 𝑛 − 𝛺̇sec,

(B.1)

where 𝑛 is the mean motion and 𝜛̇sec and 𝛺̇sec are the apsidal and nodal
precession rates of a ring particle orbit at semimajor axis 𝑎. The radial

avenumber 𝑘0𝑟 is given by Eq. (36):

𝑘0𝑟 (𝑎) =
|

|

|

|

|

𝜕 𝜔0
𝑟

𝜕 𝑎
|

|

|

|

|

𝛥𝑡

=
|

|

|

|

𝜕 𝑛
𝜕 𝑎 − 𝜕 𝜛̇

𝜕 𝑎
|

|

|

|

𝛥𝑡

≃
|

|

|

|

−3𝑛
2𝑎

+ 7𝜛̇
2𝑎

|

|

|

|

𝛥𝑡

= 3𝑛𝛥𝑡
2𝑎

[

1 − 7𝜛̇
3𝑛

]

≃ 3𝑛𝛥𝑡
2𝑎

[

1 − 7
2
𝐽2(𝑅𝑝∕𝑎)2

]

,

(B.2)

where we have used the first-order approximation for 𝜛̇sec in Eq. (3).
The corresponding radial wavenumber for vertical perturbations 𝑘0𝑧 is
given by Eq. (37):

𝑘0𝑧(𝑎) =
|

|

|

|

|

𝜕 𝜔0
𝑧

𝜕 𝑎
|

|

|

|

|

𝛥𝑡

=
|

|

|

|

𝜕 𝑛
𝜕 𝑎 − 𝜕𝛺̇

𝜕 𝑎
|

|

|

|

𝛥𝑡

≃
|

|

|

|

−3𝑛
2𝑎

+ 7𝛺̇
2𝑎

|

|

|

|

𝛥𝑡

= 3𝑛𝛥𝑡
2𝑎

[

1 − 7𝛺̇
3𝑛

]

≃ 3𝑛𝛥𝑡
2𝑎

[

1 + 7
2
𝐽2(𝑅𝑝∕𝑎)2

]

,

(B.3)

where we have used the first-order approximation for 𝛺̇sec in Eq. (7).11

From the above expressions we have the useful but simple result,
ndependent of 𝛥𝑡, that

𝑘0𝑧∕𝑘
0
𝑟 ≃ 1 + 7𝐽2(𝑅𝑝∕𝑎)2 + 𝑂(𝐽 2

2 (𝑅𝑝∕𝑎)
4) ≃ 1.071, (B.4)

where we evaluate the 𝐽2 scale factor 𝑅𝑝∕𝑎 at 𝑎 = 76,600 km, mid-way
between the regions R75.5 and R77.5.

B.2. 𝑚 = 1

For 𝑚 = 1 the general expressions for the pattern speed, Eqs. (2) and
(5) apply, but the leading terms in 𝛺𝑃 𝑟 and 𝛺𝑃 𝑧 involving the factor

11 We note that the above expressions are not quite correct to O(𝐽2), as they
neglect the 𝐽2 correction to the mean motion 𝑛, but this cancels out in the
ratios we discuss below, and leads to only small corrections (∼1%) in the
absolute values of 𝑘0 and 𝑘0.
𝑟 𝑧
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(𝑚 − 1) are zero, leaving the simpler expressions

𝛺1
𝑃 𝑟(𝑎) = 𝜛̇sec(𝑎) (B.5)

𝛺1
𝑃 𝑧(𝑎) = 𝛺̇sec(𝑎). (B.6)

Substituting these into Eqs. (26) and (27), we find that

𝑘1𝑟 (𝑎) =
|

|

|

|

|

𝜕 𝛺1
𝑃 𝑟

𝜕 𝑎
|

|

|

|

|

𝛥𝑡

=
|

|

|

|

𝜕 𝜛̇
𝜕 𝑎

|

|

|

|

𝛥𝑡

≃
|

|

|

|

−7𝜛̇
2𝑎

|

|

|

|

𝛥𝑡

= 7𝑛𝛥𝑡
2𝑎

( 𝜛̇
𝑛

)

≃ 21𝑛𝛥𝑡
4𝑎

𝐽2(𝑅𝑝∕𝑎)2,

(B.7)

and

𝑘1𝑧(𝑎) =
|

|

|

|

|

𝜕 𝛺1
𝑃 𝑧

𝜕 𝑎
|

|

|

|

|

𝛥𝑡

=
|

|

|

|

𝜕𝛺̇
𝜕 𝑎

|

|

|

|

𝛥𝑡

≃
|

|

|

|

−7𝛺̇
2𝑎

|

|

|

|

𝛥𝑡

≃ 21𝑛𝛥𝑡
4𝑎

𝐽2(𝑅𝑝∕𝑎)2,

(B.8)

since, to first order in 𝐽2, 𝛺̇sec = −𝜛̇sec. So, to this order we find that
𝑘1𝑧 = 𝑘1𝑟 . If instead we use the full Eqs. (3) and (6) to evaluate 𝜛̇sec
and 𝛺̇sec, then the two rates differ by a term of O(𝐽 2

2 (𝑅𝑝∕𝑎)
4) and it is

traightforward to show that

𝑘1𝑧∕𝑘
1
𝑟 ≃ 1 − 33

14
𝐽2(𝑅𝑝∕𝑎)2 ≃ 0.976 (B.9)

at 𝑎 = 76,600 km.12

Note that the radial wavenumbers for 𝑚 = 1 are both smaller than
those for 𝑚 = 0 by a factor of ∼ 7

2𝐽2(𝑅𝑝∕𝑎)
2 ≃ 0.035 at 𝑎 = 76, 600 k m.

B.3. 𝑚 ≠ 0 and 𝑚 ≠ 1

For other values of 𝑚 we again proceed based on Eqs. (26) and
(27), using the full expressions for 𝛺𝑚

𝑃 𝑟 and 𝛺𝑚
𝑃 𝑧 in Eqs. (2) and (5).

therwise, the derivation is very similar to that for Eqs. (B.2) and (B.3)
above. For radial perturbations, we have

𝑘𝑚𝑟 (𝑎) =
|

|

|

|

|

𝜕 𝛺𝑚
𝑃 𝑟

𝜕 𝑎
|

|

|

|

|

𝛥𝑡

=
|

|

|

|

(𝑚 − 1) 𝜕 𝑛
𝜕 𝑎 + 𝜕 𝜛̇

𝜕 𝑎
|

|

|

|

𝛥𝑡

≃
|

|

|

|

−(𝑚 − 1) 3𝑛
2𝑎

− 7𝜛̇
2𝑎

|

|

|

|

𝛥𝑡

= 3𝑛𝛥𝑡
2𝑎

|

|

|

|

𝑚 − 1 + 7𝜛̇
3𝑛

|

|

|

|

≃ 3𝑛𝛥𝑡
2𝑎

|

|

|

|

𝑚 − 1 + 7
2
𝐽2(𝑅𝑝∕𝑎)2

|

|

|

|

.

(B.10)

12 The 𝐽4 and 𝐽6 terms cancel out of the ratio, as they enter in the same
manner into 𝛺̇ and 𝜛̇ , to leading order.
sec sec
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where we have again used the first-order approximation for 𝜛̇sec in the
final line. For vertical perturbations we have

𝑘𝑚𝑧 (𝑎) =
|

|

|

|

|

𝜕 𝛺𝑚
𝑃 𝑧

𝜕 𝑎
|

|

|

|

|

𝛥𝑡

=
|

|

|

|

(𝑚 − 1) 𝜕 𝑛
𝜕 𝑎 + 𝜕𝛺̇

𝜕 𝑎
|

|

|

|

𝛥𝑡

≃
|

|

|

|

−(𝑚 − 1) 3𝑛
2𝑎

− 7𝛺̇
2𝑎

|

|

|

|

𝛥𝑡

= 3𝑛𝛥𝑡
2𝑎

|

|

|

|

𝑚 − 1 + 7𝛺̇
3𝑛

|

|

|

|

≃ 3𝑛𝛥𝑡
2𝑎

|

|

|

|

𝑚 − 1 − 7
2
𝐽2(𝑅𝑝∕𝑎)2

|

|

|

|

.

(B.11)

Note that 𝑚 can be either positive (corresponding to the situa-
tion where 𝛺𝑃 < 𝑛, or an Inner Lindblad resonance), or negative
(corresponding to the situation where 𝛺𝑃 > 𝑛, or an outer Lindblad
resonance), leading to different values of 𝑘𝑚𝑟 and 𝑘𝑚𝑧 . In both cases the
pattern speed is positive, and approaches the keplerian mean motion 𝑛
as 𝑚 → ∞.

From the above expressions, we find that the ratio of wavenumbers
for vertical and radial perturbations with the same value of 𝑚 is given
approximately by

𝑘𝑚𝑧 ∕𝑘
𝑚
𝑟 ≃ 1 − 7

𝑚 − 1 𝐽2(𝑅𝑝∕𝑎)
2 ≃ 1 − 0.071∕(𝑚 − 1) (B.12)

where we again evaluate the factor 𝑅𝑝∕𝑎 at 𝑎 = 76,600 km.

B.4. Degeneracies between modes with differing azimuthal wavenumbers

There is, however, a near-degeneracy between the values of 𝑘𝑚𝑟 and
𝑚
𝑧 for positive and negative values of 𝑚 that may be seen from the

above expressions. If we set 𝑚 = −𝑚′, then we find that

𝑘𝑚𝑟 = 3𝑛𝛥𝑡
2𝑎

|

|

|

|

−𝑚′ − 1 + 7𝜛̇
3𝑛

|

|

|

|

= 3𝑛𝛥𝑡
2𝑎

|

|

|

|

𝑚′ + 1 − 7𝜛̇
3𝑛

|

|

|

|

≃ 3𝑛𝛥𝑡
2𝑎

|

|

|

|

𝑚′ + 1 + 7𝛺̇
3𝑛

|

|

|

|

≃ 3𝑛𝛥𝑡
2𝑎

|

|

|

|

1 − 𝑚 + 7𝛺̇
3𝑛

|

|

|

|

= 𝑘2−𝑚𝑧

(B.13)

In a similar fashion, it is readily shown that 𝑘𝑚𝑧 ≃ 𝑘2−𝑚𝑟 . For example,
he wavenumbers for vertical perturbations with 𝑚 = 2 are almost the

same as those for radial perturbations with 𝑚 = 0, while those for radial
erturbations with 𝑚 = 2 are almost the same as those for vertical
erturbations with 𝑚 = 0.13 Similar degeneracies apply to the pairs of

modes with 𝑚 = 3 and −1, 𝑚 = 4 and −2, etc.
This inverse relationship between radial and vertical modes can

also be seen in the vertical/radial wavenumber ratios, with Eq. (B.12)
mplying that

𝑘2−𝑚𝑟 (𝑎)∕𝑘2−𝑚𝑧 (𝑎) ≃ 1 + 7
1 − 𝑚 𝐽2(𝑅𝑝∕𝑎)2

= 1 − 7
𝑚 − 1 𝐽2(𝑅𝑝∕𝑎)

2

≃ 𝑘𝑚𝑧 (𝑎)∕𝑘
𝑚
𝑟 (𝑎).

(B.14)

Returning to Eqs. (B.10) and (B.11), the dominant term 𝑚 − 1
in the expressions for 𝑘𝑚𝑟 and 𝑘𝑚𝑧 means that oscillations with larger
values of |𝑚 − 1| will have higher radial wavenumbers, or shorter radial

13 A similar degeneracy between the oscillation frequencies of density waves
ith 𝑚 = 0 and bending waves with 𝑚 = 2 was identified by Hedman et al.

(2019), who noted that such waves are almost indistinguishable unless their
phases can be compared at two or more different longitudes. In both this case
nd in the present situation, the key underlying cause is that the apsidal and
odal precession rates of ring particle orbits are almost equal in magnitude
ut opposite in sign.
44 
wavelengths.

B.5. Numerical values

All of the wavenumber estimates given above scale as 3𝑛𝛥𝑡∕2𝑎,
xcept for modes with 𝑚 = 1 that scale as (21𝑛𝛥𝑡∕4𝑎) 𝐽2 (𝑅𝑝∕𝑎)2. We
an get a rough idea of the wavenumbers to be expected for the inner C
ing and an impact event in 1983 by substituting nominal values of 𝑎 =

76,600 km, 𝑛 = 1450◦ d−1 = 2.93 ×10−4 rad s−1, 𝐽2 = 1.63 ×10−2 and
𝛥𝑡 = 30 yr = 9.47 ×108 s. The corresponding mean radial wavelengths
2𝜋∕𝑘̄ are 32.7 km for 𝑚 = 1, 1.16 km for 𝑚 = 0 or 2, 0.58 km for 𝑚 = −1
r 3, 0.39 km for 𝑚 = −2 or 4 and 0.29 km for 𝑚 = −3 or 5. The ratios
𝑚
𝑧 ∕𝑘

𝑚
𝑟 (or their inverses) range from 1.071 for 𝑚 = 0 (or 2) to 1.018

or 𝑚 = −3 (or 5). For 𝑚 = 1 𝑘1𝑧∕𝑘1𝑟 = 0.975. In practice, perturbation
atterns with |𝑚 − 1| ≥ 3 (i.e., 𝑚 ≥ 4 or 𝑚 ≤ −2) are unlikely to be
etectable in most of the Cassini RSS and VIMS occultation profiles,
hich have effective radial resolutions of ∼250 m, at best.

See Table 5 for a more accurate and extensive set of values, calcu-
ated using the full set of gravity coefficients in Table 2 for semimajor

axes 𝑟0 given in Table 4.

Data availability

Data will be made available on request.
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