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Abstract

Recent studies of stellar occultations observed by the Visual and Infrared Mapping Spectrometer on board the
Cassini spacecraft have demonstrated that multiple spiral wave structures in Saturn’s rings are probably generated
by normal-mode oscillations inside the planet. Wavelet-based analyses have been able to unambiguously determine
both the number of spiral arms and the rotation rate of many of these patterns. However, there are many more
planetary normal modes that should have resonances in the rings, implying that many normal modes do not have
sufficiently large amplitudes to generate obvious ring waves. Fortunately, recent advances in wavelet analysis
allow weaker wave signals to be uncovered by combining data from multiple occultations. These new analytical
tools reveal that a pattern previously identified as a single spiral wave actually consists of two superimposed
waves, one with five spiral arms rotating at 1593°.6/day and one with 11 spiral arms rotating at 1450°.5/day.
Furthermore, a broad search for new waves revealed four previously unknown wave patterns with six, seven, eight,
and nine spiral arms rotating around the planet at 1538°.2/day, 1492°.5/day, 1454°.2/day, and 1421°.8/day,
respectively. These six patterns provide precise frequencies for another six fundamental normal modes inside
Saturn, yielding what is now a complete sequence of fundamental sectoral normal modes with azimuthal
wavenumbers from 2 to 10. These frequencies should place strong constraints on Saturn’s interior structure and
rotation rate, while the relative amplitudes of these waves should help clarify how the corresponding normal modes
are excited inside the planet.

Key words: occultations – planets and satellites: gaseous planets – planets and satellites: Saturn – planets and
satellites: rings

1. Introduction

Saturn’s rings are an exquisitely sensitive dynamical system
that can function as a seismometer for the planet. Scattered
throughout the rings are tightly wound spiral patterns called
density and bending waves that are generated at locations
where the orbital motions of the ring particles are in resonance
with a periodic external force. Many of these features can be
attributed to resonances with Saturn’s various moons, but a
growing number appear to be generated by asymmetries and/or
oscillations within the planet itself, confirming predictions
made decades earlier (Stevenson 1982; Marley 1990, 1991;
Marley & Porco 1993). Hedman & Nicholson (2013) first used
wavelet-based methods to determine the pattern speeds of six
waves in the middle C ring that had two, three, and four spiral
arms and appeared to be generated by either fundamental
sectoral normal modes within the planet (i.e., modes with no
radial nodes and ℓ=m, where ℓ and m are the standard indices
for a spherical harmonic expansion) or mixtures of these
fundamental modes with gravity modes (Fuller 2014). Hedman
& Nicholson (2014) then applied the same basic techniques to
seven additional waves, identifying one as a 10-armed spiral
probably generated by another fundamental sectoral normal
mode, along with a number of waves that appeared to be driven
by persistent asymmetries in the planet’s gravitational field
rotating at roughly the planet’s spin rate. Later, French et al.
(2016) adapted these techniques to characterize a wave within
the eccentric Maxwell ringlet, and demonstrated that this wave
was also probably generated by an m=2 fundamental sectoral
normal mode. Finally, French et al. (2019) examined a series of
density and bending waves in the inner C ring and were able to
determine the number of spiral arms and pattern speeds for six

of them. Most of these also appear to be generated by
fundamental normal modes, but these specific modes were
most likely non-sectoral (i.e., they have ℓ m¹ ). All of these
different planetary structures are providing new and novel
insights into Saturn’s internal structure (e.g., Fuller 2014;
Mankovich et al. 2018).
However, it is now clear that all the waves identified in

previous surveys (Rosen et al. 1991; Baillié et al. 2011)
represent only a fraction of the normal-mode oscillations inside
the planet. For example, consider the waves that appear to be
generated by fundamental sectoral normal modes. Thus far, the
only waves generated by such modes that have been identified
are those with azimuthal wavenumbers m=2, 3, 4, and 10,
most of which are found in a relatively bland part of the C ring
between 80000 and 84700 km from Saturn’s center (see
Figure 1). However, modes with m=5 through 9 should also
generate resonances in this region, and there is only one
previously recognized wave feature in this region whose
identity has not yet been established (designated W81.02 in
Figure 1). Hence, there must be at least four planetary normal
modes that do not generate obvious density waves in the rings.
Most likely, these normal-mode oscillations are weaker, and so
do not perturb the rings strongly enough to produce density
waves with high enough amplitudes to be identified in previous
surveys.
Fortunately, further improvements in wavelet-based ana-

lyses of the rings have enabled us to find and characterize
much weaker density wave signatures than was previously
possible. These techniques (which are described in greater
detail below) account for the expected phase shifts of the
signals with a particular azimuthal wavenumber m when co-
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adding wavelet transforms from multiple profiles. This is an
extremely powerful filtering technique that has already enabled
us to isolate signals from weak waves driven by satellites in
Saturn’s dense B ring (Hedman & Nicholson 2016). On the
one hand, these methods have enabled us to determine that the
previously unidentified wave located around a radius of
81020 km is in fact two waves that lie almost exactly on top
of each other, one with five arms and the other with eleven
arms. The five-armed wave is probably generated by a
resonance with the m=5 fundamental sectoral normal mode,
while the 11-armed wave probably corresponds to a planetary
normal mode with ℓ=13 and m=11. On the other hand,
these tools have revealed additional signatures that appear to
be due to weak waves with six, seven, eight, and nine arms

located near the expected resonances with fundamental
sectoral normal modes predicted by Marley & Porco (1993)
and Mankovich et al. (2018). These analyses therefore yield
frequencies for six additional planetary normal-mode oscilla-
tions, including the fundamental sectoral normal modes with
m-values from 5 to 9, which should place strong constraints on
the planet’s internal structure. In addition, this work provides
information about the relative amplitudes of these waves,
which should help illuminate how these normal modes are
excited inside the planet.
Section 2 below summarizes our analytical methods for

finding and identifying these waves. Section 3 then shows how
these techniques can be used to untangle the two waves found
around 81020 km, while Section 4 describes how these

Figure 1. Overview of the portion of the middle C ring considered for this study. The top panel shows an optical depth profile of the region of interest derived from an
occultation of the star γ Crucis observed during Cassini Rev (i.e., orbit) 89, and the lower four panels show close-ups of three portions of the above profile. Locations
of potential wave signals are marked with lines and are designated using two different notations (Colwell et al. 2009; Baillié et al. 2011). The features marked
W80.98/B13, W82.00/B15, W82.06/B16, W82.21/B17, W83.63/B18, and W84.64/B19 are waves clearly visible in individual occultation profiles and were
previously identified as being due to m=4, 3, 3, 3, 10, and 2 fundamental sectoral normal modes, respectively. Feature W81.02/B14 is a feature that was recognized
by Baillié et al. (2011), but was not previously attributed to any specific planetary normal-mode oscillations. Features W81.43, W81.96, W82.53, and W83.09 are
wave candidates newly identified in this work.
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techniques are used to find the weak waves generated by other
sectoral normal modes. Section 5 discusses detailed wavelet
analyses of all these features, which yield estimates for both
their pattern speeds and their amplitudes. Finally, Section 6
summarizes our findings.

2. Methods

2.1. Observational Data

This analysis focuses on stellar occultation data obtained by
the Visual and Infrared Mapping Spectrometer (VIMS) on
board the Cassini Spacecraft (Brown et al. 2004). While in its
standard operating mode VIMS obtains spatially resolved
spectra of various objects in the Saturn system, this instrument
can also operate in a mode where it repeatedly measures the
spectrum of a star as the planet or its rings pass between the star
and the spacecraft. In this occultation mode, a precise time-
stamp is appended to each spectrum to facilitate reconstruction
of the observation geometry.

As with previous occultation studies, here we will only
consider data obtained at wavelengths between 2.87 and 3.00
microns, where the rings are especially dark and so provide a
minimal background to the stellar signal. Using the appropriate
SPICE kernels (Acton 1996), we use the timing information
encoded with the occultation data to compute both the radius
and inertial longitude in the rings that the starlight passed
through. Note that the information encoded in these kernels has
been determined to be accurate to within one kilometer, and
fine-scale adjustments based on the positions of circular ring
features enable these estimates to be refined to an accuracy of
order 150 m. For this analysis, we use the latest estimates of
these offsets from French et al. (2017); we have verified that
these new offsets do not change the results described in
Hedman & Nicholson (2014).

The VIMS instrument has a highly linear response function
(Brown et al. 2004), so the raw data numbers returned by the
spacecraft are directly proportional to the apparent brightness
of the star. We can therefore estimate the transmission through
the rings T as simply the ratio of the observed signal at a given
radius to the average signal in regions outside the rings. From
this transmission, we can compute the ring’s optical depth τ
using the standard formula Tlnt = - ( ). Both T and τ depend
on the observation geometry, but for relatively low-optical
depth regions like the middle C ring we can define the normal
optical depth Bsinnt t= ∣ ( )∣ (B being the ring opening angle
to the star), which should have nearly the same value for all the
occultations considered here.

We will consider three different groups of occultations for
this study:

A. For our initial investigation of the W81.02 patterns
(Section 3), we use the same 23 occultation cuts obtained
between 2007 and 2014 listed in Table 2 of Hedman &
Nicholson (2014).

B. For our initial search for waves with m=−6 through −9
(Section 4), we consider the subset of occultations that
use the star γ Crucis and were obtained between Revs 71
and 102 (i.e., 2008–2009) listed in Table 1.

C. Finally, for our more in-depth analysis of the wave
candidates (Section 5), we utilize a larger set of 56
occultations summarized in Table 1. This set includes all
occultations obtained prior to Rev (i.e., Cassini orbit) 270

that cover the relevant wave features and satisfy the
following requirements:
(a) Do not have any data gaps larger than 1 km in the

region of interest for the wave (see Table 2).
(b) Have mean normal optical depth values within the

region of interest (see Table 2) that are within 0.1 of
the median value for all occultations. This eliminates
occultations which have unstable signal levels and
other instrumental issues that could impact the
relevant signals.

(c) Have rms normal optical depth variations smaller than
0.015 on radius scales of 0.1 km in nearby featureless
ring regions (80700–80800 km, 81200–81300 km,
82300–82350 km, 83,700–83800 km or
84100–84200 km). This removes occultations with
low signal-to-noise.

2.2. Analytical Approach

For the purposes of this study, the two most important
parameters associated with these waves are the number of
spiral arms m∣ ∣ and the pattern speed Ωp at which these density
variations rotate around the planet in inertial space (Shu 1984).
For waves generated by planetary normal-mode oscillations,
the number of spiral arms equals the mode’s azimuthal
wavenumber, while the pattern speed equals the mode’s
propagation rate around the planet in inertial space. In addition,
a wave with a given number of spiral arms and pattern speed
can only be generated at resonant locations rL where the ring-
particles’ orbital mean motion nL and radial epicyclic frequency
κL satisfy the following relationship:

m n . 1L p Lk- W =( ) ( )

Note that in this expression we allow m to be a signed
quantity, such that m>0 corresponds to cases where the
pattern speed is slower than the mean motion (i.e., Inner
Lindblad Resonances), and m<0 corresponds to cases where
the pattern speed is faster than the mean motion (i.e., Outer
Lindblad Resonances). If a wave is observed at a given radius,
the corresponding orbital frequencies nL and κL can be
determined from the planet’s gravitational field; hence, there
is a discrete set of pattern speeds the wave could have, one for
each possible value of m.
Fortunately, both m and Ωp can be estimated by comparing

wave profiles observed at different times and longitudes. A
generic density wave with m∣ ∣ arms and pattern speed Ωp causes
the surface mass density of the ring σ to vary with radius r,
longitude λ and time t as follows:

A r e1 , 2i r m t
0 r p 0s s= + f l f+ -W +[ ( ) ] ( )[ ( ) ∣ ∣( ) ]R

where σ0 and f0 are constants, A(r) is a slowly varying function
of radius, and rrf ( ) is the radius-dependent part of the wave’s
phase, which has the following form at sufficiently large
distances from the resonant radius rL (so long as m 1¹ ,
Shu 1984):

r
m M r r
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4
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P L
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whereMP is the planet’s mass. Note that waves with m>0 can
only propagate exterior to the resonant radius, while waves
with m<0 can only propagate interior to the resonant radius.
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Table 1
Occultations Used for This Study

Star Rev a Date B(0)b λ(0)c W80.98 W81.02a W81.02b W81.43 W81.96 W82.00 W82.06 W82.21 W82.53 W83.09 W83.63 W84.64

RHya 036 i 2007-001 −29.4 173.1–177.7 X X X X X X X X X X X X
αAur 041 i 2007-082 +50.9 342.5–348.4 X X X X X X X X X X X X
γCru 073 i 2008-174 −62.3 182.0–182.7 X X X X X X X X X X X X
γ Cru 078 i 2008-209 −62.3 180.7–181.4 X X X X X X X X X X X X
γ Cru 079 i 2008-216 −62.3 179.0–179.9 X X X X X X X X X X X X
RSCnc 080 i 2008-226 +30.0 82.4–93.0 X X X X X X X X X X X X
RSCnc 080 e 2008-226 +30.0 118.7–129.4 X X X X X X X X X X X X
γ Cru 081 i 2008-231 −62.3 178.1–179.0 X X X X X X X X X X X X
γ Cru 082 i 2008-238 −62.3 177.7–178.6 X X X X X X X X X X X X
RSCnc 85 i 2008-263 +30.0 88.3–97.7 X X X X X X X
RSCnc 85 e 2008-263 +30.0 113.6–123.1 X X X X X X X
γ Cru 086 i 2008-268 −62.3 176.6–177.6 X X X X X X X X X X X X
RSCnc 87 i 2008-277 +30.0 91.7–99.3 X X X
RSCnc 87 e 2008-277 +30.0 117.9–119.6 X X X
γ Cru 089 i 2008-290 −62.3 176.4–177.4 X X X X X X X X X X X X
γ Cru 093 i 2009-320 −62.3 207.5–208.4 X X X X X X X X X X X X
γ Cru 094 i 2008-328 −62.3 191.7–191.7 X X X X X X X X X X X X
γ Cru 100 i 2009-012 −62.3 222.6–224.7 X X X X X X X X X X X X
γ Cru 102 i 2009-031 −62.3 222.3–224.4 X X X X X X X X X X X X
β Peg 104 i 2009-057 +31.7 342.1–344.3 X X X X X X X X X X
RCas 106 i 2009-082 +56.0 79.5-90.6 X X X X X X X X X X X
α Sco 115 i 2009-209 −32.2 157.4–159.8 X X X X X X X X X X X X
β Peg 170 e 2012-224 +31.7 78.1–79.8 X X X X X X X X X X X X
β Peg 172 i 2012-266 +31.7 310.9–312.7 X X X X X X X X X X X X
λ Vel 173 i 2012-292 −43.8 148.4–152.8 X X X X X X X X X X
WHya 179 i 2013-019 −34.6 143.9–147.2 X X X X X X X X X X X X
WHya 180 i 2013-033 −34.6 144.4–147.8 X X X X X X X X X X X X
WHya 181 i 2013-049 −34.6 144.4–147.8 X X X X X X X X X X X X
μ Cep 185 e 2013-090 +59.9 43.1-48.6 X X X X X X X X X X X X
WHya 186 e 2013-103 −34.6 297.5–298.6 X X X X X X X X X X X X
γ Cru 187 i 2013-112 −62.3 148.3–152.8 X X X X X X X X X X X X
γ Cru 187 e 2013-112 −62.3 224.5–228.9 X X X X X X X X X X X X
WHya 189 e 2013-132 −34.6 296.3–297.4 X X X X X X X X X X X X
μ Cep 191 i 2013-148 +59.9 289.7–290.4 X X X X X X X X X X X
μ Cep 193 i 2013-172 +59.9 289.7–290.4 X X X X X X X X X X X X
2Cen 194 i 2013-189 −40.7 150.6–155.0 X X X X X X
2Cen 194 e 2013-189 −40.7 227.7–232.0 X X X X X X X
RLyr 198 i 2013-289 +40.8 260.9-262.1 X X X X X X X X X X X
RLyr 199 i 2013-337 +40.8 227.6–231.9 X X X X X X X X X X X X
RLyr 200 i 2014-003 +40.8 255.7–257.1 X X X X X X X X X X X X
L2Pup 201 i 2014-051 −41.9 95.2–95.4 X X X X X X X X X X X
RLyr 202 e 2014-067 +40.8 54.3–57.3 X X X X X X X X X X X X
L2Pup 205 e 2014-175 −41.9 219.0-224.0 X X X X X X X X X X X X
RLyr 208 e 2014-262 +40.8 44.3–47.6 X X X X X X X X X
α Sco 241 e 2016-243 −32.2 21.9–27.3 X X X X X X X X X X X X
α Sco 243 e 2016-267 −32.2 20.7–25.9 X X X X X X X X X X X X
α Sco 245 e 2016-287 −32.2 19.4–25.1 X X X X X X X X X X X
γ Cru 245 e 2016-286 −62.3 257.2–269.4 X X X X X X X X X X X X
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Table 1
(Continued)

Star Rev a Date B(0)b λ(0)c W80.98 W81.02a W81.02b W81.43 W81.96 W82.00 W82.06 W82.21 W82.53 W83.09 W83.63 W84.64

γ Cru 255 i 2017-001 −62.3 146.8–147.1 X X X X X X X X X X X
γ Cru 264 i 2017-086 −62.3 145.0–145.2 X X X X X X X X X X X X
λ Vel 268 i 2017-094 −43.8 134.4–135.3 X X X X X X X X
γ Cru 268 i 2017-095 −62.3 143.9–144.2 X X X X X X X X X X X X
α Ori 268 e 2017-096 +11.7 196.4–201.0 X X X X X X X X X X X X
VYCMa 269 i 2017-100 −23.4 201.5–206.8 X X X X X X X X X X X X
γ Cru 269 i 2017-102 −62.3 143.8–144.1 X X X X X X X X X X X X
α Ori 269 e 2017-104 +11.7 6.1–9.6 X X X X X X X X X X X X

Notes.
a i—ingress occultation, e—egress occultation.
b Ring opening angle to star (positive indicates star is north of Saturn’s equatorial plane).
c Span of inertial longitudes, measured relative to the ascending node of the ring particles on the J2000 coordinate system.

5

T
h
e
A
stro

n
o
m
ica

l
Jo
u
rn

a
l,

157:18
(17pp),

2019
January

H
edm

an,
N
icholson,

&
F
rench



Table 2
Summary of Wave Properties

Wave Name Other Previous Figures Radii Considered Wavelengths m Resonant Pattern Speed Peak Wave
Designationsa Analysisb Considered Radiusd Amplitudee

W80.98 Baillié 13, Rosen e HN13 10, 12 80978–80994 km 1–3 km −4 80986.15 km 1660 . 36 0 . 02   /day 0.386
W81.02a Baillié 14 HN14c 2, 13, 15, 22 81016–81025 km 1–3 km −5 81023.15 km 1593°. 63±0°. 02/day 0.118
W81.02b Baillié 14 HN14c 3, 14, 15, 22 81019–81028 km 1–3 km −11 81024.17 km 1450°. 50±0°. 01/day 0.140
W81.43 15, 18, 20, 22 81422–81432 km 1–3 km −6 81429.55 km 1538°. 24±0°. 04/day 0.056
W81.96 15, 17, 22 81955–81965 km 1–3 km −7 81962.45 km 1492°. 46±0°. 02/day 0.082
W82.00 Baillié 15 HN13, HN14 7, 12 81995–82010 km 1–3 km −3 82007.75 km 1736°. 65±0°. 02/day 0.281
W82.06 Baillié 16, Rosen f HN13, HN14 8, 12 82043–82058 km 1–3 km −3 82059.40 km 1735°. 00±0°. 02/day 0.458
W82.21 Baillié 17, Rosen g HN13, HN14 9, 12 82195–82210 km 1–3 km −3 82207.50 km 1730°. 29±0°. 02/day 0.555
W82.53 15, 19, 21, 22 82522–82532 km 1–3 km −8 82528.75 km 1454°. 22±0°. 04/day 0.050
W83.09 15, 16 , 22 83038–83093 km 1–3 km −9 83090.65 km 1421°. 84±0°. 01/day 0.099
W83.63 Baillié 18, Rosen h HN14 11, 12 83623–83628 km 1–3 km −10 83632.02 km 1394°. 06±0°. 01/day 0.440
W84.64 Baillié 19, Rosen i HN13, HN14 6, 12 84630–84640 km 1–3 km −2 84643.20 km 1860°. 75±0°. 03/day 0.471

Notes.
a Designations from Baillié et al. (2011) and Rosen et al. (1991).
b HN13=Hedman & Nicholson (2013), HN14=Hedman & Nicholson (2014).
c Discussed, but not identified.
d Derived from pattern speed.
e No error is provided on these quantities because their uncertainties are dominated by systematic errors in the reconstruction that are difficult to rigorously quantify.
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For the entire region of interest here, the ring’s optical depth
appears to be directly proportional to its surface mass density
(Hedman et al. 2011), so in any given occultation, the ring’s
optical depth will vary quasi-sinusoidally, but the positions of
the peaks and troughs will vary with longitude and time in a
manner that is sensitive to m and pW . Indeed, wavelet-based
methods allow us to quantify the phase differences between
optical depth profiles, and thereby determine the values of m and
Ωp for a large number of waves that appear to be generated by
structures inside the planet (Hedman & Nicholson 2013, 2014;
French et al. 2016, 2019).

Our previous analyses of the planet-generated waves employed
wavelet-based algorithms which estimated the average phase
differences between pairs of wave profiles and then compared
those differences with those expected given different assumptions
about m and pW (Hedman & Nicholson 2013, 2014; French et al.
2016, 2019). While powerful, these algorithms have two
important limitations: they assume there is a single wave in the
analyzed region of interest, and they assume the wave signal
dominates the optical depth variations in individual profiles. Here
we will relax these assumptions by adapting a different set of
algorithms to isolate waves with particular pattern speeds and
number of spiral arms within the occultation data. The details of
this approach are described in Hedman & Nicholson (2016), but
for the sake of completeness, we will summarize the important
aspects of the procedures here.

We begin by taking each occultation profile and interpolating
the transmission values onto a regular grid of radii with a spacing
of 100m, converting the profile to normal optical depth,4 and
then transforming the profile into a wavelet using the IDL
wavelet routine (Torrence & Compo 1998) with a Morlet
mother wavelet and parameter ω0=6. This yields a complex
wavelet for each profile ei i

i i = F where ,i i  and Φi are
all functions of both radius r and wavenumber k. For the signal
from a density wave the wavelet phase Φi is equivalent to the
wave phase in Equation (2). Hence, given the observed
longitude λi and observation time ti for each occultation, we
can compute the phase parameter m ti i p if l= - W∣ ∣[ ] for any
chosen values of m∣ ∣ and Ωp. For a wave with the selected
parameters, the phase difference ri i r 0f f fF - = +( ) for
every occultation, so we can define a phase-corrected wavelet:

e e . 4i i
i

i
i

, i i i  = =f
f f- F - ( )( )

For signals with the selected m and Ωp, the phase will be the
same for all the occultation profiles, so the average phase-
corrected wavelet

N

1
5

i

N

i
1

, åá ñ =f f
=

( )

will be nonzero, while any signal without these properties will
average to zero. Thus, only the desired signal should remain in
the power of the average phase-corrected wavelet

r k W
N

,
1

, 6
i

N

i
2

1
,

2

 å= á ñ =f f f
=

( ) ∣ ∣ ( )

while all other signals are only seen in the average wavelet power:

r k W
N

,
1

. 7
i

N

i
2

1
,

2 å= á ñ =f f
=

¯ ( ) ∣ ∣ ∣ ∣ ( )

Hence, the ratio of these two powers r k,  = f( ) ¯ (which
ranges between 0 and 1, see Hedman & Nicholson 2016)
provides a measure of how much of the signal is consistent
with the assumed m and Ωp.
The average phase-corrected wavelet can also be used to

produce a reconstructed profile of the part of the signal with the
selected m-number and pattern speed. This is accomplished by
taking the average phase-corrected wavelet and applying the
inverse wavelet transformation. In practice, we only consider a
finite range of wavenumbers when performing this inversion to
remove residual high-frequency noise and slow background
trends. The resulting profile is complex, but the real and imaginary
parts of the profile just correspond to absolute wave phases of 0
and π/2, respectively. Since the wavelets were computed from the
normal optical depth profiles, this reconstructed profile gives the
normal optical depth variations associated with the wave. We
divide these variations by the average optical depth profile to
create a profile of the fractional optical depth variations. These
fractional optical depth variations are easier to compare among
different waves. We will therefore plot the real part of these
optical depth variations, and report the peak amplitude of these
variations as the maximum value of the square root of the sum of
the squares of the real and imaginary parts of the profile.

3. Untangling the W81.02 Waves

Figures 2 and 3 show the results of the phase-corrected
wavelet analysis of W81.02, using the Group A observations
(i.e., the same ones used in Hedman & Nicholson 2014). In
each plot, we show the average wavelet power, the power of
the average phase-corrected wavelet, and the ratio of these two
powers as functions of wavenumber and location, along with
the peak power ratio as functions of radius and pattern speed
(expressed as a shift in the nominal resonance position). The
two plots shown here are for m 5= - and m=−11, the two
values for which Hedman & Nicholson (2014) found potential
signals (no other m-numbers show such obvious patterns).
In both cases, there is a clear signal in power ratio indicating

that there is a pattern with the expected m-number and pattern
speed. Both show a trend where the wavenumber decreases with
increasing radius, consistent with inward-propagating waves.
However, the critical aspect of these plots is that the signals in
the two plots occur at slightly different locations and have
correspondingly different resonant radii. For m=−5, the peak
signal occurs between 81018 and 81021 km, and has a pattern
speed corresponding to a resonant radius of 81023.2 km. By
contrast, the m=−11 signal has its peak signal between 81021
and 81024 km, and a resonant radius about one kilometer further
out, around 81024.2 km. Furthermore, by inverting the wavelet
transformation, we can reconstruct the portion of the signal with
the selected wavenumbers and pattern speed. These profiles are
shown in the bottom panels of Figures 2 and 3, and both look like
sensible inward-propagating density waves. We therefore conclude
that W81.02 is indeed made up of two different waves that are
partially overlapping each other. We will here designate the waves
with 5 and 11 spiral arms as W81.02a and W81.02b, respectively.
Neither of the two waves within W81.02 can be attributed to

any known resonance with any of Saturn’s moons, and so both

4 Our previous wavelet-based analyses performed wavelet transformations on
the transmission profiles. However, since in this case the relative amplitudes of
the waves are important, it makes sense to perform the wavelet analysis on the
quantity that is independent of viewing geometry. We have verified that we
obtain the same pattern speeds if we use either the transmission or the optical
depth.
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are most likely generated by normal-mode oscillations inside
the planet itself. The five-armed spiral wave W81.02a falls just
outside the m=−4 density wave W80.98, which we had
previously identified as likely generated by the m=4
planetary sectoral normal mode (Hedman & Nicholson 2013).

Marley & Porco (1993) predicted that the m=5 fundamental
sectoral normal mode would generate a resonance in the middle
C ring within 50 km of the m=4 sectoral normal mode, and so
W81.02a is most likely generated by the m=5 fundamental
sectoral normal mode inside the planet.
By contrast, W81.02b is probably not generated by a

fundamental sectoral normal mode because it falls well interior
to W83.63, a wave that was previously identified as m=−10
and is likely generated by the m=10 fundamental sectoral
normal mode (Hedman & Nicholson 2014). Instead, W81.02b
is likely generated by a normal mode with m=11 and ℓ=13.
The resonance location of this mode was not explicitly
calculated by Marley & Porco (1993) or Marley (2014), but
extrapolating trends from their calculations of other modes with

Figure 2. Phase-corrected wavelet analysis of W81.02 wave. The top panel
shows the average optical depth of the ring near this wave as a black line,
and the range of normal optical depths observed among the occultations is
shown with the gray lines. The next panel shows the average wavelet power
as a function of wavenumber and radius, while the third panel shows the
power of the average phase-corrected wavelet assuming m=−5 and
Ωp=1593°. 63/day. The fourth panel shows the ratio of these two powers,
which is a measure of how much of the signal is consistent with the selected
values of m and Ωp. In both of these panels there is a clear signal centered
around 81020 km. The fifth panel shows the peak power ratio between
wavelengths of 1 and 3 km as a function of radius and pattern speed
(expressed as a shift in the nominal resonant radius of 81023.3 km). The
bottom panel shows the reconstructed wave profile derived from the average
phase-corrected wavelet, considering only wavelengths between 0.5 and
2.0 km, which looks like a sensible inward-propagating density wave, as
expected for this resonance.

Figure 3. Phase-corrected wavelet analysis of W81.02 wave, with the same
format as Figure 2, except that here we assume m=−11, Ωp=1450°. 49/day
and a nominal resonant radius of 81024.2 km. Note that in this case, the peak
signal falls around 81023 km, and the reconstructed wave profile is also
centered at this location.
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ℓ=m+2 does place the wave at approximately the right
location, and this is consistent with recent analyses by C.
Mankovich et al. (2018, in preparation).

4. Searching for Additional Waves

Average phase-corrected wavelets can also be used to search
for weak waves that cannot be identified in individual
occultation profiles. In principle, one can process the occulta-
tions for all possible values of m and Ωp and search for large
values of the power ratio that could be indicative of a density
wave. In practice, a wave with m∣ ∣ arms near a given radius r
should have a pattern speed close to that given by Equation (1),
greatly reducing the parameter space that needs to be searched.

There are many potential resonances with planetary normal
modes that could produce weak waves in the rings. However,
for this initial search, we will focus on the waves generated by
fundamental sectoral modes with m between −5 and −10,

which should all lie between the previously identified W81.02a
and W83.63 waves shown in Figure 1 (Marley & Porco 1993;
Marley 2014; Mankovich et al. 2018). These waves should
therefore all fall between 81000 and 83500 km, which is a
rather bland region without many structures that could interfere
with the weak wave signals (see Figure 1).
In principle, we could search for wave signals using average

phase-corrected wavelet of all the profiles listed in Table 1.
However, in practice this is not an ideal approach because these
data span such a long time interval that the strength of the
signal would be extremely sensitive to small changes in the
pattern speed. The pattern speed would therefore need to be
sampled extremely finely to avoid missing the desired signals,
which is inefficient and computationally expensive. Hence, for
this search, we only considered the γ Crucis occultations
obtained between Revs 71 and 102 (i.e., Group B in Section 2).
These form a set of high-quality occultations from a relatively
short time period. We can therefore sample pattern-speed space
more coarsely and not worry about missing important signals.
Figures 4 and 5 show the results of this search. Each panel of

these figures shows the peak value of the power ratio 

Figure 4. Search results for waves with m=−2 through m=−6 based on the
Group B γ Crucis occultations. Each panel shows the peak wavelet power ratio
for wavelengths between 1 and 3 km as a function of location in the rings and
assumed pattern speed for the indicated m. In these plots, the nominal pattern
speed (corresponding to δr = 0) varies with position such that the assumed
resonant radius equals the observed radius. For inward-propagating waves, the
strongest signals should have a pattern slightly slower than this, and so the
signals should appear at slightly positive values of δr. Such signals are clearly
seen for m=−2,−3,−4, corresponding to previously known waves. The
m=−5 signal also occurs at the location of the W81.02 wave. Finally, there is
a weak but distinct m=−6 signal near 81430 km.

Figure 5. Search results for waves with m 7= - through m=−11 based on
the Group B γ Crucis occultations. Here the signal associated with the
previously identified m=−10 wave W83.63 is clear, and an m=−11 signal
at W81.02 can also be identified. Furthermore, there are reasonably strong and
clear m=−7 and m=−9 wave signals at 81960 km and 83090 km,
respectively. A weaker signal for m=−8 can also be seen around 82530 km.
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between wavelengths of 1 and 3 km as a function of position
and pattern speed, expressed as an offset from an assumed
resonant radius. Unlike Figures 2 and 3, where the assumed
resonant radius is a single number, here the resonant radius
varies such that it always equals the observed radius. Thus, the
signal for m=−2 at δr=5 km at a radius of 84640 km
indicates that there is a signal at 84640 km with a pattern
speed appropriate for m=−2 and a resonant radius around
84645 km. Note the wavelength range considered here
corresponds to the typical wavelengths of the previously
identified waves in this region. Including longer wavelengths
made the results more sensitive to slow drifts and offsets in the
baseline signal levels, while including shorter wavelengths
introduced more noise into the images.

The previously identified waves W84.64 (m=−2), W82.00,
W82.06, W82.21 (m=−3), W80.98 (m=−4), and W83.63
(m=−10) all appear as obvious dark patches in the corresp-
onding panels with the appropriate m-values. The two compo-
nents of W81.02 can also be seen in the m=−5 and m=−11
panels as small dark spots. Note that for all of these signals the
peak signal falls at a slightly positive values for δr, which makes
sense because these are all inward-propagating waves, so the true
resonance location falls slightly outside the location of the wave
itself. The magnitude of this offset varies because the peak signal
occurs where the wavelength of the wave is around 2 km, which
can occur at different distances from the resonance depending on
the number of arms in the wave and the local surface mass
density.

Small dark spots are also visible in the m=−6,−7,−8 and
−9 panels at around 81430 km, 81960 km, 82530 km, and
83090 km, respectively. Figures 4 and 5 show that each of
these locations yields the strongest wavelet power ratio
signature within 300 km, providing some evidence that these
signals are real structures and not simply random noise.
Furthermore, it is worth noting that the m=−7 and m=−9
signals at 81960 and 83090 km look to be about as strong as
m=−5 and m=−11 waves, while the m=−6 and m=−8
signals at 81430 km and 82530 km are noticeably weaker. This
suggests that these four waves likely have a range of
amplitudes, which turns out to be the case. For the sake of
convenience, we will follow the notation used by Colwell et al.
(2009), and designate these new wave candidates W81.43,
W81.96, W82.53, and W83.09.

5. Detailed Analysis of the Wave Signatures

Further evidence that the above signals do in fact represent
real density waves can be obtained using the full suite of
occultations listed in Table 1 (i.e., Group C of Section 2). This
large number of occultations provides the strongest possible
filter for signals with a particular m-number and pattern speed.
Also, with occultations spanning an entire decade, the phase
corrections become extremely sensitive to the assumed pattern
speed, enabling very precise measurements of this parameter.

Below we will consider the waves in order of decreasing
signal strength. First we will review the properties of the
previously identified waves and show how they all have clear
signatures with well-defined pattern speeds that can be used to
produce sensible wave reconstructions. Next, we will consider
the two components of W81.02 and derive refined estimates of
their pattern speeds. Then we will consider the signatures with
m=−7 and m=−9, which are the stronger and more robust
of the newly discovered wave signatures. Finally, we will

discuss the weak m=−6 and m=−8 signals and evaluate
whether they represent real waves.

5.1. Previously Identified Waves with m 2 3 4, ,- - -= ,
and −10

Figures 6–11 show the results of the wavelet analysis for the
previously identified waves W84.64, W82.00, W82.06,
W82.21, W80.98, and W83.63. For the sake of conciseness,
these figures just show the power ratio , the parameter that
illustrates the wave signatures most clearly. The upper panels in
these figures show  as a function of radius and wavenumber
for the selected best-fit pattern speed, while the lower left-hand
panels show the peak power ratio between wavelengths of 1
and 3 km as a function of radius and pattern speed (expressed
as offsets in the assumed resonant radius and pattern speed).
The lower right-hand panels show a profile of the maximum
power ratio between wavelengths of 1 and 3 km and between
the two radii indicated by the vertical dashed lines. These
profiles show clear peaks at the selected pattern speed for each
wave, thus demonstrating that those pattern speeds best
organize the signals associated with each wave. Many of these
plots also show secondary maxima offset from the main peak
by around 0°.05/day. These peaks arise because the occulta-
tions are not evenly distributed in time, but instead come from
three distinct time periods (2007–2010, 2012–2014, and
2016–2017) separated by 2–4 years. The secondary maxima
correspond to one extra cycle of the pattern between these
times. Fortunately, the three time periods are long enough and
the gaps between them are short enough that there is no
ambiguity in the best-fit solution for any of these waves.

Figure 6. Detailed wavelet analysis of the m=−2 wave W84.64. The top
panel shows the power ratio  as a function of wavenumber and radius
assuming the indicated m-value and pattern speed. The vertical dotted line
marks the location of the corresponding resonant radius, and the two horizontal
dashed lines mark wavenumbers corresponding to wavelengths of 1 and 3 km.
The bottom left panel shows the peak power ratio in the wavelength range
between 1 and 3 km as functions of radius and pattern speed (expressed as
offsets from the expected pattern speed and resonant radius). The horizontal
dotted line corresponds to the assumed pattern speed used in the upper panel.
The lower right panel shows the peak power ratio vs. pattern speed in the radial
range marked with the vertical dashed lines in the other two panels. Note that
the assumed pattern speed corresponds to the peak signal, and the wavelet
power ratio shown in the top panel has the expected trend for an inward-
propagating density wave (wavenumber increases with decreasing radius).
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The width of the peaks also provides an estimate of the
uncertainty in each wave’s pattern speed. To be conservative, we
will here report uncertainties that correspond to the full width of
the peaks in the profiles. Hence, W84.64 has a pattern speed of
1860°.75±0°.03/day, W82.00 has a pattern speed of 1736°.65±
0°.02/day, W82.06 has a pattern speed of 1735°.00±0°.02/day,
W82.21 has a pattern speed of 1730°.29±0°.02/day, W80.98
has a pattern speed of 1660°.36±0°.02/day, and W83.63 has a
pattern speed of 1394°.06±0°.01/day. It is important to note that
the actual peak positions can be determined to significantly
higher precision than this. However, providing statistically
rigorous uncertainties on these parameters is not practical at this
time because we are considering maximum values of the power

ratio over ranges of radii and wavenumbers, and propagating the
appropriate uncertainties is beyond the scope of this report.
Figure 12 shows the reconstructed wave profiles derived

from the average phase-corrected wavelets, specifically wave-
lengths between 0.5 and 5 km. Note that these profiles have
been normalized so that they represent the fractional optical
depth variations associated with each wave. The peak
amplitudes of all these waves are all greater than 0.25, so the
optical depth variations associated with these waves are a large
fraction of the mean optical depth. Standard linear density
wave theory is therefore not strictly appropriate for these
waves. The nonlinear aspects of these waves do not affect their
symmetry properties and pattern speeds, but they do affect the

Figure 7. Detailed wavelet analysis of the m=−3 wave W82.00. See Figure 6
for details. Note that the assumed pattern speed corresponds to the peak signal,
and the wavelet power ratio shown in the top panel looks like a sensible
inwardly propagating density wave.

Figure 8. Detailed wavelet analysis of the m 3= - wave W82.06. See Figure 6
for details. Note that the assumed pattern speed corresponds to the peak signal,
and the wavelet power ratio shown in the top panel looks like a sensible
inwardly propagating density wave.

Figure 9. Detailed wavelet analysis of the m=−3 wave W82.21. See Figure 6
for details. Note that the assumed pattern speed corresponds to the peak signal,
and the wavelet power ratio shown in the top panel looks like a sensible
inwardly propagating density wave.

Figure 10. Detailed wavelet analysis of the m 4= - wave W80.98. See
Figure 6 for details. Note that the assumed pattern speed corresponds to the
peak signal, and the wavelet power ratio shown in the top panel looks like a
sensible inwardly propagating density wave.
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detailed shape of the density variations (for example, they give
rise to the asymmetries in the shapes of individual peaks and
troughs). More importantly, the standard expressions relating
the wave amplitude to the strength of the applied perturbation
do not hold, complicating any effort to translate the relative
amplitudes of these waves into information about the relative
amplitudes of the oscillations inside the planet.

5.2. The m 5= - and m 11= - Components of W81.02

The results of the wavelet analyses of the two components of
the W81.02 wave are shown in Figures 13 and 14. Consistent
with the analysis presented in Section 3, there are clear signals
in the power ratios for both m=−5 and m=−11. The

Figure 11. Detailed wavelet analysis of the m=−10 wave W83.63. See
Figure 6 for details. Note that the assumed pattern speed corresponds to the
peak signal, and the wavelet power ratio shown in the top panel looks like a
sensible inwardly propagating density wave.

Figure 12. Reconstructed wave profiles for the waves identified in Hedman &
Nicholson (2013, 2014) based on the full suite of occultations. These profiles
are generated using the real part of the average phase-corrected wavelet
between 0.5 km and 5 km. Note that the fractional optional depth variations
associated with these waves are greater than 0.25, consistent with these waves
being visible in individual profiles, and allowing many peaks to be observed in
each profile.

Figure 13. Detailed wavelet analysis of the m=−5 wave W81.02a. See
Figure 6 for details. Note that the assumed pattern speed corresponds to the
peak signal, and the wavelet power ratio shown in the top panel looks like a
sensible inwardly propagating density wave.

Figure 14. Detailed wavelet analysis of the m 11= - wave W81.02b. See
Figure 6 for details. Note that the assumed pattern speed corresponds to the
peak signal, and the wavelet power ratio shown in the top panel looks like a
sensible inwardly propagating density wave.
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m=−5 component has a peak signal at a pattern speed of
1596°.63±0°.02/day, while the m=−11 component has a
peak signal at a pattern speed of 1450°.50±0°.01/day. (Again,
the uncertainties are conservative estimates based on the full
widths of the peaks in the power ratio profiles). These two
pattern speeds correspond to resonant radii separated by only
about 1 km. Also, the signals seen at the appropriate pattern
speeds have sensible trends in wavenumber-radius space, with
the strongest signals being seen just interior to the nominal
resonance location, and the signal occurring at higher
wavenumbers further inwards from the resonance.

The reconstructed wave profiles for both these waves derived
from the Group C occultations are shown in the top and bottom
panels of Figure 15. These waves clearly have much lower
signal-to-noise than any of the waves described in the previous
subsection, and only a few wave cycles are visible for each of
these waves. Still, as will be demonstrated below, these signals
are consistently found among subsets of the data with peak
amplitudes between 0.1 and 0.15. Hence, W81.02a and
W81.02b are both valid waves but are also weaker than any
of the previously identified waves.

5.3. The m 7= - and m 9= - Wave Signatures W81.96 and
W83.09

Among the four new wave signatures revealed by our search,
the m 7= - and m=−9 signals designated W81.96 and
W83.09 are stronger and more robust, and so we will consider

them first. Figure 16 shows the wavelet analysis of the m=−9
signal W83.09, which shows a clear peak at 1421°.84±0°.01/
day, corresponding to a resonant radius of 83090.65 km. The
signal is also perfectly consistent with an inward-propagating
density waves, falling just inside the expected resonant radius
and showing a clear increase in wavenumber with distance
from the resonance. Furthermore, the reconstructed wave
profile for this signal, shown in Figure 15, looks like a sensible
inward-propagating density wave with a peak amplitude of
around 0.10, which is not much smaller than the components of
W81.02. We can therefore be fairly confident that this signal
comes from a real m=−9 density wave.
The wavelet analysis of W81.96 shows a comparably clear

m 7= - signal with a pattern speed of 1492°.46±0°.02/day,
corresponding to a resonant radius of 81962.45 km (see
Figure 17). This signal also appears to be quite consistent
with an inwardly propagating density wave, with another clear

Figure 15. Reconstructed wave profiles for the newly identified waves based
on the full suite of occultations. These profiles are generated using the real part
of the average phase-corrected wavelets between 0.5 and 5 km.

Figure 16. Detailed wavelet analysis of the m=−9 wave W83.09. See
Figure 6 for details. Note that the assumed pattern speed corresponds to the
peak signal, and the wavelet power ratio shown in the top panel looks like a
sensible inwardly propagating density wave.

Figure 17. Detailed wavelet analysis of the m=−7 wave W81.96. See
Figure 6 for details. Note that the assumed pattern speed corresponds to the
peak signal, and the wavelet power ratio shown in the top panel looks like a
sensible inwardly propagating density wave.
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trend where the wavenumber increases inwards. The recon-
structed wave profile for W81.96, while having a slightly lower
amplitude than W83.09, still preserves multiple wave cycles
and looks like a reasonable inward-propagating density wave.
Thus, we can conclude that W81.96 is indeed an m=−7
density wave.

5.4. The m 6= - and m 8= - Wave Candidates W81.43 and
W82.53

Finally, we must consider the candidate m=−6 and m=−8
waves W81.43 and W82.53. Figures 18 and 19 show wavelet
analyses of these signals based on the full suite of occultations. For
W81.43 there does appear to be a peak is the power ratio when
m=−6 at a pattern speed of 1538°.24±0°.02/day, corresp-
onding to a resonant radius of 81429.55 km, which falls just
outside the region with the strongest signal. For W82.53, there are
multiple peaks in the power ratio profile, but the strongest falls at
1454°.22±0°.01/day, which corresponds to a resonant radius of
82528.75 km, a sensible location just outside the observed signal.
The signal associated with this pattern speed also exhibits sensible
trends in wavenumber-radius space, with higher wavenumbers
being found at increasing distances from the resonance.

Turning to the reconstructed wave profiles for these regions
(shown in Figure 15), we find that both these waves have
extremely small amplitudes and are just barely above the
background noise fluctuations. W82.53 appears to be a scaled
down version of the other waves and so is perhaps more
convincing. By contrast, W81.43 only preserves a cycle or two
and so does not look particularly wavelike. In both cases, one
can reasonably ask whether these are real wave signatures or
just a chance alignment of random noise in the various profiles.

To address these concerns, we sought to establish whether
these two signals could be seen throughout the Cassini mission.
We therefore divided the occultations into two groups based on
whether they were observed before or after 2010. This
produced two separate data sets with roughly comparable
signal-to-noise. Figures 20 and 21 show the results of the
wavelet analyses for these two time periods for each of the
wave candidates W81.43 and W82.53, while Figure 22 shows

the reconstructed profiles for all the weak waves derived from
these two time periods.
For both W81.43 and W82.53, the data obtained before 2010

shows a relatively clear peak in the power ratio at the expected
pattern speed that strongly resembles the signal seen in the full
data set. By contrast, the data obtained after 2010 do not show
such a unique signal. While the expected pattern speed does
correspond to a peak in the power ratios, there are multiple
peaks of comparable strength at other pattern speeds and
locations. The strongest signals therefore appear to be restricted
to the early part of the Cassini mission. However, both the
early and late data for each wave candidate do show signals at
the same radii and wavenumbers for the selected pattern
speeds. This at least hints that the signal seen prior to 2010 did
persist to later times. Also, if one examines the reconstructed
profiles for these two time periods (shown in Figure 22), one
finds that the individual peaks and troughs associated with
these wave candidates do line up, unlike the other features in
these profiles. Furthermore, while the amplitudes of the
structures seen after 2010 are lower than those seen before
2010, this appears to be a general trend common to all these
wave signals.
It is still unclear why the wave signals seem to be stronger in

the earlier data. As shown in Table 1, many of the occultations
observed before 2010 used the star γ Crucis. While the high
elevation angle of γ Crucis above the rings makes these
occultations especially useful for probing high-optical-depth
regions like the B ring (Hedman & Nicholson 2016), it is not so
obvious what would make γ Crucis occultations especially
sensitive to waves in low-optical depth regions like the C ring.
It could be that the more heterogeneous occultations used later
in the mission somehow reduced the efficacy of the phase-
correction techniques, but we have thus far been unable to
identify any evidence for this. Hence, the question of whether
these differences reflect a subtle artifact of our data processing
algorithms or a real temporal variation in the waves, must be
left as an open question for future work.
The evidence for W81.43 and W82.53 being real density

waves is certainly weaker than the other signals considered in

Figure 18. Detailed wavelet analysis of the m=−6 wave W81.43. See
Figure 6 for details. Note that the assumed pattern speed corresponds to the
peak signal, but the wavelet power ratio is not clearly a sensible inwardly
propagating density wave.

Figure 19. Detailed wavelet analysis of the m=−8 wave W82.53. See
Figure 6 for details. Note that the assumed pattern speed corresponds to the
peak signal, but there are multiple other pattern speeds with comparable signal
levels.
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this report. However, the relatively unambiguous signals in the
pre-2010 data, along with the consistent patterns seen before
and after 2010 are sufficient for us to regard these features as
reasonable candidate m=−6 and m=−8 density waves.

6. Summary

Table 2 summarizes the properties of the waves and wave
candidates in the middle C ring derived from the above
analyses, while Figure 23 shows the locations and pattern
speeds of these waves, together with the other currently
identified density waves in the C ring. This plot clearly
demonstrates that the waves W81.02a, W81.43, W81.96,
W82.53, and W83.09 are part of the same sequence as
W83.63, W80.98, W82.00/W82.06/W82.21, and W84.64/
W87.19/Maxwell ringlet. This is consistent with all these
waves being associated with fundamental sectoral normal
modes predicted by Marley & Porco (1993). Having a full
sequence of waves corresponding to fundamental sectoral
normal modes with m=ℓ=2–10 should be particularly

informative for efforts to model Saturn’s internal structure and
overall rotation rate. By contrast, W81.02b falls well off of this
trend, and is therefore most likely generated by one of a
different class of planetary oscillations. Most likely, this wave
is generated by a planetary oscillation with ℓ=13 and m=11.
Such an interpretation is not only consistent with extrapolations
from earlier predictions (Marley & Porco 1993; Marley 2014),
but also more recent calculations of planetary normal modes
(Mankovich et al. 2018). Recall that French et al. (2019)
identified half a dozen density and bending waves in the inner
C ring, most of which are probably also generated by
fundamental but non-sectoral normal modes, and so should
provide further constraints on Saturn’s interior (Mankovich
et al. 2018). Detailed interior modeling is beyond the scope of
this report, but we can note some interesting trends among the
amplitudes and pattern speeds of these waves (see Figure 24).
First, we may note that while there are multiple waves with

similar pattern speeds for m=−2 and m=−3, this does not
appear to be the case for any of the other waves in this
sequence. Fuller (2014) suggests that the multiple m=−2 and

Figure 20. Detailed wavelet analysis of the m=−6 wave W81.43, using only
data obtained before 2010 (top) or after 2010 (bottom). See Figure 6 for details.
Note that both analyses use the same reference pattern speed that best-fit the
full data set (Figure 18), and both power ratios show a signal at the same
combination of radii, pattern speeds, and wavenumbers.

Figure 21. Detailed wavelet analysis of the m 8= - wave W82.53, using only
data obtained before 2010 (top) or after 2010 (bottom). See Figure 6 for details.
Note that both analyses use the same reference pattern speed that best-fit the
full data set (Figure 19), and both power ratios show a signal at the same
combination of radii, pattern speeds, and wavenumbers.

15

The Astronomical Journal, 157:18 (17pp), 2019 January Hedman, Nicholson, & French



m=−3 waves represent mixing between the fundamental
sectoral normal modes and g-mode waves within a stably
stratified layer in Saturn’s interior. While this model does
predict that such “mixed” modes would be weaker for modes
with m=4 than for m=2 or 3, our search did not uncover
any weak m=−4 signals close to the W80.98 wave (see
Figure 4) or any weak m=−10 waves around W83.63 (see
Figure 5), even though W80.98 and W83.63 are not much
weaker than the m=−3 waves. Furthermore, we did not find
any additional examples of waves with m=−2 or m=−3 in
this region. This may suggest that only a limited number of
mixed modes are efficiently excited. If nothing else, the lack of
additional waves with m=−4 through −10 removes many
potential ambiguities in the interpretation of these oscillations.

The amplitudes of these waves also show some interesting
trends. Note that these wave amplitudes are directly propor-
tional to the mode amplitudes inside the planet, scaled by a
factor of 2m+ℓ+1 (Marley & Porco 1993). However, the
conversion factor also depends upon the damping length of the
wave (Tiscareno et al. 2007), which is difficult to indepen-
dently constrain for these weak waves. Systematic uncertainties
in the damping length do not strongly affect the inferred
relative amplitudes of the planetary modes, but do impact their
absolute values. Hence, we will only consider relative
amplitudes among the observed waves here.

As shown in Figure 24, the waves with m 2, 3, 4= - - - ,
and −10 are all probably saturated, so detailed comparisons are
problematic, but we can clearly see that the waves with
m 5, 7= - - , and −9 are all significantly lower amplitude than
those with m 2, 3, 4= - - - , and −10, while those with
m 6= - and m 8= - are weaker still. At first, this seems to
suggest that there is a minimum in the wave amplitudes around
m 7= - . The problem with this interpretation is that we could
not find any wave signature with m 11= - outside W83.63,
where the resonance with the fundamental sectoral mode with
ℓ m 11= = should reside. This, along with the lack of
additional unidentified waves outside 84000 km, suggests that
fundamental sectoral modes with m 10> are as weak or
weaker than those with m 5 9= - . Hence, it is probably more
accurate to say that all modes with m 4> , except for m=10,
have low amplitudes compared to those with m=2, 3 or 4.
A general decrease in mode amplitude with increasing m is

consistent with various earlier predictions (Marley & Porco 1993;
Mankovich et al. 2018). However, these theoretical models
generally predict a steady decrease in the mode amplitudes, while
the data seems to show a more abrupt transition around a critical
pattern speed around 1630/day. This pattern speed also appears
to be relevant for the amplitudes and visibility of waves generated

Figure 22. Reconstructed wave profiles for the waves identified in this paper
based occultations obtained before and after 2010 in black and green,
respectively. These profiles are generated using the part of the average phase-
corrected wavelet between 0.5 and 5 km. In all cases, the variations associated
with the wave candidate show similar wavelengths and phases.

Figure 23. Summary plot showing the locations and pattern speeds of the
currently identified density waves that can be attributed to structures inside the
planet. The filled symbols are those first identified in this paper, while the open
symbols are those found in previous publications (Hedman & Nichol-
son 2013, 2014; French et al. 2016, 2019). The black symbols correspond to
the waves most likely generated by fundamental sectoral normal modes. Note
that at this scale the symbols are much larger than the radial extent of the
waves.
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by other planetary normal modes. All of the normal-mode waves
identified in the inner C ring by French et al. (2019) have pattern
speeds greater than 1626°/day, while most of the remaining
normal modes that have no identified waves (except for a few
that may fall within gaps or close to the strong Titan apsidal
resonance) have pattern speeds below 1600°/day (Mankovich
et al. 2018). Hence, it appears that modes with pattern speeds
greater than about 1620°/day tend to have large enough
amplitudes to produce obvious density waves, while those with

pattern speeds less than this value are substantially weaker (with
the exception of the m= 10 fundamental sectoral normal mode).
Interestingly, 1620°/day is roughly twice the planet’s bulk
rotation rate, so perhaps this transition has some relationship to
which modes can be efficiently excited inside a rotating planet.
Such possibilities, along with an explanation for the exceptionally
strong m=10 mode, will need to be explored in future works.
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