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ABSTRACT

Saturn’s C ring contains multiple spiral patterns that appear to be density waves driven by periodic gravitational
perturbations. In other parts of Saturn’s rings, such waves are generated by Lindblad resonances with Saturn’s
various moons, but most of the wave-like C-ring features are not situated near any strong resonance with any
known moon. Using stellar occultation data obtained by the Visual and Infrared Mapping Spectrometer on board
the Cassini spacecraft, we investigate the origin of six unidentified C-ring waves located between 80,900 and
87,200 km from Saturn’s center. By measuring differences in the waves’ phases among the different occultations,
we are able to determine both the number of arms in each spiral pattern and the speeds at which these patterns rotate
around the planet. We find that all six of these waves have between two and four arms and pattern speeds between
1660◦ day−1 and 1861◦ day−1. These speeds are too large to be attributed to any satellite resonance. Instead, they
are comparable to the predicted pattern speeds of waves generated by low-order normal-mode oscillations within
the planet. The precise pattern speeds associated with these waves should therefore provide strong constraints on
Saturn’s internal structure. Furthermore, we identify multiple waves with the same number of arms and very similar
pattern speeds, indicating that multiple m = 3 and m = 2 sectoral (l = m) modes may exist within the planet.
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1. INTRODUCTION

Spiral waves are patterns in Saturn’s rings produced by
periodic gravitational perturbations on the ring material. Many
of these waves can be attributed to mean-motion resonances with
Saturn’s various moons. However, a number of spiral waves in
the C ring do not fall near any known resonance with any moon.
These waves were first noticed in the Voyager radio occultation
data (Rosen et al. 1991), but have also been observed in stellar
occultations by the ultraviolet spectrometer on board the Cassini
spacecraft (Colwell et al. 2009b; Baillié et al. 2011). However,
these previous studies were unable to identify the source of the
perturbations responsible for generating these waves because
they could not determine either the number of arms in the spirals
or how fast the relevant patterns were rotating around the planet.
Using occultation data from the Visual and Infrared Mapping
Spectrometer (VIMS), we have now been able to determine both
these quantities for six of these unidentified waves. These six
waves have the right pattern speeds and symmetry properties
to be produced by low-order normal mode oscillations within
Saturn, as predicted by Marley (1990) and Marley & Porco
(1993). These waves should therefore provide valuable new
constraints on the planet’s interior structure.

Prior to describing our analysis of these waves, we first
provide some background information about the relevant spiral
waves in Section 2. This includes a brief summary of the theory
behind spiral waves (Section 2.1), a summary of the wave-like
features in the C ring (Section 2.2) and a description of the six
waves that will be investigated here (Section 2.3). Section 3
then describes how we can determine the number of arms and
pattern speeds of these waves. Section 3.1 describes the VIMS
occultation data that will be used in this analysis. Section 3.2
illustrates how comparing multiple occultations can constrain
the waves’ symmetry properties using a particularly informative
set of occultations. Sections 3.3 and 3.4 describe the wavelet-
based techniques we employ to ascertain the number of arms and

pattern speeds of these waves. Section 4 summarizes the results
of our calculations. Finally, Section 5 discusses the implications
of our findings.

2. BACKGROUND

2.1. The Theory of Spiral Waves

Spiral patterns in Saturn’s rings are generated by various
periodic perturbations on the ring material, and different types
of perturbations produce different types of spiral waves. For
example, periodic vertical forces generate warped structures
known as bending waves, while periodic radial or azimuthal
forces produce variations in the rings’ surface density known
as density waves. The structure and dynamics of these spiral
patterns are relatively well understood and good theoretical
overviews of these phenomena are available (e.g., Shu 1984).
Hence, we will only briefly review the aspects of spiral waves
that are most relevant to this analysis. Note that the waves
considered below all appear to be density waves, so we will
focus on the dynamics of those structures here.

A given spiral density wave consists of an integer number of
arms that become more tightly wrapped with increasing distance
from the radius of the exact resonance. This entire pattern rotates
around the planet at a single pattern speed. The waves in Saturn’s
rings are so tightly wrapped that the opacity variations appear to
be almost purely radial in both images and occultation profiles.
Hence, the waves appear as periodic variations in ring brightness
or opacity whose wavelength changes systematically with radius
(see Figure 1 below for some examples). However, because a
density wave is actually a rotating spiral pattern, the locations
of the peaks and troughs in a given profile will depend on both
the observed ring longitude and the orientation of the pattern
during the measurement.

The organized motions responsible for spiral density waves
are most efficiently generated by Lindblad resonances. At these
resonances, the ring-particles’ radial epicyclic frequency κ is an
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Figure 1. VIMS occultation profiles of the six waves examined in this analysis. Each panel shows the ring’s normal optical depth vs. ring radius, which is measured in
kilometers from the inferred resonance location rL. (For the innermost five waves, the rL value comes from Baillié et al. 2011, while for W87.19 the resonance position
has been adjusted to match the best-fit pattern speed of this wave, see Section 4.) The specific profiles shown here come from an occultation by the rings of the star R
Cassiopaea, which provides our highest-resolution profiles of these waves. The raw data numbers were converted to transmission estimates by normalizing the stellar
signal to unity in the middle of the Maxwell Gap (87,375–87,425 km), and then translated to normal optical depth values using the standard formula, assuming the
elevation angle of the star is 56.◦04 above the ringplane.

(Supplemental data of this figure are available in the online journal.)

integer multiple of the difference between the angular frequency
of the perturbing potential Ωp and the ring-particles’ mean
motion n. Hence, if there is a density wave driven at a given radial
location in the rings, then the most likely resonant perturbation
frequencies will satisfy the following relationship:

m(n − Ωp) = κ, (1)

where m is any non-zero integer (i.e., m = . . ., −3, −2, −1,
1, 2, 3, . . .). Rewriting the resonant condition in terms of the
local apsidal precession rate, �̇ = n − κ , we have the familiar
expression for a first-order Lindblad resonance:

(m − 1)n + �̇ = mΩp. (2)

Since �̇ � n, resonances with m > 0 (known as inner Lindblad
resonances or ILRs) have Ωp ≈ (m − 1)n/m, while those with
m < 0 (known as outer Lindblad resonances or OLRs) have
Ωp ≈ (|m| + 1)n/|m|.

In a differentially rotating, self-gravitating disk, the periodic
perturbations at such a resonance give rise to a trailing spiral
density wave that propagates away from the location of the exact
resonance toward the location in the rings where n = Ωp. Thus,
for a Keplerian disk like Saturn’s rings (and assuming Ωp > 0),
density waves will propagate outward from an inner Lindblad
resonance and inward from an outer Lindblad resonance. The
pattern of surface density variations generated by such a wave
gives rise to variations in the local optical depth with radius r,
inertial longitude λ, and time t. For waves of small amplitude
these variations may be written as

τ (r, λ, t) � τ0 + Δτ (r) cos φ(r, λ, t), (3)

where the wave’s phase φ can be decomposed into a part that
depends only on the observed longitude and time, and another
that depends only on radius:

φ(r, λ, t) � |m|(λ − Ωpt) + φr (r). (4)

Hence, |m| gives the number of arms in the wave pattern, while
Ωp is the angular rate at which it rotates around the planet. The
wave’s pattern speed therefore equals the angular frequency of
the external perturbing force.

At sufficiently large distances from the resonance, the radius-
dependent part of the phase is given by the following asymptotic
expression:

φr (r) �
[

3(m − 1) + J2
21

2

(
rS

rL

)2
]

MS(r − rL)2

4πσ0r
4
L

+ φ0, (5)

where MS is the mass of Saturn, J2 is a measure of the planet’s
oblateness, rS = 60,330 km, rL is the resonant radius where
Equation (1) is satisfied, σ0 is the undisturbed surface mass
density of the ring, and φ0 is a constant. Note that for an
outward-propagating wave from an ILR, both m − 1 and r − rL

are positive, while for an inward-propagating wave from an
OLR m − 1 and r − rL are both negative. Hence, in both cases,
dφ/dr > 0 and a line of constant phase will have dr/dλ < 0,
corresponding to a trailing wave pattern. Also, the wave’s radial
wavenumber k derived from the above expression:

k(r) = dφ
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�

[
3(m − 1) + J2

21

2

(
rS

rL

)2
]

MS(r − rL)

2πσ0r
4
L

, (6)

increases linearly with distance from rL.

2



The Astronomical Journal, 146:12 (16pp), 2013 July Hedman & Nicholson

Table 1
Summary of Waves Investigated Here, Including Designations

by Various Authors

Wave Rosen et al. Colwell et al. Baillié et al.
Locationa (1991)b (2009b) (2011)

80988 km e W80.98 13
82010 km W82.00 15
82061 km f W82.06 16
82209 km g W82.21 17
84644 km i W84.64 19
87189 km W87.19 32

Notes.
a Inferred resonance location obtained by fitting Equation (6) to UVIS occulta-
tion data, see Table 7 of Baillié et al. (2011).
b See Figures 7 and 8 in Rosen et al. (1991).

So long as the background opacity of the ring τo does not vary
too much with radius, the phase parameter φ can be computed
directly from the local opacity variations (e.g., opacity maxima
occur where φ � 0 and opacity minima occur where φ � 180◦).
Thus φ(r, λ) can be calculated from any given radial profile
across the ring. Indeed, for identifiable waves the trends in φ with
radius can be used to estimate parameters like the ring’s surface
mass density (Tiscareno et al. 2007). However, for our efforts
to determine the pattern speeds and m-values of unidentified
waves, it is more useful to consider the difference in phase
parameters between occultations observed at different times and
longitudes. For these phase differences δφ, the radius-dependent
term φr should cancel out, leaving terms that only depend on the
known differences in the observation times (δt) and observed
longitudes (δλ), and the unknown parameters |m| and Ωp:

δφ = |m|(δλ − Ωpδt). (7)

We can therefore compare the observed phase differences δφ
with those predicted for various combinations of m and Ωp, and
thereby determine which pattern speed and m-number is most
consistent with the observed phase differences.

2.2. Spiral Waves in the C Ring

Surveys of Saturn’s C ring by Rosen et al. (1991), Colwell
et al. (2009b) and Baillié et al. (2011) have found a total
of 27 wave-like structures in the C ring. Only five of these
features have been identified with specific satellite resonances.
The most prominent feature is a bending wave generated by
an unusual Titan −1:0 nodal resonance (Rosen & Lissauer
1988), and Rosen et al. (1991) identified one density wave
produced by the Mimas 4:1 ILR. More recently, the density
wave produced by the Atlas 2:1 ILR has been detected, and
there are hints of density waves at the locations of the Mimas
6:2 and Pandora 4:1 resonances (Colwell et al. 2009b; Baillié
et al. 2011). More than half of the remaining unidentified waves
appear to be inward-propagating (i.e., their radial wavenumber
increases inward). Such behavior is inconsistent with density
waves generated by resonances with Saturn’s moons. Since all
the moons orbit outside the rings, the perturbation frequency
associated with any moon’s gravitational perturbations will be
smaller than the local orbital frequency anywhere in the C ring.
Hence, Lindblad resonances in the C ring with any moon should
be ILRs, which should generate outward-propagating waves.
The inward-propagating waves must therefore be produced by
some other mechanism.

One possible explanation for these inward-propagating waves
is that they are bending waves instead of density waves. Unlike
density waves, bending waves typically propagate away from
the location in the rings where Ωp = n (Shu 1984). Hence,
vertical resonances where the perturbation frequency is less
than the local orbital frequency (the so-called inner Vertical
resonances or IVRs), like those generated by several of Saturn’s
moons, should propagate inward. Furthermore, the very low
ring opening angle in the Voyager radio experiment (B = 5.◦6)
meant that the vertical warps in the bending wave could lead
to significant optical depth variations along the observed line
of sight. However, most of these inward-propagating waves are
also clearly visible in stellar occultations observed by Cassini at
high ring opening angles, where optical depth variations from
bending waves would be very subtle.1 Furthermore, there are
no strong candidate IVRs due to known (or even hypothesized)
satellites at the desired locations. Thus, this is not the currently
favored interpretation for most of these inward-propagating
features.

An alternative explanation of these waves is that they are not
generated by resonances with Saturn’s moons, but instead are
produced by resonances with normal-mode oscillations within
Saturn itself. Stevenson (1982) first suggested that oscillations
within the planet could produce identifiable structures in the
rings. Later, Marley (1990, 1991) and Marley & Porco (1993)
demonstrated that acoustic modes in the planet’s interior could
indeed give rise to gravitational perturbations with pattern
speeds that are sufficiently fast to generate OLRs and inward-
propagating waves in the C ring. The latter authors also found
that the predicted pattern speeds of low-degree f-modes were
consistent with some of the observed wave locations, but
uncertainties in Saturn’s interior structure and in the theory
of normal modes meant that the resonance radii could only be
predicted to within ∼500 km.

2.3. The Six Waves Examined in this Study

This analysis will focus on six of the unidentified, inward-
propagating waves. As summarized in Table 1, these waves
have been designated in various ways by different authors.
Here we will use the Colwell et al. (2009b) nomenclature,
which identifies each wave with a number giving the radial
location of the wave in thousands of kilometers. Figure 1 shows
profiles of all six waves derived from the highest resolution
VIMS occultation to date (see below for how these data were
processed). Each wave appears as a periodic variation in the
ring’s opacity, with a wavelength that varies with distance from
the planet. More specifically, all these waves have wavelengths
that decrease inward, which suggests that they are either bending
waves driven by IVRs or density waves driven by OLRs. Since
the visibility of these waves does not appear to vary with
spacecraft elevation angle, it is unlikely that any of these features
are bending waves. Indeed, their pattern speeds turn out to
be consistent with those expected for OLRs. Hence, for the
remainder of this discussion we will anticipate our final result
by referring to these features as density waves.

All six waves are located in the central part of the C ring,
between radii of 80,900 and 87,200 km. This is a region of gently
undulating structure, with an average normal optical depth (i.e.,
the optical depth the ring would have if the line of sight was

1 One exception is the wave designated “j” in Rosen et al. (1991), which is in
fact invisible in all VIMS occultation profiles obtained to date, but is seen in
one or more UVIS stellar occultations observed at very low opening angles
(Baillié et al. 2011).
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exactly perpendicular to the ringplane) of about 0.10. All but
the outermost wave are located between the “plateau” features
designated P4 and P5 by Colwell et al. (2009b). While four
of the waves fall in otherwise unexceptional locations, two fall
either on top of (W87.19) or immediately adjacent to (W82.06)
local maxima in optical depth.

The strongest known eccentric resonances in this region are
the two fourth-order Enceladus 5:1 resonances at 82,538 and
82,477 km, the third-order Janus and Epimetheus 5:2 resonances
at ∼82,780 km and ∼82,950 km, the Pan 2:1 ILR at 85,105 km,
and the Atlas 2:1 ILR at 87,647 km. Only the last of these is
known to be associated with an observable wave. None of these
resonances is located within 100 km of any of the unidentified
waves. There are two very weak vertical resonances in the
vicinity of our target waves: the Enceladus 5:1(e2i) resonance
at 80,967 km (located 21 km interior to the W80.98 wave),
and the Janus 5:2(ei) resonance at 82,096–82,107 km (∼40 km
exterior to the W82.06 wave). However, as mentioned above,
the visibility of these waves at large ring opening angles argues
against these features being bending waves, and furthermore
many other comparable (or stronger) vertical resonances do not
produce visible bending waves in the rings. Hence, we consider
these rough alignments to be coincidental, and conclude that
none of these six waves can be attributed to a resonance with
any of Saturn’s moons.

These six waves have the strongest opacity variations and the
longest wavelengths of any of the unidentified C-ring waves.
We focus exclusively on these waves because they provide
the best opportunities for determining unambiguous pattern
speeds. The strong opacity variations mean that we can clearly
detect the maxima and minima, which makes the relevant phase
parameters easier to determine. Furthermore, the relatively long
wavelengths of these waves should minimize our sensitivity to
small errors in the occultation geometry. Errors in Cassini’s
trajectory reconstruction can cause the occultation profiles to
shift slightly in radius, which can in turn create problems when
comparing data from different occultations. For example, if one
profile was shifted relative to the other by half a wavelength,
then the phase difference between the waves might appear to
be zero when in reality it is 180◦. However, this is unlikely
to occur with any of these six waves, because they all have
maximum wavelengths exceeding 2 km, which is considerably
larger than the subkilometer uncertainties in our reconstructions
of occultation geometry (see below).

3. METHODS

3.1. VIMS Observations

The VIMS instrument is described in detail in Brown et al.
(2004). While VIMS is typically used to obtain spatially
resolved spectra of a scene, it can also operate in an “occultation
mode” where the short-wavelength VIS channel is turned off,
while the longer-wavelength IR channel stares at a single pixel
targeted at a star and obtains a series of rapidly sampled
near-infrared stellar spectra at 31 wavelengths between 0.85
and 5.0 μm. As the star moves behind the rings, its apparent
brightness varies due to variations in the ring’s opacity. Note that
the response of the detector is highly linear, so after a constant
instrumental background is removed from each spectral channel,
the data numbers returned by the instrument are proportional to
the incident flux. In order to avoid contamination from sunlight
scattered by the rings, we focus exclusively on data from one
spectral channel covering the range 2.87–3.00 μm, where water

ice is strongly absorbing. The rings are sufficiently dark at these
wavelengths so that ringshine is negligible, and the measured
signal is directly proportional to the transmission through the
rings T. We can therefore easily translate the raw data numbers
into the slant optical depth along the line of sight through the
rings τ = − ln(T ), or the normal optical depth of the rings
τn = τ sin B (B = elevation angle of the star above the rings).

A precise time stamp is appended to each spectrum, facilitat-
ing the geometry reconstruction. Using the appropriate SPICE
kernels, we can compute the radius where the starlight pierced
the ringplane for each sample in the given occultation. This
calculation accounts for the light travel time from the rings to
Cassini, and uses stellar positions taken from the Hipparcos
catalog2, corrected for parallax at Saturn. The positions of sharp
edges of gaps and ringlets in the Cassini Division and C ring
demonstrate that the resulting reconstructed geometry for each
occultation is accurate to within a kilometer (Nicholson et al.
2011; French et al. 2011). R. G. French et al. (in preparation)
have used a sub-set of these sharp features to make small cor-
rections to the spacecraft’s position during these occultations.
These corrections not only reduce the dispersion in the radial
position estimates of sharp edges to ∼150 m, but also yield more
consistent estimates of the density wave phases (see below).

Between 2005 and 2009, VIMS obtained a total of 27
occultation cuts through the C ring with sufficient signal-to-
noise and spatial resolution to discern the relevant waves.
Table 2 provides a list of these occultations, identifying the star
observed, the “Rev number” (Cassini’s orbit around Saturn)
when the data were obtained, and whether the cut was obtained
during ingress or egress. The table also provides the ephemeris
time and observed inertial longitude when the star passed behind
each of the six waves discussed below. Blank entries in this
table correspond to cases where the occultation did not cover
the particular wave or when a data gap corrupted the relevant
profile, and thus were excluded from this analysis.

3.2. Initial Examination of the Waves Using
RS Cancri Occultations

Before describing the procedures we will use to determine
the m-numbers and pattern speeds of the waves from these oc-
cultation data, let us first examine some particularly informative
occultations of the star RS Cancri. Unlike the other occultations
considered in this analysis, these were chord occultations where
the star cut obliquely through the rings. In such an occultation,
the star passes through the same radial range at two very dif-
ferent longitudes as the track enters and then leaves the rings.
Comparisons of the wave profiles derived from the ingress and
egress parts of these occultations thus provide illustrative ex-
amples of how occultation data can constrain wave parameters.
Furthermore, even simple visual inspections of these wave pro-
files indicates that several of the unidentified waves have very
similar pattern speeds and likely the same m-numbers.

Figures 2 and 3 show the relevant occultation profiles from
the RS Cancri occultations observed during Revs 80 and 85
(the Rev 87 RS Cancri occultation only probed waves exterior
to 84,000 km and is not shown here). Of particular interest
are the three waves W82.00, W82.06 and W82.20, which are
clustered within a region a couple of hundred kilometers wide
around 82,100 km. In the Rev 80 RS Cancri data, the ingress and
egress profiles for each of these waves are almost perfectly anti-
correlated, with peaks in one profile corresponding to dips in

2 http://heasarc.gsfc.nasa.gov/W3Browse/all/hipparcos.html
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Table 2
Observed Times (in Seconds of Ephemeris Time, Measured from the J2000 Epoch) and Inertial Longitudes (Measured Relative to the

Longitude of Ascending Node on J2000) for the Various Occultation Cuts Through each Wave

Star Rev i/e W80.98 W82.00 W82.06 W82.21 W84.64 W87.19

R Hya 036 i 220948260. 220948093. 220948085. 220948061. 220947679. 220947295.
174.◦072 175.◦060 175.◦108 175.◦249 177.◦407 179.◦453

α Aur 041 i 227949007. 227948789. 227948779. 227948748. 227948261. 227947783.
343.◦813 345.◦077 345.◦137 345.◦316 348.◦013 350.◦513

γ Cru 071 i 266193414. 266193267. 266193260. 266193238. 266192889. 266192521.
183.◦104 183.◦241 183.◦248 183.◦267 183.◦578 183.◦886

γ Cru 073 i 267426088. 267425942. 267425935. 267425913. 267425565. 267425200.
182.◦136 182.◦281 182.◦288 182.◦309 182.◦640 182.◦969

γ Cru 077 i 269858216. 269858071. 269858064. 269858043. 269857699. 269857336.
181.◦086 181.◦240 181.◦247 181.◦269 181.◦619 181.◦965

γ Cru 078 i 270466692. 270466548. 270466541. 270466520. 270466176. 270465814.
180.◦860 181.◦015 181.◦023 181.◦045 181.◦398 181.◦747

β Gru 078 i 270512795. 270512284.
302.◦800 294.◦401

γ Cru 079 i 271045522. 271045367. 271045359. 271045337. 271044968. 271044581.
179.◦175 179.◦354 179.◦363 179.◦389 179.◦795 180.◦198

RS Cnc 080 i 271872473. 271872088. 271872070. 271872018. 271871265.
90.◦240 87.◦858 87.◦749 87.◦431 82.◦984

RS Cnc 080 e 271877226. 271877611. 271877629. 271877681. 271878434.
121.◦515 123.◦897 124.◦005 124.◦324 128.◦770

γ Cru 081 i 272320388. 272320233. 272320226. 272320203. 272319835. 272319448.
178.◦322 178.◦510 178.◦519 178.◦546 178.◦974 179.◦397

γ Cru 082 i 272956171. 272956016. 272956009. 272955986. 272955617. 272955229.
177.◦862 178.◦056 178.◦065 178.◦093 178.◦532 178.◦967

RS Cnc 085 i 275057262. 275057224. 275057119. 275055932. 275055073.
97.◦236 97.◦000 96.◦337 89.◦067 84.◦114

RS Cnc 085 e 275059898. 275059935. 275060040. 275061227. 275062086.
114.◦136 114.◦371 115.◦034 122.◦303 127.◦256

γ Cru 086 i 275503697. 275503542. 275503535. 275503512. 275502756.
176.◦829 177.◦033 177.◦043 177.◦073 177.◦995

RS Cnc 087 i 276329999. 276328974.
92.◦710 86.◦701

RS Cnc 087 e 276334140. 276335165.
118.◦549 124.◦557

γ Cru 089 i 277408751. 277408596. 277408589. 277408566. 277408199. 277407813.
176.◦576 176.◦781 176.◦791 176.◦821 177.◦287 177.◦749

γ Cru 093 i 280045204. 280045028. 280045020. 280044994. 280044576. 280044136.
208.◦249 208.◦061 208.◦052 208.◦024 207.◦598 207.◦175

γ Cru 094 i 280681410. 280681250. 280681242. 280681218. 280680836. 280680433.
191.◦683 191.◦696 191.◦697 191.◦699 191.◦728 191.◦758

γ Cru 096 i 282014259. 282014112. 282014104. 282014083. 282013732. 282013362.
185.◦190 185.◦280 185.◦285 185.◦298 185.◦504 185.◦708

γ Cru 100 i 285034037. 285033857. 285033848. 285033822. 285033398. 285032956.
224.◦282 223.◦835 223.◦814 223.◦749 222.◦741 221.◦750

γ Cru 101 i 285861190. 285861011. 285861002. 285860976. 285860552. 285860110.
224.◦289 223.◦842 223.◦820 223.◦755 222.◦746 221.◦755

γ Cru 102 i 286686360. 286686182. 286686173. 286686147. 286685725. 286685285.
223.◦942 223.◦500 223.◦479 223.◦415 222.◦418 221.◦438

β Peg 104 i 288914432. 288914336. 288914332. 288914318. 288914091.
342.◦574 343.◦021 343.◦042 343.◦107 344.◦113

R Cas 106 i 291039691. 291038969. 291038939. 291038853. 291037730. 291036830.
90.◦705 86.◦728 86.◦566 86.◦097 80.◦186 75.◦723

α Sco 115 i 302022977. 302022638. 302022621. 302022571. 302021771. 302020939.
157.◦895 158.◦409 158.◦434 158.◦508 159.◦664 160.◦797
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Figure 2. Profiles of the relevant waves obtained during the occultation of the star RS Cancri on Rev 80. The black profiles were obtained during ingress, while the
green profiles were obtained on egress. The normal optical depth values assume the star’s elevation angle above the rings is 29.◦96. Note that the phase differences
between the waves seen in ingress and egress are the same for the three waves found around 82,000 km. This suggests that all these waves have the same m-numbers.

(A color version and Supplemental data of this figure are available in the online journal.)

Figure 3. Profiles of the relevant waves obtained during the occultation of the star RS Cancri on Rev 85. The black profiles were obtained during ingress, while the
green profiles were obtained on egress. Note that the phase differences between the waves seen in ingress and egress are again the same for the three waves found
around 82,000 km. This implies that all these waves have the same m-numbers. The two waves found outside 84,000 km also show similar phase differences, indicating
that they may have same m-number as each other.

(A color version and Supplemental data of this figure are available in the online journal.)

the other and vice versa. This indicates that the phase difference
between these two occultation cuts is close to 180◦ for all three
of these waves. This finding alone might be interpreted as a
coincidence, but if we turn our attention to the Rev 85 data,
we again find suspicious similarities among these three waves.

For all three of the waves, the sharp peaks in the egress data
occur about one-third of a cycle exterior to the sharp peaks in
the ingress data. This again suggests that the phase difference
between the ingress and egress cuts (in this case ∼240◦) is nearly
the same for all three of these waves.
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This result is significant because it implies that all three
of these waves have the same m-number. The waves W82.00,
W82.06, and W82.21 are close together in the rings. Hence, for
each of these occultations, the ingress cuts for these three waves
occurred at nearly the same longitude and time, and similarly
the egress cuts are grouped closely in longitude and time (see
Table 2). This means the difference in the observed longitudes
(δλ) and the observed times (δt) between ingress and egress are
almost identical for the three waves. Since the phase difference
between the waves is given by δφ = |m|(δλ−ΩP δt), the easiest
way for all three waves to have the same phase difference is
for them to have the same m-number (which also implies, via
Equation (2), nearly identical pattern speeds). Our full analysis
of these waves confirms that this is indeed the case.

Being able to determine that W82.00, W82.06 and W82.21
have the same m-number from simple inspection of the RS
Cancri profiles is useful because this result does not require the
geometry of the occultations to be extremely accurate. The most
likely errors in the occultation geometry correspond to shifts in
the spacecraft’s position along its orbit, which would cause
the ingress and egress occultation traces to shift in opposite
directions in radius. Such errors will tend to shift the ingress
profiles outward or inward relative to the egress curves by the
same amount for all three waves. Although the ingress–egress
phase differences would then change, as long as the wavelengths
are similar this would not change the result that the phase
differences between the ingress and egress cuts are nearly the
same for all three waves.

3.3. Computing Phase Differences Between Waves

While simple inspection of the RS Cancri profiles suggests
that several of the waves have similar pattern speeds and
identical m-numbers, we need quantitative measurements of the
phase differences between different occultation cuts to ascertain
the actual values of m or Ωp for these waves. Fortunately, we
can estimate the phase difference between any two occultation
cuts through a given wave using wavelet transforms. A wavelet
is basically a localized Fourier transform that can effectively
cope with the rapid wavelength changes in typical spiral waves.
Indeed, wavelet techniques have already been used to study
density waves in order to obtain information about how the
radial wavelength varies with distance from the resonance,
which can constrain the rings’ surface mass density (Tiscareno
et al. 2007; Colwell et al. 2009a; Baillié et al. 2011). However,
our analysis is different in that it focuses on estimating the phase
difference between two wave profiles rather than the wavelength
or amplitude of the wave.

We perform our wavelet analysis on the raw signal profiles in-
stead of the derived optical depth profiles shown in Figures 1–3.
In practice, this choice has little influence on the derived phase
differences (the conversion from T to τ just introduces an overall
constant phase shift of 180◦), but it does eliminate any possible
complications that could arise due to the uncertainties in the
unocculted star signal. Before applying the wavelet transform
to the relevant occultation data, we first interpolate the data
onto a uniform array of radii with a radial spacing of 50 m.
A small part of this resampled profile centered on each wave
(see Table 3 or Table 4 for the exact ranges) is then fed into
the publicly available IDL routine wavelet (see Torrence &
Compo 1998, the default Morlet mother wavelet with ω0 = 6
is used throughout this analysis). The resulting wavelet is a
two-dimensional array of complex numbers as a function of
radius and radial wavenumber W(r, k). (Note that we use the

wavenumber k here instead of the wavelength λ in order to avoid
any possible confusion with the radiation’s wavelength or the
longitudinal coordinate.) Let us denote the real and imaginary
parts of the wavelet as WR and WI , respectively. We can then
define the wavelet power as P(r, k) = W2

R +W2
I and the wavelet

phase as ϕ(r, k) = tan−1(WI ,WR).
Figure 4 illustrates how the wavelet phase and power vary

with position and wavelength across the wave. As expected
there is a diagonal ridge in the wavelet power that tracks the
observed trends in the wave’s wavelength. (Recall that for a
wave generated at an OLR, the radial wavelength decreases
as the wave propagates inward.) Furthermore, we can observe
that where the wave is strong and the wavelet power is high,
the contours of constant phase are nearly vertical, so a well-
defined phase can be ascribed to every radius in the wave. The
values of the phase in this region are also reasonable given
the profile, being near ±180◦ at local minima and around 0 at
local maxima.3 Thus, for such waves we can reduce the two-
dimensional wavelet to estimates of the wave power and phase
as a function of radius by appropriately averaging over a range
of spatial wavenumbers.

In order to filter out large-scale background variations in
the rings’ opacity while still capturing most of the wave’s
power, we include a limited range of wavenumbers in these
averages. Specifically, we exclude all wavenumbers less than
k1 = 2π/(5 km) and all wavenumbers greater than k2 =
2π/(0.1 km). The effective power of the wave at a given radius
is therefore defined to be

Peff(r) = N
k2∑

k=k1

P(r, k), (8)

where N is a normalization constant. Note that since we only
are interested in relative power for this analysis, we choose N
so that Peff is equal to unity at its peak value. Also note that this
sum is done over a series of logarithmically spaced values of k.

In order to derive an effective phase for the wave at each
radius, we first compute an effective average real part and
imaginary part of the wavelet:

WR,I (r) =
∑

WR,I (r, k)P(r, k)∑
P(r, k)

, (9)

where the sums are again over all values of k between k1
and k2. Note these averages are weighted by the power, so that
the regions with the strongest signals dominate the averages.
From these average wavelet components, we can compute the
average phase at each radius:

φ(r) = tan−1(WI,WR). (10)

Note that by computing the average of components WI and
WR instead of averaging the local phases ϕ(r, k), we avoid
any difficulties involved in averaging a cyclic quantity. The
phase difference between two occultations should then simply
be the difference in the two values of φ(r).

Figures 5 and 6 illustrate the results of these calculations for
two of the waves seen in the RS Cancri occultation from Rev 85.
As expected, there is a peak in the wave power Peff located near
the center of the wave. Also, the difference in the wave phase

3 The wavelet phase also increases with increasing radius, consistent with the
expected trend in φ(r) for a density wave.
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Figure 4. Plot showing the wavelet amplitude and phase derived from the W84.64 wave observed in the Rev 106 RCas occultation. The top panel shows the occultation
profile (in raw data numbers, which is proportional to transmission) as a function of radius. The bottom panel shows the wavelet phase and power as functions of radius
and spatial wavelength. The wavelet phase is indicated by grayscale levels (black = −180◦, white = +180◦) while the overlaid green contours are levels of constant
wavelet power. The peak wavelet power follows a diagonal ridge that corresponds to the wave’s increasing wavelength with radius. Note that where the wavelet power
is strong, the contours of wavelet phase are nearly vertical and correspond to the expected phase of the wave (e.g., the phase wraps from −180◦ to 180◦ at locations
corresponding to sharp minima in the profile).

(A color version of this figure is available in the online journal.)

between the egress and ingress cuts is relatively constant in the
region where the wave signal is evident, as desired. Furthermore,
the numerical values of these phase differences are consistent
with the observed profiles. For the W84.64 wave in Figure 6,
the phase difference is around 180◦, which is what one would
expect given that the peaks in the ingress profile occur at the
same location as the dips in the egress profile and vice versa.
Similarly, the W82.21 data in Figure 5 yield a phase difference
of around 240◦, which is consistent with the dips in the egress
profile always lying about 1/3 of a cycle exterior to those in the
ingress profile. This gives us some confidence that our rather
simple approach can extract useful phase information from these
wave profiles.

For the purposes of this analysis, we require a single estimate
of the average phase difference for any pair of occultation cuts.
We estimate this parameter as the weighted average of the phase
differences δφ(r), with each of the individual values weighted
by the average of the two Peff curves in order to ensure that
regions with high signal contribute most to the final estimate.
In order to further reduce the possibility of contamination in
the phase difference estimate, we only consider regions where
the average power of the two waves is more than 0.9 (this
threshold is indicated by a dotted line in Figures 5 and 6, and the
averaging region is demarcated by vertical dashed lines). Due to
the weighting, the resulting estimates of the phase differences
are not particularly sensitive to the exact value of this threshold.
In addition to computing the weighted average phase difference,
δφ between the two cuts (which is shown as a dotted line in
the bottom panel of Figures 5 and 6), we also compute the
standard deviation of the phase difference values in the selected

region σφ , which quantifies the reliability of the phase estimate.
Note, however, that σφ will underestimate the uncertainty in the
δφ because it does not include the effects of uncertainties in
the reconstructed geometry. Such geometric uncertainties are
difficult to quantify a priori, and will be considered in more
detail below.

To recap this procedure, the steps are: (1) compute the
wavelet transform, W(r, k), for each observation and the cor-
responding power spectrum, P(r, k). (2) Compute weighted
averages for WR(r) and WI (r), and thence the average phase
φ(r). (3) Compute the average radial power profile, Peff(r).
(4) Compute the average phase difference between two wave
profiles δφ, weighted by the average of the two power profiles.

3.4. Using Phase Differences to Constrain
m-numbers and Pattern Speeds

In order to illustrate how quantitative estimates of δφ can be
used to constrain m-numbers and pattern speeds, let us examine
the phase differences between the various RS Cancri ingress and
egress profiles listed in Table 3. Note that the phase differences
for the W82.00, W82.06 and W82.21 waves are indeed very
similar for both the Rev 80 cuts (being around ∼150◦) and
the Rev 85 cuts (where they are all ∼250◦). This is consistent
with the above visual inspection of the profiles and supports
our contention that these three waves must share a common
m-number. However, with these measured values of δφ, we can
now also identify which values of m and ΩP come closest to
predicting the observed phase differences.
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Table 3
Phase Differences Between Ingress and Egress Cuts for the RS Cancri Occultations

Wave Resonant Region Rev 80 Rev 85 Rev 87 Possible
Locationa Consideredb δφ δφ δφ m-valuesc

W80.98 80988 km 80970–80995 km 141.◦6 · · · · · · −4, −3, +6
W82.00 82010 km 81992–82012 km 148.◦5 250.◦6 · · · −3, +6
W82.06 82061 km 82040–82065 km 148.◦1 249.◦1 · · · −3, +6
W82.21 82209 km 82190–82215 km 150.◦1 251.◦1 · · · −2, −3, +6
W84.64 84644 km 84625–84650 km 145.◦4 195.◦5 235.◦5 −2, +5, +6
W87.19 87189 km 87175–87205 km · · · d (182.◦2)e 191.◦4 −2, +5

Notes.
a Inferred resonance locations from Baillié et al. (2011, Table 7).
b Region over which wavelet power and phase are computed.
c m-values between −10 and +10 where the predicted δφ values are within ±30◦ of the observed values.
d Phase difference not determined due to data gap.
e Phase difference computed using wavevectors between k = 2π/(0.1 km) and k = 2π/(2 km) because
otherwise combined peak average power is never above threshold.

Figure 5. Results of the wavelet calculations of the phase difference in
wave W82.21 between the ingress and egress cuts from the Rev 85 RSCnc
occultation. The top panel shows the two occultation profiles, while the middle
panel shows the integrated wave power Peff (r) between wavenumbers of
2π/(5 km) and 2π/(0.1 km). The bottom panel shows the phase difference
δφ(r) = φegress(r)−φingress(r) between these two cuts (see text for explanations
of the dashed and dotted lines). Note that the average phase difference is
computed using only the data where the average Peff of the two profiles is
above 0.9. The average phase difference is near 240◦, which is consistent with
the offset between the ingress and egress wave profiles noted in Figure 3.

(A color version of this figure is available in the online journal.)

For any given wave, the local mean motion n and apsidal
precession rate �̇ of the ring material are straightforward func-
tions of the wave’s resonant radius rL and Saturn’s gravitational
field (Murray & Dermott 1999). Hence, if we assume the grav-

Figure 6. Results of the wavelet calculations of the phase difference in wave
W84.64 between the ingress and egress cuts from the Rev 85 RSCancri
occultation, following the same layout as in Figure 5. In this case, the average
phase difference is near 180◦, which is again consistent with the ingress and
egress wave profiles.

(A color version of this figure is available in the online journal.)

itational field parameters given in Jacobson et al. (2006), then
we can use Equation (2) to compute the expected pattern speed
ΩP for any given value of m at any of the relevant resonant
radii. Furthermore, for a particular pair of occultation cuts, the
difference in the observed ring longitudes δλ and the differ-
ence in observation times δt can be obtained from Table 2.
We can therefore use the computed pattern speed to calcu-
late the expected phase difference between any two occultation
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Figure 7. Plot showing the difference between the observed and predicted values of δφ between the ingress and egress cuts of the RS Cancri occultations for the wave
W82.21 as a function of the assumed m-number, given the stipulated δλ and δt values. Different symbols correspond to different pairs of occultation cuts. Note that
the residuals for both observations are close to zero when m = −2,−3, and +6, so these values of m are the ones most consistent with the observed phase differences.

(A color version of this figure is available in the online journal.)

Figure 8. Plot showing the difference between the observed and predicted values of δφ between the ingress and egress cuts of the RS Cancri occultations for the wave
W84.64 as a function of the assumed m-number. Note that the residuals for all three observations are close to zero when m = −2, +5, and +6, so these values of m are
the ones most consistent with the observed phase differences.

(A color version of this figure is available in the online journal.)

cuts δφ(predicted) = |m|(δλ − Ωpδt) for each value of m
(cf. Equation (7)).

Figures 7 and 8 show the differences between the observed
and predicted values of δφ for the waves W82.21 and W84.64
as a function of m.4 For any given observation, the difference
δφ(observed) − δφ (predicted) cycles repeatedly through 360◦
with increasing or decreasing m. Hence, there are multiple
possible m-values that could be consistent with the single
observed phase difference. However, different observations have
different values of δt and δλ, and thus show different trends in
these plots. Hence, there are relatively few m-values that could
be consistent with the two or three observations illustrated in
Figures 7 and 8. If we conservatively assume a ±30◦ uncertainty
in the phase determinations (which is consistent with the results
of the global analysis described below), then m = −3, −2,
and +6 are consistent with the RS Cancri observations of the
W82.21 wave, and m = −2, +5, and +6 are consistent with
the observations of the W84.64. The other waves yield similar
results, as shown in Table 3. Note that the W82.00, W82.06, and

4 Note that the time elapsed between the ingress and egress cuts can be as
much as 2 hr. This is a non-trivial fraction of the 6.5–7 hr orbital period in this
region and therefore cannot be ignored in the calculation of the predicted δφ.

W82.21 waves are consistent with the same set of m-values, as
expected

The small number of m-values that are consistent with
this limited number of δφ estimates demonstrates that our
measurements of δφ can constrain the symmetry properties and
pattern speeds of these waves. However, it is also clear that we
cannot uniquely determine the m-value for any of these waves
with only the RS Cancri data. Thus, the next step in this analysis
is to extend this approach to include all pairs of occultation cuts
listed in Table 2.

While the procedures described above allow us to calculate
δφ for any possible pair of occultation cuts listed in Table 2,
in practice some occultation pairs do not yield reliable phase
difference estimates. For some pairs, the average wavelet power
for the two cuts never exceeds 0.9 of the peak power in each cut.
This implies that the peak wave signal in the two cuts is coming
from different parts of the wave (perhaps because they have
different intrinsic resolutions), and so we do not consider such
pairs. We also exclude any occultation pairs which yield an rms
phase-difference scatter σφ greater than 20◦ because large values
of σφ indicate that the wavelet was unable to identify a consistent
phase difference (perhaps due to small gaps or cosmic rays in one
of the profiles). Finally, we only consider pairs of occultations
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Figure 9. A test of our pattern-speed determination algorithms using the Prometheus 8:7 wave in the inner A ring. The top panel shows the rms phase difference
residuals as a function of pattern speed assuming the pattern has an m = 8, as expected for this wave. The dashed line marks the predicted pattern speed for this
pattern, while the dotted line marks the pattern speed that gives the minimum variance (in this case, these two lines are almost on top of each other). The bottom panel
shows the residuals in the phase differences from this best-fit solution as a function of time difference between the pairs of observations. The scatter in these data likely
represents residual geometrical uncertainties in the various profiles.

where the time difference is less than 300 days. This prevents
any aliasing that might occur due to the limited number of
observations with larger time separations. After applying these
selection criteria, we have between 100 and 260 δφ estimates
for each of the waves (see Tables 4 and 5).

As with the RS Cancri data described above, we constrain
the symmetry properties and pattern speeds of each wave by
computing expected values of δφ for different combinations of
m and ΩP and comparing these numbers with the observed
δφ values. Specifically, we seek values of m and ΩP that
minimize the rms residuals of δφ(observed) − δφ (predicted).
In principle, we could just compute these rms variations for
each m assuming ΩP is given by Equation (2), as we did
for the RS Cancri data. However, given the uncertainties in
the planet’s gravitational field and the precise locations of the
resonant radii for these waves, we will instead compute the rms
phase difference residuals over a finite range of pattern speeds
surrounding the expected ΩP corresponding to each m.

Since we are studying patterns that rotate around the planet
at hundreds of degrees per day, and we are using occultations
separated in time by up to 300 days, it is important to verify that
our δφ calculations are sufficiently accurate to yield meaningful
constraints on m and Ωp. This is most easily done by first
testing our methods on waves with known pattern speeds. We
therefore applied the above algorithms to occultation profiles
of the Prometheus 8:7 density wave in the outer A ring. The
top panel in Figure 9 shows the rms phase difference residual
(observed–predicted) as a function of pattern speed, assuming
the pattern has the expected m = 8. Note the sharp dip at
587.◦30 day−1, which corresponds almost exactly to Prometheus’
mean motion and the expected pattern speed for this wave.
Thus, the pattern speed with the minimum variance in the

phase residuals matches the expected perturbation frequency, as
desired. Furthermore, no similar dip is seen when other values of
m are tried. These results demonstrate that the above procedures
can indeed yield reliable estimates for the pattern speeds and
m numbers of even tightly wound density waves.

The lower panel of Figure 9 shows the phase difference residu-
als as a function of time separation δt . These points are randomly
scattered about zero, as desired, but with a ±20◦ scatter which
probably reflects not only statistical uncertainties in the phase
estimates themselves but also uncorrected systematic errors in
the occultation geometries. As noted above, the latter can shift
wave profiles relative to each other, which will produce errors
in the phase differences that are hard to model. However, these
data demonstrate that these systematic errors do not prevent us
from determining the pattern speeds of spiral waves with wave-
lengths that are sufficiently long. More specifically, the above
procedures should yield reliable results so long as the uncer-
tainties in the occultation geometry do not produce phase errors
exceeding 90◦. As discussed in Section 2.3 above, this should
be the case for the six waves considered here.

The small dispersion in the phase difference residuals not
only requires accurate phase difference measurements, but the
phase differences must also follow the predicted trend given
by Equation (7) over a sufficiently long period of time. For
waves generated by satellites, the latter condition is equivalent to
assuming the relevant moon has a constant mean motion, which
is reasonable for most of Saturn’s moons (the obvious exceptions
being the co-orbitals Janus and Epimetheus, see Tiscareno et al.
2006). For waves generated by planetary normal modes, this
condition requires assuming that the relevant oscillation has a
constant frequency and a coherent phase over the time period
spanned by the observations. This assumption not only turns
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out to be consistent with the observations (see below), but it can
also be justified a priori based on considerations of the waves’
group velocity.

Density waves in dense rings propagate away from the
resonance at a finite speed, so any shift in the frequency
or phase of the perturbing potential generates discontinuities
in the wave’s profile (Tiscareno et al. 2006). These features
propagate through the rings at the group velocity vg � πGσ0/κ ,
where G is the universal gravitational constant, σ0 the ring’s av-
erage surface mass density, and κ the radial epicyclic frequency
(Shu 1984). For the relevant C-ring waves, σ0 is between 1 and
10 g cm−2 (Zebker et al. 1985; Hedman et al. 2011, Section 5
below), and vg is between 0.4 and 2.5 km yr−1. The relevant
waves extend 10–20 km from the resonances and they do not
exhibit any deviations from the expected smooth trends in their
wavelengths. Thus, regardless of their origins, the frequencies
and phases of the relevant perturbing potentials appear to be
coherent over several years. Hence, we are justified in assuming
that the phase differences can be predicted using Equation (7)
for time intervals of one year or less.

4. RESULTS

We searched for the best-fitting combinations of m numbers
and pattern speeds for all six of the waves described in
Section 2.3. Given that the wavelength of these waves increases
with increasing radius, we expected these patterns would be
generated by outer Lindblad resonances, and so the m numbers
of these waves would be negative. Also, previous studies of these
waves by Rosen et al. (1991) and Baillié et al. (2011) suggested
that if |m| was above 5, the implied surface mass density of
the C ring would be unreasonably high (see Section 5 below).
Finally, the comparison of ingress and egress phases for the
RS Cancri occultations in Table 3 suggests plausible values for
m of −2,−3 and −4. Thus, we expected that for these waves
m would lie between −2 and −5. Nevertheless, for the sake
of completeness, we considered all m values between +10 and
−10, and searched for minima within 10◦ day−1 of the expected
pattern speed given by Equation (2).5

For each wave, we found a strong dip in the residual variance
for only a single value of m. For wave W80.98, this dip
occurred with m = −4; for each of waves W82.00, W82.06
and W82.21, it happened with m = −3; and for waves W84.64
and W87.19, it was m = −2. Figure 10 shows profiles of the rms
residuals versus pattern speed for all six waves, assuming the
appropriate m-value. The resulting best-fitting pattern speeds
can be compared with those calculated for each wave, using the
resonance locations specified in Table 7 of Baillié et al. (2011).
For all of the waves the minimum in residuals occurs very close
to the expected pattern speed. For five of the waves, the best-
fit pattern speed is within 0.◦08 day−1 of the value predicted
using the Baillié et al. (2011) resonance locations, while for
the W87.19 wave the best-fit pattern speed is 0.◦16 day−1 lower
than one would predict using the Baillié et al. (2011) resonance
location. These small offsets could represent small errors in
either the assumed gravity field or the estimated resonant radii.
For example, the offset between the best-fit and predicted pattern
speeds for the W87.19 wave could be resolved if the real
resonant radius rL lies just 4 km exterior to the Baillié et al.

5 We also looked for patterns that would be produced by the higher-order
Enceladus 5:1 (m = 2, ΩP = 656.◦7 day−1) and the Janus 5:2 (m = 3,
ΩP = 863.◦7 day−1) inner vertical resonances that lay close to the W80.98 and
W82.06 waves. No significant dips in rms residuals were found.

(2011) estimate of 87,189 km. This wave is superimposed on
a peak in optical depth (minimum in transparency), and the
resulting variations in the surface mass density across the wave
may have complicated earlier efforts to estimate the resonant
radius. Indeed, looking at Figures 1–3, the outer edge of this
wave could easily fall somewhere around 87,193 km.

Figure 11 shows the individual phase difference residuals as a
function of δt for the best-fit solutions. These residuals typically
have a spread of approximately ±45◦, which is noticeably
larger than that found for the Prometheus 8:7 wave discussed
above. This is not entirely surprising given the generally shorter
wavelengths and more limited extents of the C-ring waves.
Fewer cycles are visible in most occultation profiles of the
C-ring waves than for the A-ring wave, so the estimates of
the phase differences should be more uncertain. Furthermore,
the maximum wavelength of the Prometheus 8:7 wave exceeds
10 km, while the C-ring waves all have maximum wavelengths
that are less than 5 km. The estimated phases of the C-ring
waves should therefore be more sensitive to small errors in the
geometrical reconstructions. Indeed, if we do not include the
small corrections to the occultation geometry provided by R. G.
French et al. (in preparation), then the rms residuals of the best
fit solutions increase by roughly a factor of two. However, even
with this increased dispersion, the best-fit solution for each of
the six waves remains close to the predicted pattern speed for
the appropriate OLR. Hence, our identification of the best-fit
m numbers and pattern speeds appears to be robust against any
residual uncertainties in the reconstruction geometry.

5. DISCUSSION

Table 4 summarizes the results of this analysis, including
the m numbers, pattern speeds ΩP , and pattern rotation peri-
ods (2π/ΩP ) for the six waves. We may conservatively esti-
mate the uncertainties in the pattern speeds to be 0.◦5 day−1,
since an error in the pattern speed of this magnitude would pro-
duce a trend in the residuals that would be clearly detectable in
the data (the residuals would reach ∼180◦ at 300 days). This is
also comparable to the widths of the minima in Figure 10. While
the relatively tight distribution of the residuals already gives us
some confidence that we have determined the correct values of
m and ΩP for each of these waves, the following considerations
lend additional support to these identifications.

1. Each of the pattern speeds is consistent with that calculated
for an outer Lindblad resonance at that location for the
appropriate m number.

2. Our full analysis indicates that the waves W82.00, W82.06
and W82.21 all have m = −3. This is consistent with
the similar observed phase shifts between ingress and
egress observed for these three waves in the RS Cancri
occulations discussed in Sections 3.2 and 3.4. Recall that
these arguments were robust against uncertainties in the
occultation geometry, and thus provide a useful check on
the above analysis.

3. The derived values of m yield plausible values for the
C ring’s surface mass density.

The last of these three points requires some explanation and
qualification. In general, the variation of a wave’s wavelength
with radius can provide an estimate of the ring’s average local
surface mass density σ0 and its mass extinction coefficient
τn/σ0, via Equation (6). However, the estimated values of these
parameters depend on m, so prior to this work researchers could
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Figure 10. Plots showing the rms phase difference residuals as a function of pattern speed for each of the six waves, assuming the pattern has the indicated m numbers.
The dashed line marks the predicted pattern speed for this pattern at the resonant location provided by Baillié et al. (2011), while the dotted line is the pattern speed
that gives the minimum variance in the residuals.

only provide estimates of σ0/|m − 1| for these six unidentified
waves. Table 6 lists the estimates of σ0/|m−1| for all six waves
derived by Baillié et al. (2011), and the resulting estimates of σ0
and τn/σ0 assuming the m numbers derived here.6 These values
can be compared with estimates derived from other features
in the rings, but in making these comparisons we must keep
in mind that both σ0 and τn/σ0 may vary with position across
the ring.

Studies of the five identifiable C-ring waves by Baillié
et al. (2011) yield extinction coefficients ranging between
0.13 and 0.36 cm2 g−1, which are higher than our estimates.
However, most of these identifiable waves occur in very different
environments from those occupied by the six unidentified waves
considered here. The two waves found near the Mimas 6:2 and
Prometheus 4:2 resonances occur within a high-opacity plateau,
while the waves associated with the Titan nodal resonance
and the Mimas 4:1 resonance are found in rather low optical
depth regions interior to 78,000 km. This leaves only the
wave associated with the Atlas 2:1 ILR, which is within

6 Note that, for an OLR, |m − 1| becomes |m| + 1.

500 km of W87.19 and not in a region of obviously elevated
optical depth. Intriguingly, Baillié et al. (2011) estimate that
τn/σ0 � 0.19 ± 0.04 cm2 g−1 for the Atlas 2:1 wave, which is
not too different from the value of 0.11 cm2 g−1 derived above
for the nearby W87.19 wave.

For the waves between 79,000 km and 85,000 km there are
no known density waves that can provide independent estimates
for σ0 or τn/σ0, but estimates of these parameters have been
extracted from other types of observations. Based on the particle
size distributions derived from Voyager RSS radio occultation
data, Zebker et al. (1985) estimated the average surface mass
density of the C ring between 78,429 km and 84,462 km to be
3.2±1.8 g cm−2. More recently, Hedman et al. (2011) found that
variations in the wavelength of a vertical corrugation extending
between 78,000 and 84,000 km indicated that this part of the
ring has a mass extinction coefficient of roughly 0.02 cm2 g−1.
Both of these numbers are reasonably consistent with the values
of σ0 and τn/σ0 given in Table 6 for the inner five waves. We
thus conclude that the m values derived above do indeed yield
plausible values for the mass density of the middle C ring.
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Figure 11. Plots showing phase difference residuals (observed–predicted) for each of the six waves, assuming each pattern has the indicated m number and the pattern
speed, which corresponds to the best-fit values shown in Figure 10.

Table 4
Results of the Present Analysis of the Six Waves

Wave Resonant Region N (δφ)c m Pattern Rotation
Locationa Consideredb Speedd Period

W80.98 80988 km 80970–80995 km 136 −4 1660.◦3 day−1 312.2 minutes
W82.00 82010 km 81992–82012 km 219 −3 1736.◦6 day−1 298.5 minutes
W82.06 82061 km 82040–82065 km 217 −3 1735.◦0 day−1 298.8 minutes
W82.21 82209 km 82190–82215 km 191 −3 1730.◦3 day−1 299.6 minutes
W84.64 84644 km 84625–84650 km 257 −2 1860.◦8 day−1 278.6 minutes
W87.19 87189e km 87175–87205 km 111 −2 1779.◦5 day−1 291.3 minutes

Notes.
a Resonance locations from Baillié et al. (2011, Table 7).
b Region over which the wavelet phase and power are computed.
c Number of δφ estimates used in the fits.
d Best-fit value. A conservative estimate of the uncertainties in these numbers is 0.◦5 day−1, which would
correspond to a ∼180◦ residual at 300 days.
e The true value may be closer to 87,193 km (see text).

Assuming the above m numbers and pattern speeds are
correct, we may now ask what could be producing these waves.
They almost certainly cannot be produced by any of Saturn’s
moons, since such a moon would need to be orbiting just above
Saturn’s cloud tops, or within the tenuous D ring. Not only
have no such moons been detected by Cassini, despite extensive

imaging of this region, but any kilometer-size icy or rocky
objects unfortunate enough to find themselves here would be
quickly torn apart by tidal forces.

Instead, these waves may be generated by perturbations from
oscillating normal modes within the planet. Indeed, using a
particular model for Saturn’s internal structure, Marley & Porco

14
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Table 5
Time, Longitude, and Phase Differences Used to Determine Pattern Speeds

Wave Occultation Paira δt δλ δφ σφ

(days) (deg) (deg) (deg)

W82.00 RSCnc085e–RSCnc085i 0.03051 16.9 250.6 3.0
W82.06 RSCnc085e–RSCnc085i 0.03137 17.4 249.1 5.7
W82.21 RSCnc085e–RSCnc085i 0.03381 18.7 251.1 7.7
W84.64 RSCnc087e–RSCnc087i 0.04799 25.9 235.5 4.2
W80.98 RSCnc080e–RSCnc080i 0.05501 31.3 141.6 5.0
W84.64 RSCnc085e–RSCnc085i 0.06133 33.3 195.5 8.9
W82.00 RSCnc080e–RSCnc080i 0.06393 36.0 148.5 8.8
W82.06 RSCnc080e–RSCnc080i 0.06434 36.3 148.1 6.1
W82.21 RSCnc080e–RSCnc080i 0.06555 36.9 150.1 4.3
W87.19 RSCnc087e–RSCnc087i 0.07165 37.9 191.4 12.1
W84.64 RSCnc080e–RSCnc080i 0.08301 45.8 145.4 8.5
W84.64 betGru078i–gamCru078i 0.53957 121.4 47.3 1.7
W84.64 gamCru081i–RSCnc080e 5.10878 50.2 171.7 7.2
W82.21 gamCru081i–RSCnc080e 5.12178 54.2 208.5 4.0
W82.06 gamCru081i–RSCnc080e 5.12265 54.5 136.6 5.9
W82.00 gamCru081i–RSCnc080e 5.12294 54.6 110.6 2.3
W80.98 gamCru081i–RSCnc080e 5.12919 56.8 17.1 11.3

Note. a Each occultation is designated by the sequence star-name, REV number
and ingress/egress.

(This table is available in its entirety in machine-readable and Virtual Obser-
vatory (VO) forms in the online journal. A portion is shown here for guidance
regarding its form and content.)

(1993) predicted pattern speeds for a number of normal modes
that could produce several of the waves identified in the Voyager
radio occultation (Rosen et al. 1991). Those authors even
suggested that W80.98 might be an m = −4 wave generated
by a resonance with the l = 4 sectoral (i.e., m = l) f mode in
the planet (which they denote 4f ), and that either W82.06 or
W82.20 might be generated by a similar l = m = 3 planetary
f mode. Indeed, our fitted pattern speeds appear to be very
consistent with Marley and Porco’s predictions for the pattern
speeds generated by normal mode oscillations inside the planet.
Their predicted rotation period for the 4f mode of 310.6 minutes
is quite close to the observed period of 312.2 minutes for the
m = −4 wave W80.98. Their predicted 3f mode period of
296.4 minutes is close to the periods of the m = −3 waves
W82.00, W82.06, and W82.21, which are 298.5–299.6 minutes.
Finally, the predicted 2f mode period of 286.4 minutes lies in
between the observed periods of our two m = −2 waves W84.64
and W87.19. Hence, it seems quite likely that f-mode acoustic
oscillations within the planet may be producing these six waves,
in which case the precise pattern speeds presented here should
be able to help constrain interior models for Saturn. (As but
one example, we note that within the range of pattern speeds
calculated by Marley (1991) for various Saturn models, those

which best fit the observed wave locations correspond to models
with no interior differential rotation.)

However, while each of the six waves has a pattern speed that
fits with one of the normal modes studied by Marley & Porco
(1993), the number of waves associated with each normal mode
is much harder to understand. Marley & Porco (1993) predicted
that a single wave would be associated with each normal mode
oscillation. Furthermore, only the f modes with m = l were
predicted to have resonances in the C ring (modes with l > m
or with internal radial nodes were predicted to have significantly
faster pattern speeds and much smaller gravitational signatures).
Thus, they expected to find a single wave with m = −2,−3, −4,
etc. Instead, we find three m = −3 waves in close proximity to
each other, and two m = −2 waves with a larger separation. This
suggests that Saturn’s internal structure is more complex than
Marley and Porco assumed. Thus, future efforts to interpret these
findings will likely need to consider the effects of differential
rotation, compositional gradients, or a solid core.

At the same time, further investigations of the C-ring waves
should provide additional constraints on potential models of
Saturn’s interior. For example, once more accurate geometric
reconstructions of the stellar occultations are available, it should
be possible to examine the pattern speeds of shorter-wavelength
waves, such as the waves designated “d” and “h” by Rosen
et al. (1991) or W85.67 and W83.63 by Colwell et al. (2009b).
These particular features could represent additional OLRs with
|m| > 4 predicted by Marley & Porco (1993). Meanwhile,
structures interior to 79,000 km could be generated by vertical
resonances with a different class of planetary normal modes.
There could even be additional m = −4,−3, or −2 patterns
lurking within the rings that are either too subtle to detect in
individual profiles or obscured by other ring features.

These waves also potentially contain information about the
amplitude of the planetary oscillations. All else being equal,
a larger-amplitude oscillation in the planet should generate
larger fractional density variations in the corresponding density
wave. This would imply that the 3f oscillations responsible
for the W82.21 and W82.06 waves are larger than the one
generating the W82.00 wave, and that the 2f oscillation
responsible for W84.64 is larger than the one that gives rise
to W87.19. However, the amplitude of the wave depends not
only on the driving torque, but also on how quickly collisions
among the ring particles dissipate coherent motions (Shu 1984;
Tiscareno et al. 2007). This complicates any effort to extract
quantitative estimates of the perturbing force from the wave
amplitude, especially for waves that exhibit large fractional
density variations, like the ones considered here.

Finally, the ring data can constrain how quickly the oscilla-
tions are generated and dissipated within Saturn’s interior. As
mentioned in Section 3.4 above, the smooth trends in the waves’
wavelength with radius indicate that each perturbing potential

Table 6
Ring Mass Density and Extinction Coefficients

Wave m σ0/|m − 1|a τn
a (τn/σ0)|m − 1|a σ0 τn/σ

W80.98 −4 1.17 g cm−2 0.13 0.11 cm2 g−1 5.85 g cm−2 0.022 cm2 g−1

W82.00 −3 1.42 g cm−2 0.14 0.10 cm2 g−1 5.68 g cm−2 0.025 cm2 g−1

W82.06 −3 2.54 g cm−2 0.28 0.11 cm2 g−1 10.16 g cm−2 0.028 cm2 g−1

W82.21 −3 1.73 g cm−2 0.13 0.08 cm2 g−1 6.92 g cm−2 0.020 cm2 g−1

W84.64 −2 1.35 g cm−2 0.11 0.08 cm2 g−1 4.05 g cm−2 0.027 cm2 g−1

W87.19 −2 0.47 g cm−2 0.15 0.33 cm2 g−1 1.41 g cm−2 0.11 cm2 g−1

Note. a From Table 7 of Baillié et al. (2011).
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has maintained a coherent phase for several years. The small
dispersion in the phase residuals illustrated in Figure 11 con-
firms this supposition, and furthermore we find no statistically
significant trends in the dispersion with δt out beyond 300 days.
If we assume that the planetary oscillations are stochastically
excited, then this long coherence time implies a correspondingly
high quality factor Q for these oscillation modes. Indeed, given
that the oscillation periods of the relevant modes in the planet’s
frame are ∼200 minutes (Marley & Porco 1993), a coherence
time in excess of 300 days would imply a Q > 10,000. This
number is comparable to limits computed from the expected
tidal evolution of Saturn’s moons over the age of the solar sys-
tem (Dermott et al. 1988) and is comparable to estimates of
Jupiter’s Q derived from astrometric satellite data (Lainey et al.
2009). However, recent analyses of astrometric measurements
of Saturn’s moons indicate that Saturn’s tidal Q is between 1000
and 2000 (Lainey et al. 2012). These apparently contradictory
results might be reconciled if the lower-frequency tidal oscilla-
tions are predominantly dissipated by turbulent viscosity acting
on inertial waves driven in the convective envelope, as proposed
by Ogilvie & Lin (2004). Further analyses of the full span of
Cassini occultation data should provide novel constraints on
dissipation rates within Saturn.
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