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Abstract

A Uranus orbiter would be well positioned to detect the planet’s free oscillation modes, whose frequencies can
resolve questions about Uranus’s weakly constrained interior. We calculate the spectra that may manifest in
resonances with ring orbits or in Doppler imaging of Uranus’s visible surface, using a wide range of interior
models that satisfy the present constraints. Recent work has shown that Uranus’s fundamental (f) and internal
gravity (g) modes have appropriate frequencies to resonate with Uranus’s narrow rings. We show that even a single
¢ =2 f- or g-mode detected in ring imaging or occultations can constrain Uranus’s core extent and density. Fully
fluid models typically have ¢ = 2-7 f~mode frequencies slightly too high to resonate among the narrow rings. If
Uranus has a solid core that f~modes cannot penetrate, their frequencies are reduced, rendering them more likely to
be observed. A single £ 2 7 f~-mode detection would constrain Uranus’s unknown rotation period. Meanwhile, the
different technique of Doppler-imaging seismology requires specialized instrumentation but could deliver many
detections, with best sensitivity to acoustic (p) modes at mHz frequencies. Deviations from uniform frequency
spacing can be used to locate density interfaces in Uranus’s interior, such as a sharp core boundary. Shallower
nonadiabaticity and condensation layers complicate this approach, but higher-order frequency differences can be
analyzed to disentangle deep and near-surface effects. The detection of normal modes by a Uranus orbiter would
help to discern among the degenerate solutions permitted by conventional measurements of the planet’s static
gravity field.

Unified Astronomy Thesaurus concepts: Uranus (1751); Solar system gas giant planets (1191); Planetary rings
(1254); Ring resonance (2295); Non-radial pulsations (1117); Doppler imaging (400); Orbital resonances (1181);

CrossMark
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Orbiters (1183); Planetary interior (1248)

1. Introduction

Normal mode seismology is a promising means of probing
the interiors of giant planets. To date, the most direct seismic
constraints on giant planet structure have come from ring
seismology at Saturn (Kronoseismology; see M. S. Marley &
C. C. Porco 1993; M. M. Hedman & P. D. Nicholson
2013, 2014; J. Fuller 2014; R. G. French et al
2016, 2019, 2021; M. M. Hedman et al. 2019, 2022; C. Mank-
ovich et al. 2019; J. W. Dewberry et al. 2021; C. R. Mankovich
& J. Fuller 2021; C. R. Mankovich et al. 2023). Indirect
evidence of normal mode oscillations looms in the accelerations
experienced by the Cassini (S. Markham et al. 2020) and Juno
(D. Durante et al. 2022) spacecraft during their repeated close
passages of Saturn and Jupiter, respectively.

What of the more distant planets in our solar system? Planets
with masses and densities similar to Uranus and Neptune are
common among transiting exoplanets (e.g., J. A. Johnson et al.
2017), but our most detailed information about their prototypes
comes from a single Voyager 2 flyby of each planet in the
1980s. With the Uranus Orbiter and Probe (UOP) identified as
the priority for NASA flagship exploration in the most recent
planetary science decadal survey (Origins, Worlds, and Life
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(OWL); National Academies of Sciences, Engineering, and
Medicine 2023), consideration needs to be given to how an
orbiter might detect Uranian normal modes to unlock new
constraints on the elusive structure of what have conventionally
been called the “ice giants.” Here, we explore the power of two
different methodologies to make inferences on Uranus’s
interior structure based on measurements of normal mode
frequencies enabled by an orbiter: ring seismology and
Doppler-imaging seismology. We aim to show how these
two independent techniques could be practically applied to
open questions about Uranus’s interior. Seismology may be the
best window into Uranus’s hugely uncertain distribution of
chemical elements, which in turn is intimately tied to fluid
stability, thermal and chemical transport processes, rotation
state, magnetic field generation, tidal response, and Uranus’s
formation history. Even putting aside the implications for
Uranus’s interior, ring seismology may be an essential step
toward understanding the dynamical processes sculpting
Uranus’s unique ring system (P. Goldreich & S. Tremaine
1979; J. N. Cuzzi et al. 1981; see also F. H. Shu 1984 for a
review of linear spiral wave theory). Readying these techniques
is therefore critical to answering the key science questions
defined as part of the OWL decadal strategy.

In tandem with groundbreaking work on Saturn ring
seismology (M. S. Marley 1991; M. S. Marley &
C. C. Porco 1993), M. S. Marley et al. (1988) proposed that
normal modes could be responsible for the radial confinement
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of the narrow Uranian rings revealed by Voyager. For all their
rich structure, most regions of Saturn’s main rings are roughly
uniform in density, and hence are conducive to observation of a
spectacular array of spiral waves (see M. S. Tiscareno &
B. E. Harris 2018) induced by resonances with orbiting
satellites (e.g., J. N. Cuzzi et al. 1981) or Saturn normal modes
(M. M. Hedman & P. D. Nicholson 2013 and aforementioned
references). Uranus’s rings, on the other hand, are predomi-
nantly narrow and dense (P. D. Nicholson et al. 2018), defying
the tendency for collisional scattering to diffuse sharp edges
and suggesting the influence of some resonant forcing acting as
a confinement mechanism (C. C. Porco & P. Goldreich 1987).
Confirmed resonances between rings and known moons are
few (C. C. Porco & P. Goldreich 1987; R. G. French et al.
1991, 2024; R. O. Chancia et al. 2017), leaving the mechanism
for sustaining ~10 narrow rings a mystery. Going beyond the
list of named rings, high-phase imaging reveals numerous
additional features whose confinement mechanism is also
unknown (M. M. Hedman & R. Chancia 2021).

Pursuing these ideas, J. A. A’Hearn et al. (2022) showed that
fundamental (f) modes or low-order internal gravity (g) modes
of Uranus are in the appropriate frequency range to resonate
among these rings, and a measurement of the forcing frequency
at one or more of these resonances could be used to distinguish
between interior models that otherwise satisfy all available
constraints (e.g., N. Movshovitz & J. J. Fortney 2022;
D. Soyuer et al. 2023; Z. Lin et al. 2024; L. Morf et al.
2024; B. A. Neuenschwander et al. 2024). Here, we seek to
quantify the constraining power of this method by modeling
Uranus’s mode spectrum for statistical samples of interior
models. We consider scenarios in which nonaxisymmetric ring
modes are detected, and their driving frequencies and azimuthal
wavenumbers m measured, in high-resolution imaging or stellar
occultations by an orbiting spacecraft. We show that a single
detection of a low-wavenumber Uranus mode resonating in the
rings could eliminate a large fraction of models. We point to
possible sources of confusion and show the value of obtaining
two or more independent constraints in the rings.

Oscillation modes also disturb the planet’s visible cloud
layers, yielding radial velocities that may be measurable by a
spatially resolving Doppler imager. A time series of these
Doppler images can be used to extract frequencies of normal
modes. Existing implementations on the ground make use of
interferometry (F.-X. Schmider et al. 2024) or magneto-optical
filter designs (C. L. Shaw et al. 2022). If all modes are
presumed to have the same energy, the radial velocity signal is
expected to be dominated by acoustic overtone (p) modes. This
follows in part from the p-modes’ higher frequencies, and
hence larger velocity perturbations, than the f-, g-, interface, or
inertial modes that reside at a lower frequency. P-modes are
trapped sound waves, and hence have special value for
discriminating the interior structure by virtue of probing the
sound speed in the interior. In particular, p-modes of the same
spherical harmonic degree ¢ and consecutive radial order n are
approximately equally spaced in frequency, but real spectra can
contain deviations from this equal spacing that are signatures of
jumps or kinks in the adiabatic sound speed profile (e.g.,
I. W. Roxburgh & S. V. Vorontsov 2001). These modes can
hence be powerful diagnostics of the composition or phase
interfaces in the interior. We take low angular degree (£ = 1)
p-modes as an example to show how a sequence of frequency
measurements could be used to locate a density interface in
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Uranus’s interior, and how combinations of frequencies of
different £ can be used to separate core and near-surface effects.

Section 2 describes our planetary interior modeling, with
Section 2.2 giving a brief primer on the normal modes we
discuss. Section 3 details the possible observable signatures of
Uranian seismicity in the rings and presents retrievals
demonstrating the constraining power of detecting one or more
resonances. Section 4 describes the unique benefits of an
observed p-mode spectrum that might be accessible from
Doppler-imaging observations, with particular regard to the
location of composition interfaces or phase boundaries in
Uranus’s interior. Section 5 discusses our findings and outlook,
and we summarize in Section 6.

2. Methods
2.1. Uranus Interior Models

Much recent work has been devoted to exploring the space
of Uranus interior structures compatible with gravity field
constraints, both those available now and the improved
constraints anticipated from radio tracking of a Uranus orbiter.
These modeling efforts can be broadly separated into two
categories: those built around physical equations of state
(EOSs) on the one hand, and “empirical” models informed
weakly if at all by an EOS on the other. The latter category
(N. Movshovitz & J. J. Fortney 2022; B. A. Neuenschwander
& R. Helled 2022; D. Soyuer et al. 2023; B. A. Neuenschwan-
der et al. 2024) prioritizes minimal prior information and a
maximally inclusive family of acceptable interior profiles. The
former category (e.g., N. Nettelmann et al. 2013) emphasizes
compatibility with experimental data and physical interpret-
ability, including direct inferences about composition and
temperature structure. EOS-based thermal evolution models
(e.g., J. J. Fortney et al. 2011) attempt to reconcile Uranus’s
surprisingly weak intrinsic flux with the age of the solar
system, which appears to require at least one superadiabatic
boundary layer in the interior (N. Nettelmann et al. 2016;
L. Scheibe et al. 2019, 2021; A. Vazan & R. Helled 2020;
L. Stixrude et al. 2021).

Unfortunately, the existing body of Uranus models is not
readily amenable to detailed seismic analysis. The calculation
of adiabatic oscillation modes requires knowledge of the
adiabatic sound speed ¢, = (I1P/p)'/? and Brunt-Viisild
(buoyancy) frequency

N2—g2_p dinp _L (D)
P\dinP L)

both of which depend on the first adiabatic index [; = (ZEIZ) .
s

(Here, s denotes specific entropy and g = Gm/ #2.) In principle,
this is known for EOS-based models, but in practice, EOS
sources are adapted and blended, and obtaining a reliable I';
can be a challenge. For empirical models, I'; represents
essentially a second unknown profile that is not directly
constrained by gravity moments, although density solutions
combined with EOSs applied post hoc can give some guidance
(e.g., L. Morf et al. 2024; B. A. Neuenschwander et al. 2024).
For the sake of readiness for seismology applications, we
encourage future giant planet modeling efforts to include I'; or
N? among their outputs whenever possible.
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Faced with these difficulties, we opt to create a new set of
Uranus interior models generally built around polytropic
pressure—density relations P = Kp”l/ " Some reasonable
assumptions allow us to obtain well-defined and physically
realistic buoyancy and sound speed profiles while retaining
enough flexibility to fit Uranus’s zonal gravity harmonics and
model the essential features of composition interfaces or
gradients. By default, our models assume a fully fluid interior
from the atmosphere to the planetary center, with the exception
of the “rigid core” variation described below.

We consider two types of model for the interior structure.
Before we discuss their differences, a common feature of the
two is a break in polytropic index positioned at a radius
I = IPpreak, Motivated by the inability of any deep interior
polytrope to accurately model the lower density, highly
compressible outer layers of the planet (see N. Movshovitz
et al. 2020 and L. Morf et al. 2024). For example, a
homogeneous polytrope satisfying Uranus’s mass, radius, spin,
and J, requires n ~ 1.3 and implies a density at P = 1 bar of
p1 =8 x 107" gem ™2, overestimating the density implied by
Voyager radio occultation data by a factor of approximately 2
(G. F. Lindal et al. 1987). We hence introduce a break to
recover realistic near-surface densities and to avoid biasing the
gravity moments or mode frequencies. We find that 1 bar
densities compatible with the Voyager data are achieved for
atmosphere polytropic indices n,, in the range 1.5-3.5 and
envelope indices n.,, typically <1. Density is continuous
across the break. In general, the best barotrope to tie to interior
models is complicated by the uncertain structure of the CHy
condensation layer and abyssal abundance (L. A. Sromovsky
et al. 2011; S. Markham & D. Stevenson 2021), as well as
latitudinal and temporal variations in the temperature near 1 bar
(M. T. Roman et al. 2020); these will feed into the error on the
1 bar density used to constrain the models.

The uncertain structure of the deeper H>O condensation zone
(P Z 100 bar) is another topic of major interest (A. J. Friedson
& E. J. Gonzales 2017; J. Leconte et al. 2017; S. Markham &
D. Stevenson 2021). Simplified models like the ones we use
here could be generalized to account for water condensation
and an associated radiative zone, and seismology may prove to
be a useful probe of these phenomena. In this limit, the vertical
scale of the water cloud is expected to be small (S. Markham &
D. Stevenson 2021 estimate 10-100m). Here, the nearly
discontinuous change in composition and temperature would
induce p-mode frequency shifts functionally similar to those
induced by the artificial envelope/atmosphere break introduced
above, the results of which are discussed in detail in Section 4.
Typical f-modes and the deep-seated g- or interface modes
discussed in Section 3 would be less sensitive to such a sharp,
shallow layer. A stably stratified water cloud may also host its
own internal gravity waves, but the negligible amount of mass
involved makes their observation unlikely. Hence, our conclu-
sions are not altered by our choice not to model the H,O cloud
region explicitly.

For the deeper interior structure, we consider two
possibilities:

Interface model. A composite polytrope is defined by outer
and inner polytropic indices 7y, and 7, joined at a double
mesh point at r = r,oe at which the density increases by a
factor of ajymp > 1.

We choose to set the adiabatic index I'; equal to the

polytropic derivative v = ZEIZ =1+ 1/n in each of the two
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layers, yielding an adiabatic stratification N> = 0 within those
layers. The intervening discontinuities in p and cs2 modify the
spectrum of f- and p-modes and also introduce interface modes,
which stem from the gravity-wave response to small displace-
ments of an interface between two fluid layers of differing
densities (S. V. Vorontsov et al. 1976). These are distinct from
g-modes, which are internal gravity modes that require a
continuous® stably stratified medium with finite radial extent.

Gradient model. Similarly to J. Fuller (2014), we start with a
simple reference polytrope of index n.,, that satisfies Uranus’s
mass and radius, designate the region 0 < r < r; as the core
region, and enhance the density there by a constant factor
Ograg > 1. The envelope density outside » =17, is unchanged,
and n.,, hence corresponds to the final envelope polytropic
index. Then p(r) in the intervening region r; < r < r, is set by a
linear function

r—r

p(r)=p,+ (p; — ,0(,)( ) ri < r <, ()

i — h

where p, = p, (r,) and p; = Qgraa P, (1) are the densities at
the outside and inside of the gradient region.

Similar to the interface model, we set I} = (gizl;) to 0
. . . . N . np
to guarantee an adiabatic stratification N> = 0 outside the

gradient region. Inside the gradient region, we choose

r—r

2 2 2 2
¢ =1iP/p=c,+ (c; — cw)( ), r<r<r,.

i — T
(3)

This choice yields positive values of N* in the gradient region
for the models considered here, introducing a spectrum of g-
modes.

In the gradient model, the polytropic constant

Kenv = P/pl+l/ne"v (4)

of the underlying reference polytrope is adjusted during
structure iterations such that the model converges to the
desired total mass M = My to a specified tolerance. A similar
procedure is used in the interface model, where pressure
continuity at the interface relates the two polytropic constants
(Kenys Kcore), and Kore is adjusted to achieve Uranus’s total
mass. In both model types, n,, is adjusted to satisfy the target
value of J,, which varies from one model to the next for
reasons we will describe. The atmosphere and envelope
constants K, and K., are linked by the condition of density
continuity at the break r = ryeax-

The frequencies of the spheroidal oscillation modes of
interest generally scale with Uranus’s dynamical frequency:

1/2

GM;

Wdyn = (—’%U) . (5)
Ry

Hence, we choose a total mass tolerance 107> My to yield a
fractional frequency error less than 1%, safely smaller than the
error introduced by our approximations concerning rotation
(see Section 2.2 below).

To give an overview of the models we consider, Figure 1
plots the profiles of p, 652, g, and N for just one example of each

5 or pseudocontinuous; see M. A. Belyaev et al. (2015).
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Figure 1. Examples of the two types of interior structures considered in this
study, one (top) fully adiabatic with a discontinuous core density enhancement
and the other (bottom) with a gradual core density enhancement and
superadiabaticity in the gradient region. Both models have moderate central
density (9.3 and 7.9 g cm >, respectively) among their parent samples. The
insets in each panel emphasize the density and sound speed structure near the
break between envelope and atmosphere polytropes.

model class. N is omitted for the interface model, where by
construction N =0 everywhere except a single point at the
interface. Here, the application of jump conditions (Section 2.2
below) obviates the need for explicit calculation of N across the
discontinuity.

As a subset of the interface models, we also address the
possibility of an idealized, inelastic, shear-free core by
enforcing a zero-displacement boundary condition at the
interface radius r = r.o in the interface models. This allows
us to assess the major modifications that a frozen core (e.g.,
L. Stixrude et al. 2021) makes to the spectrum of oscillations in
Uranus’s fluid envelope, but neglects the nonzero but poorly
constrained bulk modulus and shear modulus of the solid core.
In reality, pressure and shear modes of a solid core may interact
with fluid oscillations in the envelope, providing additional
seismic diagnostics (see, e.g., J. Fuller et al. 2014).

We account for rotation by using the theory of figures (ToF;
N. Nettelmann 2017; N. Nettelmann et al. 2021) to fourth order
to iteratively calculate a self-consistent planetary shape and
potential in a rigidly rotating Uranus. Each iteration enforces the
prescription for p(r), ¢2(r) described above where r corresponds
to the mean radii of the isopotential surfaces. These radii are
uniformly scaled such that the outermost zone’s equatorial radius
maiches R.q = 25,559 km. Models commonly assume a deep
spin period Py = 17.24 hr guided by periods derived from the
magnetosphere (M. D. Desch et al. 1986), but Uranus’s rotation
rate is highly uncertain (e.g., R. Helled et al. 2010), and better
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information may await shape, gravity, and hopefully normal
mode measurements by an orbiter. We treat Py as a free
parameter in the range 1618 hr.

2.1.1. Constraining the Density Profile

After Uranus’s mass and equatorial radius, the primary
constraint on the interior structure is J,, which we fit directly by
adjusting one of the parameters during ToF iterations (similar
to, e.g., B. Militzer & W. B. Hubbard 2023). In all models, this
is accomplished by adjusting n.,,. Since the wind-induced part
of J, is not known a priori, each ToF model is in fact adjusted
to match a sampled nuisance parameter JZ“g‘d, and the total
J, = Jugid o gwinds are compared to data.

Uranus’s (and Neptune’s) rapid cloud-level winds are
thought to be relatively shallow, extending at most several
percent into the planet (Y. Kaspi et al. 2013), but they are still
an important contribution to even the low-order zonal
harmonics J, and J,. We calculate the effect that these jet
streams have on the zonal gravity field by solving a
thermogravitational wind equation (TGWE) model as in
C. R. Mankovich et al. (2023). We treat Uranus’s winds
assuming the 1bar level has wind speeds consistent with
Voyager 2 and Hubble data (per D. Soyuer et al.'s (2023) fit;
their Equation (16)) and apply a simple exponential decay as a
function of radial distance from the 1 bar surface. This decay
function introduces the e-folding depth d. To spare the
computational cost of TGWE calculations for hundreds of
thousands of models, we instead precompute such models for a
few thousand randomly sampled rigidly rotating models fit to
Uranus’s J, and 1 bar density. Polynomial fits for J;*"% as a
function of d and Py enable an efficient comparison to data
during the sampling process. Further details are given in
Appendix B.

Until a spacecraft orbits Uranus, the best constraints on the
planet’s gravity field come from the precession rates of the
rings, as measured from a combination of Voyager 2 and Earth-
based occultations (R. G. French et al. 1988; R. A. Jacobson
2014). More recently, R. G. French et al. (2024) made new
measurements of J, and Jy4, accounting for several sources of
systematic uncertainty that had not yet been considered.
Nonetheless, their adopted solution is statistically compatible
with the larger J,—J, error ellipse of Jacobson’s adopted
solution. This work compares models to the centroid of
Jacobson’s estimates of the coefficients, considering a range of
uncertainties. It is instructive to frame the difference between
Jacobson’s and French et al.’s J, centroids in terms of
properties of the interior model: in the interface model from
Figure 1 (top), the 1.39 ppm difference between Jacobson’s and
French et al.’s J, values can be compensated by adjusting the
envelope polytropic index ne,, from 0.5435 to 0.5437,
changing the model’s central density by <0.03%. The resulting
differences in mode frequencies are insubstantial for our
purposes.

A Uranus orbiter could improve our knowledge of the zonal
gravity moments by orders of magnitude. M. Parisi et al. (2024)
estimate the precision on the even and odd harmonics from J,
to Jio that may be attainable for practical spacecraft orbits.
Hence, we also perform retrievals in which we replace baseline
R. A. Jacobson (2014) uncertainties with those predicted by
M. Parisi et al. (2024) in their no-occultation, Saturn-like
Trajectory 1 case. This relatively conservative case includes
eight pericenters outside the rings; similar precision would be
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Table 1

Interior Model Parameters

Mankovich et al.

Interface Model

Parameter Meaning Permitted Range Comment

Nam Atmosphere polytropic index (0.5, 3.5) MCMC

Neny Envelope polytropic index (0.5, 3.5) Adjusted to fit J,

Neore Core polytropic index Fixed at 1

Tbreak Atmosphere/envelope break radius® Fixed at 0.9

Teore Envelope/core jump radius® (0.1, 0.8) MCMC

Qjump Core density enhancement factor (1, 3) MCMC

Keore Core polytropic proportionality constant Any Adjusted to fit total mass
d Decay depth of jet streams, units Req (0.01, 0.10) MCMC

Py Bulk rotation period, hr (16, 18) MCMC

Gradient Model

Parameter Meaning Permitted Range Comment

Matm Atmosphere polytropic index (0.5, 3.5) MCMC

Neny Reference (and final envelope) polytropic index (0.5, 3.5) Adjusted to fit target J,
Tbreak Atmosphere/envelope break radius® Fixed at 0.9

T, Gradient outer boundary radius® (74, Toreak) MCMC

T Gradient inner boundary radius® (0.1, 0.8) MCMC

Qlgrad Core density enhancement factor (1, 3) MCMC

Keny Reference polytrope proportionality constant Any Adjusted to fit total mass
d Decay depth of jet streams, units Req (0.01, 0.10) MCMC

Py Bulk rotation period, hr (16, 18) MCMC

Note.

 These quantities are specified as a fraction of the volumetric mean radius R of the P = 1 bar surface, which varies along with the oblateness from one model to the

next. With R.q = 25,559 km a constant, R is hence controlled mostly by the assumed spin period Py.

reached by an orbit with pericenter passages inside the rings but
limited to four to five gravity orbits.

Returning to the constraint on density near the surface, recall
that both model types feature a “softer” polytrope to describe
the atmosphere, allowing the models to attain realistic 1 bar
densities at the expense of introducing two parameters ryqeax
and n,y,. To implement the 1 bar density constraint, we ignore
the details of shallow atmosphere condensation and consider an
ideal gas at the temperature and number density at 1 bar from
the nominal atmosphere model of G. F. Lindal et al. (1987),
where an ideal gas with a CH, mixing ratio between 0 and 0.04
has a density p; = 3.647-4.516 x 10~*gcem >, a range of
24%. Reducing the helium to hydrogen mixing ratio from 15/
85 to 11/85 (e.g., L. A. Sromovsky et al. 2011) or increasing
the temperature by 5K modulates the density by <4%, an
effect overwhelmed by the uncertain abyssal CH, abundance.
Erring on the side of permissiveness, we assign models a
Gaussian likelihood in p; centered on 3.647 x 10~*gcm™>
with a standard deviation of 10~* gcm ™.

Table 1 summarizes the free parameters in each model class,
states their role as an adjusted or sampled parameter, and gives
the uniform prior volume allowed for each. The Markov Chain
Monte Carlo (MCMC) sampling process, described in more
detail below, is very similar to that used by C. R. Mankovich
et al. (2023), but fit here to a mere three data points J,, J4, and
P1-
For each family of models, we select representative well-
fitting end-member models for detailed seismic modeling.
Their p and N profiles are shown in Figure 2. For interface
models, these are the models with minimum, moderate, and
maximum central density with respect to their parent

distribution. Here, “moderate” refers to the midpoint of a
quantity’s minimum and maximum. Among the gradient
models, we select minimum/moderate/maximum central
density and maximum gradient width r, — r;. Given the small
number of data being fit for our gravity-only samples, we
naturally recover a highly degenerate posterior probability
distribution. We aim to show how one or more seismic
measurements can aid in clearing up these degeneracies.

2.2. Oscillation Modes

We solve the fourth-order system of ordinary differential
equations describing the adiabatic oscillation modes using
GYRE’ (R. H. D. Townsend & S. A. Teitler 2013). Modes are
obtained in the absence of rotation in an equivalent spherical
model defined on the isopotential mean level surfaces of the
oblate ToF model. In this limit of slow rotation, the angular
structure of each normal mode is simply given by a single
spherical harmonic Y;", where the integers £ = 0, ..., oo and
m = —{, ..., { are called the angular degree and azimuthal
order. However, many normal modes can exist with the same £
and m, and uniquely specifying a mode requires a third integer
n that counts the number of nodes as a function of radius in the
mode’s eigenfunction. This radial order differentiates between
the broad categories of g-, f-, and p-modes. For brevity, we
follow C. R. Mankovich et al. (2023) in referring to individual
modes using the notation 7", so that, e.g., the { =7, m=235,
n=2 p-mode would be labeled as 3p,. We label the interface
modes as j'i, not to be confused with inertial modes (see

7 https: //gyre.readthedocs.io/en/v7.1/
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Figure 2. As in Figure 1, but emphasizing the range of models permitted by J5,
J4, and p;. These representative models are used for detailed mode calculations.
Top: interface models. Bottom: gradient models. Brunt-Viisild frequency
(dotted—dashed, read on the right axis) is plotted as a fraction of Uranus’s
dynamical frequency (Equation (5)). Arrows mark the transition to the
atmospheric polytrope.

J. W. Dewberry & D. Lai 2022; A. J. Friedson et al. 2023),
which are limited to lower frequencies <2y and generally
yield weaker gravity and radial velocity perturbations per unit
of mode energy compared to the modes considered in this
paper. We adopt the convention that frequency is always
positive, taking m > 0 (m < 0) to label prograde (retrograde)
propagating modes with respect to Uranus’s rotation.

Normal mode amplitudes are unknown in Uranus. A variety
of excitation processes are known in stars, including feedback
processes associated with the radiative opacity or fusion rate (x
and e mechanisms), tidal forcing (heartbeat stars), and
stochastic forcing by surface convection as in the Sun. Our
best information about the amplitude spectrum of normal
modes in a giant planet comes from Saturn, where the
amplitudes of ring waves excited by Saturn can be used to
constrain the amplitudes of the perturbing modes
(M. M. Hedman & P. D. Nicholson 2014; V. M. Afigbo
et al. 2025). The amplitude spectrum is complicated, and no
prevailing theory exists for the excitation and dissipation
processes at work in Saturn, much less Jupiter, Uranus, or
Neptune, but deep atmospheric rock storms (S. Markham &
D. Stevenson 2018) and giant impacts (Y. Wu & Y. Lithw-
ick 2019) are promising candidates for excitation. We refrain
from any detailed modeling of the amplitude spectrum,
and work with modes normalized to unity mode inertia
(V. M. Afigbo et al. 2025). In this normalization, the energy
of the {mn mode is simply %wé,[mn. Lacking a theory for mode
excitation in Uranus, we can nevertheless estimate the mode
amplitude required to generate ring-forcing potentials compar-
able to those already measured from satellite-driven ring
resonances (R. G. French et al. 2024). We show in Appendix A
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that Uranus f~modes can generate observable ring signatures if
their nondimensional amplitudes are of the same order of
magnitude as the Saturn f-modes responsible for the waves
observed in the C ring.

The influence of rigid rotation on oscillation frequencies is
included using the first-order Coriolis coefficient

s g orar
J5@ + e+ 1) prar

ﬂl’mn =1 (6)

derived from perturbation theory (W. Unno et al. 1989; here, &,
and &, are the radial and horizontal displacement eigenfunc-
tions). Working in this approximation, the final inertial frame
frequency of mode fmn is

Otmn = Wemn + mQU
= Wo,lmn + mﬁ/mn QU’ (7)

where wy,,, is the frequency in the frame corotating with
Uranus, and wy ¢, is the frequency obtained in the absence of
rotation. In contrast to Saturn, where rapid rotation means that
O(Q?) terms contribute up to (£2/ wdyn)2 = 14% to mode
frequencies, at Uranus’s more modest rotation, the second-
order terms contribute <3%. More accurate treatments of the
influence of rigid and differential rotation have been estab-
lished (e.g., D. Reese et al. 2006; J. W. Dewberry et al.
2021, 2022) but are not warranted at this exploratory stage.

The differential rotation responsible for Uranus’s atmo-
spheric jet streams (see L. A. Sromovsky & P. M. Fry 2005)
modifies the mode frequencies. The magnitude of these
perturbations is set by the radial extent of the differentially
rotating layers and the spatial structure of the mode in question.
Frequency shifts are likely largest for sectoral (£ = |m|) modes
due to their equatorially concentrated eigenfunctions, which
would tend to coherently sample the retrograde flow surround-
ing Uranus’s equator. (See C. R. Mankovich et al. 2023 for
first-order rotation kernels in Saturn f~modes, where sectoral
modes predominantly sample that planet’s prograde equatorial
jet.) Tesseral (£ > |m|) mode eigenfunctions tend to extend to
higher latitudes, inviting self-cancellation as they sample both
prograde- and retrograde-rotating latitudes. In any case, as
noted by J. A. A’Hearn et al. (2022), the small frequency shifts
induced by Uranus’s atmospheric flows are overwhelmed by
the uncertainties that follow from Uranus’s highly uncertain
spin period. For present purposes, it is therefore appropriate to
neglect the influence of differential rotation on the oscillation
modes.

Double mesh points are included to correctly treat the
density interface (in models where one exists) and the break in
the polytropic index, which introduces a discontinuity in I'y. At
these locations, GYRE enforces jump conditions to guarantee
the continuity of the radial displacement and Lagrangian
pressure perturbation. In models with rigid (nonoscillatory)
cores, zero radial displacement is enforced at the core
boundary; otherwise, GYRE applies its default inner boundary
condition, imposing regularity of the eigenfunctions. At the
surface of the model, GYRE applies boundary conditions on
the Eulerian gravitational potential perturbation and the
Lagrangian pressure perturbation that follow from the vanish-
ing of the background density. Strictly speaking, this condition
is violated by our truncation of the atmosphere polytrope at
P = 1072 bar where p ~ 10> gcm™>. The near-surface
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behavior of the eigenfunctions changes somewhat for different
truncation pressures, but we find that the influence on f-, g-, and
p-mode frequencies is minor for our purposes.

What follows is a brief introduction to the types of
oscillation modes considered here.

F-modes. The fundamental modes manifest the fact that, if
the planetary surface is perturbed locally, gravity acts as a
restoring force and the disturbance propagates away as a wave.
F-modes are hence surface gravity waves somewhat similar to
deep water waves. Their amplitudes decay approximately
exponentially below the planetary surface. However, at low ¢/,
this decay scale is comparable to the planetary radius, lending
these modes sensitivity to regions close to the planetary center.
The f-mode frequencies approximately obey (V. M. Afigbo
et al. 2025)

arf Vel + 1
w%: Esurf I(e + ) :ngyn ,75([4— 1)’ (8)

with g, the gravity at the planetary surface. Compared to
other types of modes, the radial phase coherence of f~modes (no
nodes as a function of radius; n = 0) means that they produce
intrinsically larger gravity perturbations for a fixed mode
energy.

Interface modes. Similarly, interface modes have maximum
amplitude at a density interface and decay approximately
exponentially on either side. Their frequencies w; approxi-
mately obey (V. M. Afigbo et al. 2025)

W2 = gVt +1) (Pi - Po)

l pi+p0

©)

Ti

where g; is the gravity at the interface, and p,, p; = Qjumpp, are
the density at either side of the interface, as described in
Section 2.1. A comparison of Equations (8) and (9) suggests
that f~modes can be cast as a special case of interface mode that
happens to be bounded on one side by a vacuum. Thanks to the
rapid decay of their eigenfunctions with distance from the
interface, prospects for observing these modes from outside the
planet diminish steeply as the interface is located deeper.
However, coupling with modes with larger surface expressions
(e.g., f~modes) can make the interface modes easier to observe,
as shown in Section 3.2.

G-modes. These are internal gravity waves restored by
buoyancy; their existence hence requires stable stratification
N? > 0 somewhere in the interior. Formally, g-modes are
wavelike where 0 < w, < N and evanescent elsewhere. But
proximity to f~modes, in terms of frequency or of eigenfunction
overlap, can yield modes of mixed f~ and g-mode character, as
appears to take place in Saturn (e.g., J. Fuller 2014).

P-modes. These are oscillatory in regions where w? > ng,
with the Lamb frequency S, given by

L+ e

r2

¢ (10)
P-modes hence propagate in the envelope outside a character-
istic turning point where w? = S7, at which point refraction
from the increasing sound speed causes the wavevector to
become purely horizontal and rays turn back toward the
planetary surface.
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Figure 3. An ¢ = 2 propagation diagram for the gradient model with maximum
gradient width. P-modes are oscillatory where their frequencies are greater than
the Lamb frequency (thick dashed curve; see Equation (10)). G-modes are
oscillatory where their frequencies are less than the Brunt—Viisdld frequency
(thick solid curve; see Equation (1)). Horizontal lines are calculated m = 0
mode frequencies for the model. Dotted regions are evanescent zones where
mode amplitudes decay with distance from their wave propagation region but
are still generally nonzero. Integer labels give the p- or g-mode radial order.
The gray shaded region at a low frequency indicates the inertial frequency
range w < 2Qy in which the Coriolis force becomes an important restoring
force and our approximations regarding rotation (Section 2.2) are no longer
valid.

A characteristic frequency of the p-mode spectrum is the
“large frequency separation”

—1
Ayz@jmgwd, (11)
0

which gives the constant frequency spacing between p-modes
of the same degree ¢ and consecutive radial order (M. Tassoul
1980). This constant spacing applies in the limit of high radial
order (n, > 1), but real spectra exhibit deviations that can be
used to probe internal structure (e.g., J. Christensen-Dalsga-
ard 2002; W. J. Chaplin & A. Miglio 2013), as we will show
for Uranus.

Figure 3 shows a propagation diagram, a useful atlas of how
mode frequency dictates the behavior of the oscillation in the
interior. We plot the £ = 2, m=0 spectrum for the “max
gradient width” model from the gradient sample, for which the
defining frequencies N and S, are shown as a function of
radius. The fact that N < S, throughout the interior enforces a
strict frequency hierarchy between g-, f-, and p-modes in this
case. Models with larger values of N (e.g., those with more
abrupt composition gradients) could lead to g-mode spectra that
overlap with f- and even p-mode frequencies. This possibility
becomes more remote toward higher ¢, where f~ and p-mode
frequencies increase while the g-modes remain confined to
v < N. A similar diagram for one of our interface models would
lack a g-mode spectrum but feature a single interface mode. Its
frequency may be less than or comparable to the f-mode
frequency or even low-order p-mode frequencies, depending on



THE PLANETARY SCIENCE JOURNAL, 6:70 (25pp), 2025 March

T 4 T T T T u T T

-30.0 |-
-325}
-35.0 F

~375F

10" J,

-40.0 |-
-425

-45.0 |-

3480 3500

10° J,

3460

Mankovich et al.

In likelihood
A L | I

3508 3509 3510 3511 3512 3513
10° J,

Figure 4. Low-degree zonal gravity moments for gradient-type models of Uranus. (Interface models yield a similar diagram.) The gray points show the part of the J,,
arising from the rigidly rotating background structure. The colorful points show the total including the addition of AJsY"%; these are colored according to their
likelihood, with low to high likelihood running purple to green to yellow. The sample is fit to R. A. Jacobson (2014) gravity (1o and 20 ellipses in dashed white).
Shown for comparison are the more recent R. G. French et al. (2024) measurements (1o and 20 ellipses in orange) and improved uncertainties anticipated by M. Parisi
et al. (2024) for radio tracking of a future Uranus orbiter (narrow red 1o ellipse; see text).

the properties of the interface (see Equation (9) and
Section 3.2).

We ignore all lower frequency modes, particularly inertial
regime (w < 2€2y) modes. This category includes Rossby and
other inertial modes; these generally have smaller intrinsic
gravitational perturbations than f-/g- /interface modes at a fixed
mode energy and so may be less amenable to detection in the
rings, although they may have been detected in Saturn’s C ring
(M. M. Hedman et al. 2022; see A. J. Friedson et al. 2023).
These modes are of too low a frequency and radial velocity
amplitude to be tractable in Doppler-imaging seismology.

2.3. Parameter Estimation

We sample each model’s six- or seven-dimensional
parameter space using a Markov Chain Monte Carlo (MCMC)
framework similar to the one documented in C. R. Mankovich
& J. Fuller (2021) and C. R. Mankovich et al. (2023). At the
core of this approach is the sampling tool emcee® (D. Forem-
an-Mackey et al. 2013). Table 1 summarizes the model
parameters. Models are evaluated using a multivariate Gaussian
likelihood in J5, J4, and p; as described in Section 2.1. Samples
presented in Section 3 further consider the addition of pattern
speeds of hypothetical ring resonances. For a more detailed
description of the sampling process, we refer to Appendix C.

Figure 4 shows our baseline sample of gradient models
within the context of current and future J, and J, measure-
ments. Note that a wide distribution of interior structures are
compatible with the data. Uranus’s interior is poorly con-
strained, manifested here as the broad distribution of rigid body
Jo, (gray points). Figure 20 in Appendix C shows the highly
degenerate space of interior model parameters in detail.

8 hitps:/ /emcee.readthedocs.io/en/v3.1.4

3. Ring Seismology: F-, G-, and Interface Modes

In the rings, we focus on the search for outer Lindblad
resonances (OLRs) with Uranus’s prograde oscillation modes.
Lindblad resonances are locations where ring orbits experience
periodic forcing at a frequency commensurate with the radial
epicyclic frequency (P. Goldreich & S. Tremaine 1979). OLRs
are expected for typical prograde planetary modes, for which
the forcing potential rotates faster than the ring mean motion. In
contrast, resonances with satellites usually produce inner
Lindblad resonances (ILRs) due to the forcing potential
rotating more slowly than the ring mean motion. (ILRs with
planet modes are also possible but are limited to higher m
values; these are revisited below.) Each prograde Uranus mode
with inertial frequency given by Equation (7) has a pattern
speed Qp, pun = Tomn /m that, fed into the OLR condition (see
C. Mankovich et al. 2019 for the form we solve), yields a
unique location in the rings. Note that, for a given forcing
frequency, the resonance location depends on the zonal gravity
moments through the epicyclic frequency. The R. A. Jacobson
(2014) and R. G. French et al. (2024) gravity solutions yield
consistent OLR locations to within ~30 m.

Figures 5 and 6 show OLR locations for Uranus modes in
our representative set of interface and gradient models,
respectively, serving as a general guide to the observability
of Uranus normal modes in the rings. To facilitate comparison
between the models, only sectoral (/ = m) modes are shown. At
¢ > m, the spectra are dominated by more superficial f-modes
and hence become more similar from one interior model to the
next, similar to Figure 3 of J. A. A’Hearn et al. (2022). Sectoral
modes thus likely represent the best opportunity for discrimi-
nating an interior structure with the detection of a small number
of modes. Nonetheless, the existence of £ > m (nonsectoral)
modes, which are omitted from Figures 5 and 6, increases the
odds of finding planet-associated modes in the rings.
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Figure 5. OLR locations amid Uranus’s rings for £ = m modes in a series of interface-based models compatible with all available data. Colors map to the interior
model as in Figure 2; see legend. F-modes with larger gravitational potentials at the planetary surface are rendered as larger points. Open symbols show f~-mode OLRs
for models with a perfectly rigid core. Larger rigid cores push the low-degree f-modes to lower frequencies and hence their OLRs to greater orbital distances. Crosses
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modes (triangles). Higher radial order (n > 1) g-modes are expected to produce weaker potentials; these and any g, modes with |#(r = R)| < 1075 GM /R are

omitted here.

The possibility of degeneracy as a function of £ — m should
be addressed. Supposing a resonance is observed and its pattern
speed and m value measured, how can it be ascribed to a unique
planet mode without direct knowledge of £? For f~modes, the
interpretation is typically clear because their frequencies are
well separated as a function of /, per the wy ~ ¢'/? scaling of
Equation (8). Rotational splitting (Equation (7)) and planetary
structure also affect these frequencies, but rarely to the point of
inducing confusion between successive { — m values for a
given observation (see Figure 3 in either C. Mankovich et al.
2019 or J. A. A’Hearn et al. 2022).

For non-f-modes like g- or interface modes, the dependence
of mode frequencies on the compositional or thermodynamic

structure introduces degeneracy between the planet's interior
properties and the unknown ¢ value of the mode responsible. In
these cases, some guidance is provided by the tendency of
higher ¢ modes to have shorter radial wavelengths, leading
them to evanesce more rapidly between their wave propagation
zones and the planetary surface. Furthermore, higher ¢
components of the perturbed gravitational potential decay
more rapidly with radius in the vacuum exterior to the planet.
Hence, all else being equal, the lowest allowable angular
degree is a priori the most likely to generate a detectable
perturbation in the gravity field outside the planet. It remains
possible, however, that the processes responsible for mode
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excitation and damping could favor certain wavelengths (or ¢
values), confounding these simple expectations.

Among the five interior models considered by J. A. A’Hearn
et al. (2022), only one model had the %f—mode OLR near a
narrow ring: their shallow gradient model and the 5 ring (see
their Figure 3). The remainder had faster pattern speeds for %f,
putting the OLR within the diffuse ( ring closer to Uranus, far
from any narrow ring. Our models fall exclusively into this
latter category: 3f does not fall among the narrow rings, except
in cases with a perfectly rigid core.’ Hence, if any Uranus mode
m=2 OLR is observed among the narrow rings, we would
interpret it as either a non-f-mode, or as an f-mode with a
frequency substantially modified by the presence of a frozen
core. We pursue both of these possibilities.

The possibility of a frozen core in Uranus (e.g., L. Stixrude
et al. 2021) that does not participate in oscillations close to the
Jf-mode frequencies opens up a wide range of possible mode
spectra. This is because an inert core effectively truncates the f-
mode cavity from the bottom, dramatically altering the
spectrum of f-mode frequencies in a manner that is sensitive
to the location of the core boundary.

For deep core boundaries (e.g., moderate to max p,; orange
and green points in Figure 5), the f-mode spectrum is weakly if
at all sensitive to the core state being rigid versus fluid.
However, for a shallower core boundary ~0.7 Ry (min p.; blue
points in Figure 5), a frozen core impinges on the region
hosting f-modes, radically reducing the f-mode frequencies,
moving for instance the { = m = 2 f-mode OLR from
40.0 x 10°km = 1.58Ry to 50.4 x 10* km = 1.99Ry;. Toward
higher ¢/ = m, the effect is gradually diminished, but
intermediate £ = m = 3-7 modes in this model notably have
their OLRs moved from a region devoid of narrow rings into
near resonances with the 6, 5, 4, and « rings. Therefore, if
Uranus’s interior structure resembles our interface model, then
the detection of a single low to intermediate m mode among the
narrow rings would be a powerful discriminant of the core state
and the radial location of the core boundary.

However, degeneracies follow from the nonuniqueness of
the model. The equally valid gradient models depicted in
Figure 6 have f-mode OLR locations broadly similar to the
interface models, but also host g-modes that can generate
structure in the rings. Three of the four models have g; modes
(i.e., n =1 g-modes) at frequencies lower than the f~-mode, with
OLRs dotting the landscape of the narrow main rings. The
fourth (red) model is that with the strongest stable stratification
at the core transition, giving rise to g; mode frequencies
comparable to or in excess of the f~mode frequencies. In this
case, the = m = 2, 3 OLRs are well interior to the narrow
rings, falling outside the range of Figure 6. Indeed, the data
permit a continuum of intermediate interior models that can
yield g; modes throughout the main rings. Just as with the
interface models discussed above, the detection of a single low
to intermediate m g-mode among the narrow rings could
decisively rule out most of the models, at least within the
confines of a specific parameterization for the interior. Note
that the g-modes in the model with the deepest composition
gradient (maximum central density; red points in Figure 6)

o Note that, in our models, composition gradients as shallow as A’Hearn et al.
’s “shallow” model overestimate p; by a factor of several and are hence ruled
out. It is possible that a more physically realistic EOS would allow a larger
range of OLR locations with more potential ring overlaps, even in a purely
fluid Uranus.
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yield substantially weaker external potentials as they evanesce
over the intervening convective regions. Hence, even putting
their frequencies aside, the detectability of g-modes in the rings
hinges on the stable stratification not being confined too close
to the planetary center.

Before we proceed, we note that prograde Uranus modes can
also generate ILRs among the rings. Unlike OLRs, these inner
resonances require pattern speeds slower than the ring mean
motion, leading to a preference for f-modes of high m, or g- or
interface modes with low to moderate m. Indeed, R. G. French
et al. (2021) discovered matched OLR-ILR pairs in Saturn’s C
ring, each generated by a single high m f~mode of Saturn. For
the seven models presented in Figures 5-6, we find
¢ = m = 14-17 fmode ILRs in the vicinity of the 6, 5, and
4 rings. Higher m f~modes could yield ILRs in more distant
rings. For interface models, the interface modes lead to a wide
variety of ILRs throughout the rings, especially for shallower
interfaces. For gradient models, g; modes with £ = m = 7-9
have ILRs near the 6, 5, and 4 rings, with their higher m
counterparts falling throughout the more distant rings. In what
follows, we focus on the OLRs, where the overlaps with ring
orbits are more common, but stress that ILRs are not
unexpected and are generally as useful as their OLR counter-
parts. The same goes for inner and outer vertical resonances,
which can arise from vertical perturbations by north—south
asymmetric (odd £ — m) modes; see J. A. A’Hearn et al. (2022).

3.1. Fits to Hypothetical Ring Resonances

Here, we suppose that high-resolution imaging reveals a
forced m = 2 distortion in the 6 ring, betraying the influence of
a nearby Lindblad resonance with an m =2 driving potential.
In lieu of any plausible interpretation in terms of mean motion
resonances with known satellites, a Uranus £ = m = 2 normal
mode OLR may be the best explanation. The 6 ring’s mean
semimajor axis (P. D. Nicholson et al. 2018)'” implies that an
m =2 OLR has a pattern speed (2, = 2089.3 deg d~'. Here, we
explicitly incorporate this frequency as an added constraint on
the interior model, augmenting our usual likelihood (see
Section 2) with a Gaussian term with a standard deviation equal
to 107> times the centroid pattern speed. This amounts to an
OLR location 1o uncertainty of order 10 km. This uncertainty
is chosen to encompass a range of resonance locations that
could reasonably influence a narrow ring; for comparison,
satellite-driven ring modes are typically evident within a few
km of their associated resonances (R. G. French et al. 2024).

The interior profiles of the resulting distributions are shown
in Figure 7, where the models benefiting from the single ring
seismology constraint (color maps) are superimposed on the
corresponding sample fit to (J», J4, p;) alone (gray). Clearly,
even a single OLR detection near a narrow ring can greatly
restrict the landscape of permissible interior models.

By comparing the results of these two interior model
parameterizations applied to the same pair of observables
(m, ), the figure also highlights the ambiguity in interpreting
a single mode: the solutions change depending on whether we
identify it with an f-mode or a g, mode. Notably, these two
scenarios happen to yield similar density profiles in Uranus: the
rigid core models produce 7., = 0.486 + 0.040 Ry (mean and
standard deviation) and the gradient models produce equivalent

10 See R. G. French et al. (2024) for refined ring orbital elements and width—
radius relations; the differences are not significant for this purpose.
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Figure 7. Interior profiles constrained by a hypothetical ring seismology
constraint (curves with color mapped to likelihood) compared to those of their
parent sample unconstrained by seismology (gray curves). The top panel shows
density profiles p(r) for interface models with a rigid (nonoscillating) core; the
middle and bottom panels show p(r) and N(r), respectively, for models with a
composition gradient. Models in gray are constrained solely by J,, J4, and py;
color-coded models additionally fit a single m = 2 ring seismology constraint
as described in the text. Only a randomly chosen subset of the models—
1024 per sample—are shown. The red dashed curves in the gradient case
(lower panels) show the best profile yielded by an alternative sample that
identifies the same resonance with the higher-order g-mode 3g, mode instead.

core radii (r, + r)/2 = 0473 + 0.037Ry. Still other
interpretations of the same data could produce more radically
different solutions for Uranus’s interior structure, but based on
the relatively large gravitational potentials associated with f-
and n =1 g-modes, we consider the two scenarios shown here
to be the most likely. In any case, a low-degree seismology
constraint has the potential to constrain the core radius to
within a few percent, a striking improvement over the totally
unconstrained core boundary in the absence of seismology (see
Appendix C).

Figure 8 presents the full spectrum of OLRs in the rings for
the best-fitting model in each case. Looking beyond the m =2
resonances, the spectra differ substantially from one another,
suggesting that the measurement of a second mode frequency
at higher m could eliminate the degeneracy between the two
scenarios. For example, the gradient model produces a |3f OLR
just exterior, and a }}f OLR just interior, to the 5 ring. The
detection of an m = 12 or m = 15 forcing on the 5 ring would
strongly disfavor the rigid core model, which locates these two
OLRs closer to the 4 ring. Similarly, the most likely seismic
signature on the « ring is predicted to be m = 17 (by virtue of
7f) in the rigid core model, but m = 16 (excited by 13f) in the
gradient model. On the 3 ring, one would look to distinguish
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between an m = 15 signal (}3f, rigid core) and an m = 18 signal
(3%f, gradient model).

Inspection of Figure 8 invites a third interpretation, ascribing
the same m = 2 resonance at the 6 ring to the 3g, resonance in
the gradient model, which appears a distant 50.4 x 10°km
from Uranus’s center for the model in the diagram. Moving the
n =2 g-mode Lindblad resonances closer to Uranus is possible
if the g-mode spectrum is pushed to higher frequencies by
increasing the typical value of N within the gradient region.
This requires some combination of reducing the gradient’s
radial extent 7, — r; and enhancing its density contrast Qgraq.

Indeed, we find that a sample that fits the 5g, pattern speed to a
6 ring OLR strongly prefers compact cores (r, + r;)/2 =
0.265 £ 0.032 Ry with high central densities p. = 13.8 £
0.7 g cm . The best single model is shown in Figure 7 (bottom
panel, dashed red curve). Nonetheless, we reiterate that f- and
n=1 g-modes are much more likely a priori to generate
observable signatures in the rings because of their larger
intrinsic gravity perturbations. For comparison, assuming all
modes in the gradient model of Figure 8 possess equal energy,
the surface potential perturbation of %gz is approximately 1/5

that of 3g, and 1/10 that of 3f.

Admittedly, among the modes that may resonate with the
rings, the deeply penetrating 3£-mode may be one of the most
optimistic scenarios for constraining Uranus’s core structure.
We perform an additional experiment that instead fits the high
angular degree mode of to the 6 ring, again taking Uranus’s
core as perfectly rigid to allow a direct comparison with the
rigid core model seen in Figures 7-8. Figure 9 gives the
posterior probability distributions of 7. and Py, with
marginalized 1D histograms of each, comparing the sample
with 3f fit to data to the one with gf fit to data. The Jf sample
indeed leaves the core properties poorly constrained, a
reflection of this more superficial mode’s small amplitudes in
the core. However, in this case, the single seismology
constraint leads to a strong preference for bulk rotation periods
faster than 17hr, a powerful result in its own right.
Quantitatively, the of sample favors Py > 17hr at 87%
confidence, compared to the more rotation-ambivalent 3f
sample, which favors Py > 17hr at 63% confidence. The
greater sensitivity of the high-degree modes follows from
modes of higher m attaining larger frequency shifts as a result
of Uranus’s rotation via Equation (7). The detection of a high-¢,
preferably m = ¢, mode thus offers an opportunity to constrain
Uranus’s unknown internal rotation, breaking a degeneracy that
measurements of the zonal gravity moments alone cannot
resolve.

We note that the notional pattern speed uncertainty
00,/ = 107 (~10km in the OLR location) we have
adopted is likely to be overly pessimistic: from Voyager and
ground-based occultations, R. G. French et al. (2024) have
estimated (typically satellite associated) Lindblad resonance
locations with subkilometer precision. Hence, a ring seismol-
ogy-based estimate for Uranus’s rotation may be substantially
more precise than the purple distribution displayed in Figure 9.

3.2. Interface Modes and Avoided Crossings in the Rings

We have demonstrated that an extended rigid core can shift
low m f-mode OLRs into the narrow rings. The interface
models with fluid cores can also produce additional (non-f-
mode) structure in the rings by virtue of the interface modes
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Figure 8. OLR locations amid the rings for the best models obtained directly fitting either the 3/-mode (in the rigid core model, open diamonds) or the 3g; mode (in the
gradient model, filled circles) to an m = 2 OLR near the 6 ring. Modes with £ = m (black) are shown, as are modes with £ — m = 2 (blue), 4 (orange), 6 (green), and
8 (red). This latitudinal wavenumber ¢/ — m generally increases toward the top left of the diagram. The dashed boxes highlight additional associations that would

discriminate between the two models shown here (see text).
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Figure 9. Core radius vs. bulk rotation period in a sample fitting a high-degree mode (3f) to the 6 ring (purple color map), compared to that fitting a low-degree mode
(3f) to the same ring (green color map; this is the same sample as the rigid core sample seen in Figures 7 and 8). The low-degree constraint would constrain Uranus’s
core radius but not its rotation. The high-degree f-mode is more superficial and would be insensitive to core properties but would constrain Uranus’s rotation period.

hosted at their core boundary. These are not overtly obvious in
the three models depicted in Figure 5, but a close inspection of
the r < 1.5 Ry region reveals a faint sequence of m =5, 6, ...
modes in the moderate p,. fluid core model. In fact, for core
boundaries within an appropriate range, interface modes can
resonate throughout the narrow rings.

Interface modes are most likely to be observed when their
frequencies are similar to the f~mode frequencies, leading to
degenerate mode mixing and producing mixed interface/f-
modes. This phenomenon is similar to the avoided crossings
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inferred to take place between the f~ and g-mode in Saturn
based on ring seismology data (J. Fuller 2014; C. R. Mankov-
ich & J. Fuller 2021) or p- and g-modes in post-main-sequence
stars (Y. Osaki 1975; M. Aizenman et al. 1977). Based on the
approximations for f- and interface mode frequencies given by
Equations (8) and (9), the two are equal when

()

(P _

(o)

L Oy, (12)

1 — ajump
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Figure 10. Frequencies and eigenfunctions of the gravitational potential perturbation & for interface and f-modes with similar frequencies, in a grid of models varying
the core boundary between 0.5 (dark brown) and 0.7 Ry (dark green). (a), (c) £ = m = 7 modes with strong eigenfunction overlap giving rise to mixed interface/f-
mode character and an avoided frequency crossing. The higher-frequency mode (upper & eigenfunction, offset vertically by +0.4) transitions from interface-
dominated to f~dominated as the core boundary is increased. (b), (d) £ = m = 15 modes with little to no eigenfunction overlap; in this case, the interface modes (upper
eigenfunctions) remain essentially decoupled from the f-modes (lower) and are unlikely to be observed. Arrows highlight the model yielding the smallest frequency
separation, inducing weak mode mixing. The frequency axes (a, b) show the centroid (m = 0) mode frequencies as a function of core radius. Cross symbols represent
the analytic approximation to the frequency of the interface mode (Equation (9)) and the dashed horizontal line gives the approximate frequency of the f~mode

(Equation (8)).

where (p); denotes the mean density of the core and (p) that of
Uranus. Notably, this condition is independent of ¢, meaning
that a model close to satisfying Equation (12) will have
overlapping f- and interface mode frequencies for all £. But, as
we will show, mode mixing is only significant in cases with
sufficient eigenfunction overlap inside Uranus, typically limit-
ing f/interface mixtures to low to moderate angular degrees.

Figure 10 traces the gravitational potential perturbation
eigenfunctions for the interface/f-mode pair over a sequence
of gravity-constrained models with  jymp 2 and
Teore = 0.5 — 0.7 Ry. Even relatively large fractional frequency
separations can yield strong mode mixing if the eigenfunctions
of the modes in question have sufficient overlap. This is the
case for the / = m = 7 modes, where the frequencies of isolated
interface modes (colorful crosses; Equation (9)) would sweep
through the frequency of the isolated f~mode (horizontal dashed
line; Equation (8)); the true frequencies repel one another as the
eigenfunctions attain a mixed character. The interaction with
the f-mode tends to amplify the gravity perturbation of the
interface modes, producing more potentially observable
signatures in the rings. In contrast, at a higher angular degree
¢ = m = 15, the interface and f~mode eigenfunctions are so well
confined to their respective regions of propagation that even a
close frequency crossing can induce only weak mixing. As a
result, the frequency sequences can cross essentially unim-
peded and the interface modes remain trapped within the
planet, their surface gravity perturbations too small to be likely
to be observed.

Figure 11 summarizes the signatures that interface/f~mode
crossings may produce in the rings. The interface mode has
little effect on the £ = m = 15 spectrum, where the f~mode
remains the only mode likely to be observed, in this case
through its resonant influence on the 7 or ~ rings. In the
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¢ = m = 7 spectrum, however, each model can produce a pair
of OLRs with observable amplitudes. On the one hand, this
again exposes the degeneracy in detecting a single Uranus
mode: if observations reveal an m =7 potential forcing the 4
ring, this model would be unable to discern between a core
boundary at 0.53 Ry and one at 0.65 Ry. On the other hand, the
fact that mode mixtures can produce well-separated doublets of
OLRs with the same m value raises the possibility that two
resonances influencing separate rings could be connected to a
single feature of Uranus’s interior. For instance, the model with
a core boundary at 0.70 Ry has an f~dominated mixed-mode
OLR near the 4 ring and an interface-dominated mixed-mode
OLR near the « ring. If both rings showed evidence of m =7
forcing, this could present powerful support for a core
boundary near 0.7 Ry.

Different models in our samples manifest f-/interface mode
crossings with different observable OLR pairs, for example,
coinciding with the 6 and 4 ring. Hence, the picture in
Figure 11 is only one possibility, but serves to emphasize that a
pair of observed resonances with the same m value may follow
from mixed modes in the interior, and our models can be used
to select between the possible interpretations.

Finally, we note that very similar mode-mixing behavior
can take place in our gradient models, between f- and low-
order g-modes. The two have similar fre(}uencies when typical
values of N exceed approximately ([)1 deyn, where £ is at
least 2 for the f~modes. Ring seismology suggests that this is
the case in Saturn (e.g., J. Fuller 2014; C. R. Mankovich &
J. Fuller 2021), and it is also the case for a subset of our
Uranus gradient models. We do not delve into f-/g-mode
mixing in detail, but its implications for the rings are similar
to the f-/interface mode mixing above and of course to the
well-studied f/g mixed modes evident in Saturn’s rings



THE PLANETARY SCIENCE JOURNAL, 6:70 (25pp), 2025 March

Planet-centric location (R, ,us)
160 165 170 175 180 185 1.90
T T T T T T
6 54 a B ny o
070 ° . ]
it’ : . ¢
Q [ ) °
8 ® °
£ o6sf ;oo |f=m=15 -
‘E <) °
= [e ° o
5 ° o = @
© 060 e ° s .
_..C:) ° [} o
8 e o
. o L]
2055} * : ]
© " — — ]
ks W =m =1 :
g ] ;
0.50 - . ]
| | | |
42 44 46 48

Planet-centric location (103 km)

Figure 11. OLR locations for the modes highlighted in Figure 10. Point size
scales with strength of the gravity perturbation at Uranus’s surface. At £ = 7
(circles), the deeply penetrating f~modes interact strongly with modes trapped
on the core interface, giving rise to mixed modes that could be observed as a
pair of distinct OLRs with the same m. At { = 15 (squares), the f-modes are
trapped so closely to the surface that f~ and interface modes are effectively
decoupled.

(see also J. W. Dewberry et al. 2022). This possibility will
need to be entertained as new Uranus ring data are analyzed.

3.3. Are Ring Constraints Valuable Despite Improved Zonal
Gravity?

Radio tracking of an orbiter could yield orders of magnitude
improvement in the precision on J, and J4 and offer the first
measurements of the higher-order moments Jg, (M. Parisi et al.
2024). Even in light of these improvements, we find that the
measurement of a single normal mode frequency via the rings
would contribute a critical independent constraint on the
density and extent of Uranus’s core. Here, we fit interface
models using o, = 0.0073 x 107 and oy, = 0.9935 x 1079,
reflecting conservative estimates expected from gravity orbits
by a Uranus orbiter (M. Parisi et al. 2024; see Section 2.1.1).

We put aside higher-order moments J¢ ,, recognizing that (a)
their centroid values are unknown, (b) their sensitivity to the
deep interior is limited compared to their low-order counter-
parts, and (c) their wind-induced contributions might be
comparable to those from the rigidly rotating background
structure. On this last point, we note that our baseline sample of
gradient models yields Ji€¢ = (0.62 + 0.08) ppm and
JQinds — (—0.25 £ 0.16) ppm, for a total Jo = (0.38 £ 0.11)
ppm. The higher degree J, will have even larger fractional
contributions from the winds, making the values of Js,
ambiguous with regard to internal structure. This situation with
Js being the “pivotal” even-degree moment between the
interior-dominated and wind-dominated moments is reminis-
cent of Saturn. One might hope that Uranus’s evidently
shallower winds would improve the ability of the J;, to probe
the interior structure, but this is countered by the diminished
rigid body moments that follow from Uranus’s much weaker
oblateness.

These precise gravity moments proved challenging for our
normal sampling process, leading us to develop a different
procedure based on rejection sampling. The methodology is
described in Appendix D; here, we focus on the results. The
nature of our algorithm leads to a relatively small number
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UOP gravity Seismology: 2f on 6 ring

jump

Figure 12. Gravity moments (upper panels) and core properties (lower panels;
core density enhancement vs. core radius) for Uranus models in three scenarios
constrained by progressively more information. Gray samples in the back-
ground are the permissive starting sample loosely constrained to J, and J4. The
“UOP gravity” distribution (left panels, color map) benefits from more precise
gravity moments from a Uranus orbiter as estimated by M. Parisi et al. (2024)
(see main text for details). The seismology sample (right panels, color map)
folds in a hypothetical seismic constraint in the form of a resonance between
the 3f mode and the 6 ring. Colors correspond to log likelihood using the same
scale as Figure 7 (top).

(1207) of models in the final seismology-informed sample,
from which we do not intend to draw robust statistical
conclusions. Nevertheless, this procedure is sufficient to show
that the single ring seismology data point powerfully restricts
the range of allowed interior models, even when gravity
moments are already known to high precision. Figure 12
compares the permissive sample, the sample constrained by
orbiter gravity, and the sample constrained jointly by orbiter
gravity and seismology. Despite the much smaller scatter in
J>—J4 space afforded by the orbiter gravity (upper-left panel),
the core parameters (lower-left model) remain highly degen-
erate, yielding little in the way of constraining power for the
deep interior of Uranus. In contrast, an association between %f
and the 6 ring severely restricts the range of allowed models,
establishing an upper limit aj,mp < 1.8 to the fractional density
contrast across the core boundary and locating the core
boundary between 0.39 and 0.55 Ry,.

In Section 3.1, we considered the possibility that a high-
degree f~mode constraint might be detected instead of a low-
degree f~-mode. Here, we repeat the exercise of fitting gfto the 6
ring, but assuming the stricter UOP zonal gravity constraints.
The results are seen in Figure 13. As before, this more
superficial mode is unable to constrain core properties, but does
strongly disfavor deep spin periods slower than approximately
17 hr. A high-degree f~mode in the rings could hence be used to
break the rotation degeneracy that even a highly precise gravity
determination would not.

We conclude that improved constraints on zonal gravity do
not diminish the value of Uranus’s ring seismology. As is the
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Figure 13. Similar to Figure 12, but here the seismology sample (right panels,
color map) posits a resonance between the 6 ring and the higher degree
¢ = m =9 f-mode. Here, upper panels show the core density enhancement vs.
core radius, and lower panels show the wind decay depth vs. deep spin period.
In this scenario, the single seismology data point would do little to constrain
Uranus’s core structure, but would directly constrain Uranus’s bulk rotation.

case at Saturn, gravity science and seismology are most
effectively analyzed in tandem (C. R. Mankovich et al. 2023).

4. Doppler Imaging: P-modes

Uranian normal modes may also be accessible through
Doppler imaging, the technique of creating spatially resolved
maps of the radial velocity of the planet’s surface. These
Doppler maps can be decomposed using spherical harmonics,
and a time series of the results can be analyzed to generate
power spectra associated with each spherical harmonic, from
which individual frequencies can be extracted. (In reality, the
data being limited to the visible disk introduces leakage
between the spherical harmonics; see J. Christensen-Dalsga-
ard 2002.) In principle, this technique allows the characteriza-
tion of normal modes despite the measured radial velocities
being contaminated by radial motion associated with atmo-
spheric dynamics, a rich data set in its own right that was
recently charted by F.-X. Schmider et al. (2024).

This technique has its roots in helioseismology and shows
promise for unveiling the normal modes in Jupiter from
ground-based observations (e.g., P. Gaulme et al. 2011;
C. L. Shaw et al. 2022; F.-X. Schmider et al. 2024). However,
it is extremely unlikely that similar observations from the
ground or Earth orbit will be fruitful for Uranus given its
faintness and small angular size. A Uranus orbiter therefore
poses a special opportunity for sensitive Doppler-imaging
seismology of an ice giant. More detailed practical study of this
kind of instrumentation is needed; the challenges of these
observations from spacecraft are touched on briefly in
Section 5. These data are likely most sensitive to p-modes,
whose higher frequencies imply larger velocity amplitudes than
lower frequency modes with similar energies. Knowledge of
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the p-mode spectrum would be a powerful means of probing
small spatial scale features in Uranus’s interior.

4.1. Echelle Diagrams

By way of scientific motivation for an orbiter-borne Doppler
imager, here we extend the calculation for our Uranus models
to the higher-frequency p-modes. Figures 14(a)—(b) show
profiles of density, sound speed, and acoustic radius in a
representative grid of interface models with jump = 2 and Feore
ranging from 0.1 to 0.8 Ry, omitting for the moment any
separate atmosphere polytrope. (Here, the acoustic radius

t(r) = f C;ld}"/
0

gives the sound-crossing time from the planetary center to a
radius r, and a complementary acoustic depth can be defined as
T(r) = fr 8 ¢, ' dr')) Figure 14(c) shows the échelle diagram
constructed from these models’ £ = 1, m =0 mode spectra, in
terms of the cyclic inertial frame frequency v = o/2m. The
included modes span the interface mode through the p-mode of
order n = 26.

This type of diagram (e.g., G. Grec et al. 1983) plots mode
frequencies as a function of the frequency difference between
modes of successive radial order, a convenient means of
quickly identifying departures from the asymptotic constant
spacing known as the “large frequency separation” Av given
by Equation (11). Similar diagrams can be constructed from
real (incomplete) mode spectra, where the radial order is not
known a priori, by plotting the observed frequencies modulo
Av. This large frequency spacing is also not known a priori,
but an informed guess can be made based on models, and its
estimate can be refined based on the observed spacings.

The frequency spacings in Figure 14(c) are imprinted with a
clear periodic deviation controlled by the properties of the
interface. This can be understood as a result of a phase shift
experienced by acoustic waves as they encounter the interface
(I. W. Roxburgh & S. V. Vorontsov 1994a), introducing a
periodic modulation into the mode frequencies whose period is
controlled solely by the acoustic radius of the jump (see also
M. J. P. F. G. Monteiro et al. 1994). The amplitude of the
modulation is controlled by the amplitude of the jump. A
sequence of measured p-mode frequencies hence presents a
unique avenue toward measuring the depth of any major
density interface in Uranus’s interior. Taking the 7., = 0.4 Ry
model (palest orange) as an example, Figure 14(b) yields a
(diametric) core  sound-crossing time of 2T =
2 j(; “r ¢! dr = 1500 s for a frequency of 0.67 mHz. Dividing

by this model’s large frequency separation Av = 0.16 mHz
yields the equivalent radial order spacing An ~ 4, in agreement
with the period obtained from the numerically calculated
spectrum in Figure 14(c).

13)

4.2. Challenges of Multiple Density or Sound Speed Interfaces

For clarity of demonstration, the models in Figure 14 omit
the atmosphere /envelope break usually included in our models.
As a result, these models likely overestimate the density in
Uranus’s atmosphere (see Section 2.1). Including a break yields
a more complicated, potentially more realistic p-mode
spectrum, limiting the conclusions that can be drawn directly
from a simple échelle diagram. For example, Figure 15(a)
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Figure 14. Density and sound speed profiles (a), profiles of the acoustic radius (b), and ¢ = 1, m = 0 échelle diagrams (c) for a grid of interface models. The density
jump amplitude is fixed at juymp = 2, and colors map to the assumed core boundary location. For legibility, the échelle diagrams are offset from the first by multiples
of 0.05 mHz. Vertical dotted lines show the asymptotic equal frequency spacing Av given by Equation (11), also offset horizontally. The periodicity imprinted on the
frequency spacings is diagnostic of the acoustic radius of the interface (solid circles and dotted lines in panel (b), which translates into the “period” (units mHz,
nonlinear right axis of panel (b)) of the bumping signature. Dividing by Av provides the equivalent spacing in terms of radial order, which matches the bumping in the
calculated spectrum (vertical bars in panel (c)).
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Figure 15. Left: échelle diagram similar to Figure 14(c), but for a model (the moderate central density interface model) including a discontinuous sound speed between
the atmosphere and envelope polytropes. m = 0 modes for £ = 0-3 are shown, with the £ = 1, 3 sequences offset horizontally by 0.05 mHz for clarity. The vertical
dashed line shows Av; the dotted line is Av + 0.05 mHz. Right: naive FFTs of the frequency differences for each échelle sequence show a variety of peaks that may
be difficult to disentangle if seen in the data. Vertical lines show the expected periodicities induced by the acoustic radius /depth of the core/break based on knowledge
of this interior model. At face value, the multiple structures at play would make this spectrum difficult to uniquely interpret; here, techniques like the one discussed in
Section 4.3 can be used.

shows the £ = 0-3, m = 0 échelle diagrams in our moderate p.
interface model with a core boundary r.,. = 0.43 Ry and
atmosphere /envelope break at rpeq = 0.9 Ry (see Figure 2).
The break introduces strong new periodicities into the
frequency spacings, confounding their direct interpretation.
Figure 15(b) shows a fast Fourier transform (FFT) of these
frequency spacings, revealing two to three obvious periodi-
cities."" The four vertical lines give the periods expected of the

"' Note here that the “periods” in question are in units of frequency (mHz)
because the FFT is applied to a frequency spectrum and not a time series.
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acoustic radius and depth for the core boundary and break,
respectively, based on knowledge of the model’s sound speed
profile. The two strongest local maxima evident for all ¢
correspond to the acoustic radius and depth expected for the
break at 0.9 Ry. The period corresponding to the acoustic
radius of the core boundary is more subdued, and strongest in
the £ = 0 spectrum. The period corresponding to the acoustic
depth of the core boundary is not detectable. Altogether,
without the benefit of knowing Uranus’s sound speed profile
a priori, it would be difficult to arrive at a unique interpretation
for an observed spectrum as complex as Figure 15. In what
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follows, we show how the frequencies of radial (/ = 0) and
dipole (£ = 1) modes can be analyzed jointly to correctly locate
the boundary in this more realistic case.

4.3. Insights from Higher-order Frequency Differences

In the event that a measured p-mode spectrum shows
evidence for more involved near-surface effects, the effects of
deep and shallow features can be separated using higher-order
frequency differences involving modes with different values of
¢, such as the small frequency separations (see, e.g.,
I. W. Roxburgh & S. V. Vorontsov 1994b). As one example
of an application practical for Uranus, we condense some of the
key results of I. W. Roxburgh (2009). Regarding the planet as
split into inner and outer layers separated by a core boundary
with acoustic radius f#. and acoustic depth 7T... (see
Equation (13)), the solution to the oscillation equations obeys
an “eigenfrequency equation” (I. W. Roxburgh & S. V. Voron-
tsov 2000, 2003),

Ut
Vs
Av

= 77—(” + ;) + O[[(l/, 7—core) - 6[(’/, tcore)s (14)

for integer n. While the inner phase shift ¢, and outer phase
shift a, could be calculated numerically from mode eigenfunc-
tions given an interior model, a model-independent result can
be obtained by recognizing that, from a measured spectrum v, ,
and an estimate for Av, the difference in phase shifts (a — 6),
can be estimated directly. Figure 16(a) shows these differences
calculated from the £ = 0, 1 frequencies for the same model as
in Figure 15. The final ingredient is the theoretical result that
the outer phase shift a, is nearly independent of . This implies
that differencing the two curves in Figure 16(a) causes the outer
phase shifts to cancel, yielding a signal §; — & (Figure 16(b))
containing only a single strong periodicity representing the
acoustic radius of the core boundary. Figure 16(c) shows that
an FFT of 6,(v) — 6o(v) recovers the correct location for the
core boundary.

Finally, we note that, in models with a perfectly rigid core,
the lack of the central cavity eliminates these phase shifts and
hence any periodic signal in the p-mode frequency spacings
associated with the core. If Uranus’s core is solid superionic
H,0, as proposed by L. Stixrude et al. (2021), and assuming
any solid body (e.g., torsional) oscillations supported by the
frozen core do not couple with the p-mode spectra, then barring
any shallower discontinuities, the spectrum resembles the
asymptotic spectrum v, ; — v, ~ Av, and the échelle diagram
of Figure 14(c) becomes essentially featureless. However, in
this case, the large frequency spacing Av is likely to be
drastically modified by the diminished acoustic cavity. In this
event, the value of the roughly uniform spacing in the observed
frequencies itself becomes a diagnostic of the core size.

Structure could be introduced into the échelle diagram by
effects closer to the atmosphere (e.g., the atmosphere/envelope
break included in earlier sections), but the aforementioned
higher-order frequency differences and ratios thereof
(I. W. Roxburgh & S. V. Vorontsov 2003) can be exploited
to isolate contributions from the core. Hence, p-mode
seismology may be an unambiguous diagnostic of the state of
the core, offering an opportunity to independently confirm—
and more precisely quantify—any conclusions drawn from new
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Figure 16. An example of exploiting observations of modes of different ¢ to
distinguish core structure from near-surface effects. Top: the difference in outer
and inner phase shifts as estimated from the £ = 0, 1 spectra of the moderate p,
interface model; see Equation (14) and the discussion in the text. Filled and
open points show ¢ = 0 and ¢ = 1, respectively, and cubic spline interpolants
are shown in the dashed curves. Middle: the difference
(@ — ) — (@ — )] =~ &, — 6o calculated by differencing the interpolating
functions. Bottom: an FFT of §; — 8, used to extract the period that remains in
the inner phase shifts. The clear peak matches the inverse acoustic radius of the
core calculated from the interior model.

measurements of Uranus’s tidal dissipation and its tidal Love
number k,, (L. Stixrude et al. 2021; M. Parisi et al. 2024).

5. Discussion

A large set of frequencies that can be used to decode Uranus’s
internal structure is potentially lying in wait. However, there is
no guarantee that Uranus’s normal modes are excited to
observable amplitudes. Even in Saturn, for which the data are
extensive, the processes responsible for exciting and dissipating
the observed modes remain an open question (S. Markham &
D. Stevenson 2018; Y. Wu & Y. Lithwick 2019) that we do not
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attempt to resolve here. Nonetheless, Saturn’s f“modes are
excited and apparently coherent over a timescale of at least
decades (M. M. Hedman et al. 2022). As already mentioned,
Saturn and Jupiter also both show indirect evidence for higher-
frequency (p-mode) seismicity, as glimpsed in radio tracking of
the Cassini and Juno trajectories (S. Markham et al. 2020;
D. Durante et al. 2022). We show in Appendix A that a Uranian
f-mode can generate a similar magnitude of Lindblad forcing
potential to a known resonance between the satellite Ophelia
and the v ring, provided that the f~mode has an energy of the
order of 10%*erg =5 x 1078  GMZ/Ry. For comparison,
Saturn ring seismology indicates typical fmode energies
~2 x 10% erg 5 x 107'8GMZ/Rs (J. Fuller 2014).
Despite the similar fractional energies in the two cases, there
is no reason a priori to expect the same mode excitation and
dissipation mechanisms to operate in both planets. It is also
possible that these modes are excited to greater amplitudes at
Uranus than at Saturn or Jupiter. Uranus’s weak intrinsic flux
might invite skepticism in this regard, but the possibility of a hot,
convective interior insulated from the cold atmosphere by a
thermal boundary (e.g., J. Leconte & G. Chabrier 2012;
N. Nettelmann et al. 2016) suggests that a large reservoir of
fluid kinetic energy cannot be ruled out. Altogether, there is
reason to be optimistic that Uranus’s oscillations will be
detectable by one means or another, especially given the high-
reward nature of the science that these techniques could enable.
More Earth-based seismology measurements of Jupiter and
Saturn, and renewed efforts to understand the amplitudes of
Saturn modes observed in Saturn’s rings, would help to inform
expectations for mode amplitudes at Uranus or Neptune.

Here, we have considered the rings and Doppler imaging of
Uranus’s surface as two windows through which we might
gather complementary data about Uranus’s oscillation spectrum
and hence its confounding internal structure. Ring and
Doppler-imaging seismology each come with their intrinsic
opportunities and challenges.

Saturn seismology by Cassini was successful despite not
being a part of the mission design. Ring seismology has the
tremendous advantage of being possible without dedicated
instrumentation, achievable in its most basic form from
imaging data revealing m-fold periodic brightness perturbations
or embedded density or bending waves (M. M. Hedman et al.
2009, 2023; M. R. Showalter 2011; M. Hedman et al. 2023).
Stellar occultations would be preferable, but not strictly
necessary. Hence, it is likely that these low-cost observations
will proceed to some degree so long as an orbiter flies.

Our calculations here are intended to lay out some guidance
as to how features in Uranus’s largely unconstrained interior
might manifest in the rings, building on J. A. A’Hearn et al.
(2022) by studying a more exhaustive statistical sample of
interior structures (Section 2) and performing retrievals
(Section 3). In particular, we consider the possibilities of a
fluid or solid core as well as composition gradients, some
combination of which are likely to be present in the interior
given Uranus’s vanishingly small heat flux (N. Nettelmann
et al. 2016; A. Vazan & R. Helled 2020; L. Stixrude et al.
2021). On this note, Uranus’s interior is likely to include
regions of superadiabatic temperature stratification (e.g.,
B. A. Neuenschwander et al. 2024), an effect we have not
explicitly considered here. This superadiabaticity may
manifest as either double-diffusive convection (possibly
in the form of convective layering, e.g., T. Radko 2007;
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G. M. Mirouh et al. 2012; J. R. Fuentes et al. 2024) or diffusive/
radiative transport. In the opaque convective or semiconvective
regions of gas giants like Jupiter and Saturn, the thermal
superadiabaticity V — V, is a minor correction to the buoyancy
compared to the dominant composition term B (see C. R. Mank-
ovich & J. Fuller 2021). It is not clear yet to what degree this
property holds in the uncertain, heavy element-dominated
conditions of the Uranian interior. Additionally, radiative regions
spawned by deep atmospheric opacity windows (S. Howard
et al. 2023; S. Miiller & R. Helled 2024), inhibited convection in
the cloud layers (A. J. Friedson & E. J. Gonzales 2017; J. Lec-
onte et al. 2017; S. Markham & D. Stevenson 2021), H/He
immiscibility layers (S. Markham & T. Guillot 2024), or
H,O/H, immiscibility layers (E. Bailey & D. J. Stevenson 2021;
M. Cano Amoros et al. 2024; A. Gupta et al. 2024; but see
F. Soubiran & B. Militzer 2015) could present significant
features in the thermal buoyancy that should be addressed by
future work in giant planet seismology.

We have also introduced a framework for directly fitting
interior models to observed resonances (Section 3). We have
demonstrated that extracting a single mode’s frequency and
azimuthal pattern number m using ring seismology would
allow us to eliminate a large fraction of the models permitted
by zonal gravity. Some ambiguity survives, especially as a
function of which radial order mode is held responsible for a
given ring pattern. In ambiguous cases, the detection of a
second mode would largely break the degeneracy, two points
serving to “calibrate” the inherently highly structured ring
spectrum (see, e.g., C. R. Mankovich et al. 2023, Figure 12).
Nonetheless, we caution that, in light of the rich complexity of
Uranus interior physics, our simplified parameterization in
terms of modified polytropes (Section 2.1) likely cannot cover
the full space of possible interior structures. Importantly, it
does not capture details like the temperature dependence of the
density. It is therefore possible that the analysis of normal
mode detections from a future UOP will encounter degen-
eracies that we have not fully contended with here. On a more
optimistic note, these degeneracies may be mitigated by
complementary information from new measurements of
Uranus’s gravitational and magnetic fields.

If a low-degree f-mode, ideally 3f, resonates with any of the
narrow rings, its detection would place an important new
constraint on Uranus’s core extent and density (see
Section 3.1). However, this outcome relies on a relatively
extended rigid core (ruore/Ry = 0.4 if the 3f OLR is near the 6
ring, as an example; see Figure 9). For very compact cores, as
in the maximum p, rigid core model where a 0.6 Earth mass
core resides within 7.o./Ry =~ 0.17 (Figure 2), even the most
deeply reaching 3f-mode has close to zero sensitivity to the
core. Hence, compact, sharply defined cores may evade
detection in ring seismology. The best tool for revealing the
boundary of such a core is Doppler imaging, by virtue of the p-
mode frequency spacings’ sensitivity to core boundaries near
Teore/ Ry =~ 0.2 or deeper (see Section 4.1 and Figure 14).

Ring seismology may appear to have the drawback of
relying on chance overlaps between planet mode frequencies
and sharp ring features, but the connection between the two
might ultimately be causal in at least some cases, especially
considering the abundance of narrow features versus the dearth
of known ring-satellite resonances in the rings of Uranus. The
odds of finding features associated with Uranus’s interior are
further helped by the fact that that there are numerous
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additional narrow features visible in high-phase imaging of the
rings (M. M. Hedman & R. Chancia 2021), supplementing the
named rings that we have considered in detail in Section 3 (see
J. A. A’Hearn et al. 2022, particularly their Section 5.2).
Patterns forced by Uranian normal modes may be observable in
spiral density waves embedded in narrow, dense rings, or in
perturbations to the shape of ring edges; see the discussion of
detection methodologies in J. A. A’Hearn et al. (2022). They
discuss the fact that even Fresnel-limited occultations from
Earth probably would not attain sufficient resolution to
characterize new waves, although at the lowest azimuthal
wavenumbers like m ~ 2, this may be more achievable.

The most transformative application of Uranian seismology
would involve multimodal observations, combining ring
seismology with another technique with sensitivity to different
parts of the planet’s spectrum. Two avenues we see are Doppler
imaging and direct gravitational seismology by an orbiter.

Doppler imaging would be most sensitive to p-modes
because their higher frequencies imply larger radial velocity
amplitudes than the f-, g-, or interface modes at comparable
mode energies. These frequencies are inaccessible to ring
seismology, as are zonal m =0 and retrograde m < 0 modes.
Hence, Doppler imaging has the potential to expose an
extensive list of mode frequencies that can be readily
interpreted using mature techniques from helioseismology
and asteroseismology (see J. Christensen-Dalsgaard 2002). In
particular, p-modes are sensitive to features in the first adiabatic
index (i.e., the adiabatic sound speed), and their higher-order
radial eigenfunctions have increased sensitivity to short
wavelength features of the planetary interior. As an example, in
Section 4 we have shown that sequences (not necessarily
unbroken ones) of ~10 ¢ = 1 p-mode frequencies may be
sufficient to locate a core boundary in Uranus if the boundary is
sharp. The presence or absence of a periodic trapping signature
in the p-mode frequencies would be diagnostic of the core’s
material phase, i.e., frozen or fluid, independent of constraints
that may be gleaned from Uranus’s tidal response (L. Stixrude
et al. 2021; F. Nimmo 2023; M. Parisi et al. 2024).

Doppler imaging from an orbiter has practical limitations
that warrant in-depth study. These observations typically target
one or more solar absorption lines, making use of the tendency
of the planet’s oscillating surface to shift reflected light toward
or away from the line center. For magneto-optical filter
instruments with narrow, fixed bandpasses mandated by their
filter design (e.g., PMODE; C. L. Shaw et al. 2022), this puts
an upper limit on the spacecraft—planet radial velocity that can
be tolerated during Doppler-imaging measurements. Hence, for
an eccentric orbit, observations from such an instrument might
need to be concentrated around apoapse when the absorption
line is close to its rest frame wavelength. Interferometers (e.g.,
JIVE; F.-X. Schmider et al. 2024) can sidestep this limitation
entirely. Observations at apoapse may be preferred in any case
due to reduced competition with other instruments and the
opportunity for continuous observations to build a long
baseline time series. More detailed mission studies will need
to consider the planetary phase angle achievable near apoapse
for realistic orbits.

Gravitational seismology (A. J. Friedson 2020; A. J. Fried-
son et al. 2025) involves the search for oscillation modes
through their influence on the trajectory of an orbiter,
specifically targeting the “anomalous” accelerations that
confounded measurements of Saturn’s static gravity field
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(L. Tess et al. 2019). Accelerations of this type in Cassini data
were attributed to Saturn normal modes (S. Markham et al.
2020), and similarly to Jupiter normal modes in Juno data
(D. Durante et al. 2022). The orbit design of a future Uranus
mission may benefit from considering the prospect of
gravitational seismology, and methods should be devised for
translating these data into concrete measurements of frequency,
amplitude, ¢, and m.

6. Conclusion

The field of normal mode seismology for spheroidal fluid
bodies is mature thanks to the abundance of data for the
Sun and other stars (see J. Christensen-Dalsgaard 2002;
V. M. Afigbo et al. 2025). These approaches have long been
pursued in the domain of giant planets (e.g., S. V. Vorontsov
et al. 1976; B. Mosser et al. 1993; T. V. Gudkova &
V. N. Zharkov 1999) and are coming to fruition thanks to ring
seismology of Saturn by Cassini (M. S. Marley &
C. C. Porco 1993; M. M. Hedman & P. D. Nicholson 2013)
and continued refinement of ground-based observations of
Jupiter (C. L. Shaw et al. 2022; F.-X. Schmider et al. 2024).
Here, we have merely scratched the surface of these techniques
as they might be applied to Uranus from a future orbiter.

Doppler imaging from a Uranus orbiter would likely
generate the most information suitable for Uranian seismology,
provided that internal processes excite Uranus’s p-modes to
observable amplitudes. The amplitudes that would be necessary
depend on an intersection of instrumental and mission design
considerations that have yet to be studied in detail. This line of
study is warranted given the high sensitivity of the p-modes to
compositional interfaces in Uranus’s interior, the characteriza-
tion of which could unravel the puzzles of Uranus’s internal
heat flow, magnetic field generation, and thermodynamics.

Ring seismology is fundamentally sensitive to lower
frequency modes, including f-, g-, and interface modes. The
detection of such a mode with this method relies on a mode’s
frequency coinciding with natural frequencies of ring orbits, an
alignment that is far from guaranteed in the sparse rings of
Uranus. However, the information that can be gleaned about
Uranus’s deep interior structure and/or rotation period from
even one or two such detections motivates the relatively low-
cost observations (stellar occultations or ring imaging) needed
to search for these precious traces of Uranus’s dynamic
gravity field.
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Appendix A
Mode Energy to Yield an Observable Ring Response

To assess whether it is plausible for Uranus f~modes to drive
observable signatures in the rings, we look to a known satellite
resonance that drives an observable ring response. R. G. French
et al. (2024) characterized an m = 6 mode on Uranus’s vy ring
driven by the Ophelia 6:5 ILR. The ring mode is detected in
occultations at both the inner and outer edges of the ~ ring, its
measured amplitude yielding an estimate for Ophelia’s mass.
For comparison to forcing by a planet mode, it is useful to note
the resonance’s effective perturbing potential ¥ =~ 7 X
10° cm?s ™2 (see F. H. Shu 1984 for a review of linear density
wave theory). Meanwhile, the effective perturbing potential of
an OLR with a planet mode is a function of the mode’s
gravitational potential perturbation ® and its radial gradient,
evaluated at the Lindblad resonance (see, e.g., Appendix B of
J. W. Dewberry et al. 2021). Demanding that an £ = m = 2
mode has the same magnitude of forcing potential as the
Ophelia resonance,

U[5 f OLR] ~ ¥[Ophelia 6: 5 ILR]

x=7 x 103 cm?s72, (AD)

implies a nondimensional mode amplitude of A ~ 3 x 1072, a
mode energy of ~10**erg, a surface radial displacement
amplitude of ~30cm, and a surface radial velocity amplitude
of ~4 x 10 °cms '. Low-order g-mode energies in our
models are typically comparable with the f~modes within an
order of magnitude.

This mode energy is ~5% that of a typical Saturn f~mode
given information from the rings (J. Fuller 2014; Y. Wu &
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Y. Lithwick 2019). For comparison, Uranus’s binding energy is
approximately 5% of Saturn’s. We conclude that, whatever
mechanisms might drive Uranus’s normal modes, it is
energetically reasonable for the f-modes to generate ring
features that rival the ones generated by natural satellites.
Hence, the types of observations proposed by J. A. A’Hearn
et al. (2022) and in Section 3 are worthy of pursuit.

Appendix B
Wind Model and Thermal Wind Balance

Figure 17 shows J;'"% obtained from solutions to thermal

wind balance as a function of the assumed decay depth d of the
winds. These models are the end-member interface models
shown in Figure 2. Our polynomial fit to ;"% (d, ) is shown
in Figure 18. The top panels show full TGWE values (points)
and polynomial fits (curves). The bottom panels show the fit
residuals, with their histograms along the right axes. Of O(10%)
randomly chosen models from a sample of rigidly rotating
interface models fit to J, and p;, only models with sampled Py
falling within narrow bins (width ~2 minutes) around pre-
determined values Py = 16.0, 16.5, 17.0, 17.5, and 18.0 hr are
retained, leaving 1810 models in total. For each model, flow
profiles across a grid of wind depths are considered, and the
resulting /"% are tabulated as a function of Py and d. We
construct quadratic fits to Jz‘jf“ds(leU). These fits and their
residuals are shown in Figure 18. The residual random scatter
reflects the weaker dependence the wind-induced moments
have on other model parameters not accounted for in the fit,
leaving rms errors <5 ppm for J/""%, <2 ppm for J}'™, and
<0.3ppm for J3"*. Models evaluated during MCMC use
these fitting functions and linear interpolation in Py to evaluate
JyVinds for arbitrary Py and d.

10_4 L 5vinds - L szinds ] I ngind .
10_6 ~ — ~ — — — Interface model, min p, —
| Interface model, moderate p_ |
8 — Interface model, max p,
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Figure 17. Perturbations to the zonal gravity moments J,, induced by the wind according to thermogravitational wind balance, assuming the observed wind speeds are
constant on cylinders before applying exponential decay as a function of radial depth from the surface, shown as a function of the e-folding depth H. Square symbols

designate the true retrieved depth and associated harmonics J3

region).
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s for each model. The vertical axis switches to a linear scale between —10~° and +10~° (shaded
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Appendix C
Parameter Estimation

Section 2.3 briefly described our procedure for fitting models
to data. Here, we give more technical details and show the
posterior probability distributions for the baseline samples fit to
J>, J4, and p;. Since estimates for J, and J4 rely principally on
the dynamics of Uranus’s relatively closely packed rings, these
quantities are highly correlated. We incorporate Jacobson’s
Jo—J4 correlation of 0.981 (see R. G. French et al. 2024) into
our multidimensional likelihood function, leading to the strong
covariance that can be observed in Figure 4. Any covariance
between the J,, and p; is neglected.
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All models use J,, centroids from R. A. Jacobson (2014).
Baseline models also adopt Jacobson’s uncertainties and strong
Jo—J4 covariance, with the exception of Section 3.3, which
considers improved information on zonal gravity from an
orbiter (M. Parisi et al. 2024). Model parameters are
summarized in Table 1, and the prior probability is assumed
uniform in the allowed parameter space.

Figure 19 shows the posterior probability distributions obtained
for the baseline sample of interface models. Figure 20 shows the
same for the gradient models. In each case, only one model is
plotted for every 10 models in the sample. These diagrams
illustrate the vastly degenerate solution space allowed by the
present constraints on Uranus’s gravity field.
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Appendix D
Sampling Strategy for Precise Gravity

Section 3.3 focuses on the question of whether ring
seismology constraints are of value even in light of new
information expected from the UOP determination of Uranus’s
gravity field. Even a conservative estimate for the precision on
gravity moments expected from UOP (M. Parisi et al. 2024; see
Section 2.1.1) leads to difficulty when using our standard fitting
process. The sharply peaked likelihood function yields
impractically low acceptance fractions, even when we consider
alternative proposal distributions offered by emcee. In this
case, we opt to use rejection sampling, a simpler, classical
sampling algorithm (see G. E. Forsythe 1972) wherein the
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probability of accepting a given Monte Carlo step is
independent of the previous step.

The simplest version of this algorithm would draw a
parameter vector 6; uniformly distributed over the prior
volume, run a model to evaluate In L (6;), and draw a random
number x; uniformly distributed within (0, 1). Then the model
is accepted into the sample if InL(6;) > Cx; for a predeter-
mined constant C > 0, otherwise it is rejected. Our large
parameter space implies that drawing uniformly from the
allowed prior volume (see Table 1) would yield vanishingly
few acceptable models. Instead, we begin with a relatively
permissive sample of models loosely constrained by J, and Jy,
generated by our normal sampling process but using a modified
likelihood L with Gaussian errors equal to the Parisi error bars
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inflated by a factor of 5. For each model in this initial sample,
the final likelihood L is calculated using the true Parisi gravity
errors, and the model is accepted or rejected based on whether
the ratio L(6)/L(0;) exceeds the uniformly distributed
x; € (0, 1). The process is then repeated with an alternate
final likelihood that folds in an additional seismic constraint in
the form of a 3 OLR on the 6 ring, calculated assuming a rigid
core as in Section 3.1. Starting from 3 x 10° models in the
permissive sample, the stronger gravity constraints yielded
80,570 accepted models. The stronger gravity constraints
paired with the ring seismology constraint yielded the 1207
models that are shown in Figure 12.
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