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Over 100 occultations are included in the combined data set, enabling us to identify systematic radial
perturbations as small as 200 m on the edges of ringlets and gaps. We systematically examine all of
the noncircular features in the C ring, refine the eccentricities, precession rates and width variations of
the known eccentric ringlets, identify connections between several noncircular gap and ringlet edges
. and nearby satellite resonances, and report the discovery of a host of free normal modes on ring and
Saturn, rings . . .
Occultations gap edges. We confirm a close association between the Titan (or Colombo) ringlet (a =77878.7 km)
Planetary rings and the Titan 1:0 apsidal resonance: the apoapse of the ringlet is nearly aligned with Titan’s mean
longitude, and the pattern speed closely matches Titan’s mean motion. Similar forced perturbations asso-
ciated with the Titan resonance are detectable in more than two dozen other features located throughout
the inner C ring as far as 3500 km from the Titan resonance. The inner edge of the Titan ringlet exhibits
several strong outer Lindblad resonance (OLR-type) normal modes, and scans of the outer edge reveal
inner Lindblad resonance (ILR-type) normal modes. The Maxwell ringlet (a=87,510 km), in contrast,
appears to be a freely-precessing eccentric ringlet, with post-fit RMS residuals for the inner and outer
edges of only 0.23 and 0.16 km, respectively. The best-fitting edge precession rates differ by over 10 times
the estimated uncertainty in the rate of the inner edge, consistent with a slow libration about an
equilibrium configuration on a decadal timescale. Using self-gravity models for ringlet apse alignment,
we estimate the masses and surface densities of the Titan and Maxwell ringlets. The Bond ringlet
(a=288,710 km), about 17 km wide, shows no free eccentricity but lies near two strong resonances: the
Mimas 3:1 inner vertical resonance (IVR) at 88702.2 km and the Prometheus 2:1 ILR at 88713.1 km.
We find no measurable perturbation from the Mimas IVR, but a clear m = 2 signature of the appropriate
phase and pattern speed for the Prometheus ILR on the outer edge of the ringlet, along with free ILR-type
normal modes with wave numbers m = 3,4, 5, 6 and 7. The Dawes gap, located at 90,210 km, and its asso-
ciated embedded ringlet, also show both free and forced perturbations, and as in the case of the Maxwell
gap, the outer edge of the Dawes gap appears to be sympathetically forced by the nearby ringlet. The
pattern of newly identified normal modes coexisting on the sharp edges of ringlets and gaps is in
excellent agreement with theoretical predictions, with ILR-type modes on outer ringlet (and inner gap)
edges and OLR-type modes on inner ringlet (and outer gap) edges, representing standing waves between
the resonance locations and the ring edges. Modes with larger |m| generally have narrower resonant
cavities, and of the dozens of detected normal modes, none has been identified with a resonance radius
that falls outside the ring material.

Keywords:

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Saturn’s C ring is the innermost and least opaque of the three
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Fig. 1. An optical depth profile of the C ring, derived from the Cassini radio occultation on Rev 7. Abbreviations refer to the Titan ringlet (TR) and Colombo gap (CG), the
Maxwell gap and ringlet (MG, MR), the Bond gap and ringlet (BG, BR) and Dawes gap (DG). Tick marks across the top of the plot indicate the locations of significant satellite
resonances, with Ti = Titan, Mi = Mimas, At = Atlas, Pr = Prometheus and Pd = Pandora.

five significant gaps, four of which contain or are bordered by nar-
row, optically-thick ringlets (Colwell et al., 2009). Several of the
gap edges and all of the associated ringlets are known to be noncir-
cular, as first noted in studies of imaging and occultation data
returned by the two Voyager spacecraft in 1980 and 1981. In some
cases, the observed radial perturbations appear to be driven by res-
onances with external satellites, while in other instances, notably
the Maxwell ringlet, the feature’s eccentricity appears to be
unforced and likely represents a natural state of dynamical equilib-
rium. An overall view of the C ring is provided in Fig. 1 (based on
Fig. 13.21 in Colwell et al. (2009)) where we have identified the
principal gaps and isolated ringlets that are the focus of this study.

Most prominent of the noncircular features are the informally-
named Titan ringlet, which inhabits the Colombo gap at 77,880 km,
and the Maxwell ringlet located within its eponymous gap at a
radius of 87,510 km. Studies of these features by Esposito (1983)
and Porco et al. (1984b) demonstrated that they are both well-
described by keplerian ellipses, precessing under the influence of
Saturn’s zonal gravity harmonics. The Titan ringlet, however also
happens to be located at a distance where the local apsidal preces-
sion rate matches the mean motion of Titan (22.577°d™"), and
Porco et al. (1984b) concluded that its eccentricity is likely forced
by this apsidal resonance." This idea was further pursued by
Nicholson and Porco (1988), who used the ringlet’s eccentricity to
place a constraint on Saturn’s zonal gravity harmonics, notably Js.
The Maxwell ringlet, on the other hand, appears to be more akin
to the narrow, freely-precessing Uranian rings, and is in fact similar

1 This is in fact a special case of an inner Lindblad resonance (see Appendix A), and
it is also referred to as the 1:0 ILR.

in many of its characteristics to that planet’s € ring. Particularly
notable are the large gradients in eccentricity across both rings,
which are thought to approach the maximum sustainable value
(Mosqueira, 1996). In both cases it was proposed that the ring’s
self-gravity acts to counteract the tendency to differential preces-
sion, which would quickly destroy such an eccentric ring if the
particles’ orbits were subject solely to the planet’s gravity (Goldreich
and Tremaine, 1979; Porco et al., 1984b). However, subsequent obser-
vational and theoretical studies have cast some doubt on this hypoth-
esis, at least in its original form (Marouf et al., 1987; Borderies et al.,
1988; Chiang and Goldreich, 2000; Mosqueira and Estrada, 2002).

Much less is known about the C ring’s other noncircular features,
primarily because their deviations from circularity are about an
order of magnitude smaller, and near the limit detectable in Voyager
data. Porco and Nicholson (1987) and Nicholson et al. (1990) stud-
ied the gaps and associated ringlets at 88,720 km (= 1.470 Rs) and
at 90,200 km (= 1.495 Rs) - since renamed the Bond and Dawes
gaps, respectively. Each is associated with one of the strongest
satellite resonances in the C ring: the inner edge of the Bond ringlet
coincides with the Mimas 3:1 inner vertical resonance (IVR), while
the inner edge of the Dawes gap (or the outer edge of the 1.495 Rs
ringlet) coincides with the Mimas 3:1 inner Lindblad resonance
(ILR). The situation is further complicated, however, by the
presence of two other, only slightly weaker, resonances: the 2:1
ILRs due to the F ring shepherd satellites, Prometheus and Pandora.
Porco and Nicholson (1987) found significant departures from
circularity for both the Bond ringlet and the inner edge of the Dawes
gap, the latter at the several km level, but were unable to
demonstrate a clear connection with any of the four possible
satellite resonances.
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With the arrival of the Cassini spacecraft at Saturn in July 2004,
a new era in studies of Saturn’s rings has opened and it is now
possible to re-examine the nature and dynamical origins of these
features. In particular, radio occultations observed using the
spacecraft’s three-frequency communications signal and stellar
occultations observed by the ultraviolet and near-infrared
spectrometer instruments have provided several hundred radial
profiles of the rings, at radial resolutions in the 10-400 m range.
Spanning a period of almost six years, or at least 90 precessional
cycles of orbits in the C ring, this dataset is vastly improved over
that provided by the Voyager flybys and permits us to pose much
more detailed questions about the structure and dynamics of the
noncircular features.

In the first paper in this series, we examined the shape and
dynamics of the outer edge of the B ring (Nicholson et al., 2014),
long known to be controlled and perturbed by the Mimas 2:1
ILR. Confirming a result first obtained by Spitale and Porco
(2010) from an analysis of Cassini images, we found that this sharp
edge is perturbed not only by the Mimas resonance, with the
expected azimuthal variations with wavenumber m = 2, but also
by radial distortions with m =1, 3, 4 and 5. These non-resonant
perturbations are thought to arise from normal modes in the ring,
which involve density waves reflected by the very sharp outer edge
of the ring and trapped in what amounts to a resonant cavity in the
outermost part of the B ring (Spitale and Porco, 2010).

In the present paper, we systematically examine all of the non-
circular features in the C ring, with a view to refining the eccentric-
ities, precession rates and width variations of the known eccentric
ringlets and establishing direct connections, if any, between sev-
eral noncircular gap and ringlet edges and nearby satellite reso-
nances. In the course of this work, we have uncovered several
more examples of spontaneously generated normal modes on the
edges of both ringlets and their host gaps. We have also searched
for additional, previously unsuspected noncircular features in the
C ring.

In a subsequent paper (French et al., 2014a), hereafter Paper III,
we will address noncircular features in the Cassini Division.

An essential prerequisite to these studies is the establishment
of an accurate absolute radius scale for Saturn’s rings, via the iden-
tification of a set of circular fiducial features to which suspected
variable features can be referred. This task must, by its very nature,
include data from as many observations as possible, and from
features across the entire ring system. To some extent, this is an
iterative process, with several putative fiducial features having
been discovered to be noncircular during the course of the study.
It is also of lesser interest to those readers who wish only to know
about the noncircular features. We thus defer this discussion to a
separate paper (French et al., 2014b), referred to as Paper IV, and
provide only an overview of the main results here, in Section 3.

As one of the principal (and unexpected) results of this investi-
gation is the identification of numerous normal modes on the
edges of narrow ringlets and gaps in the C ring and Cassini
Division, we begin with a review of this concept in Section 2. In
Section 3 we provide a brief recap of the occultation dataset, while
we discuss our orbit-fitting procedure and the underlying dynam-
ical models in Section 4. In Sections 5-8 we present our results for
the Titan and Maxwell ringlets (and their associated gaps) and for
the Bond and Dawes gaps, in turn. In Section 10 we present
updated width-radius relations and self-gravity models for the
Titan and Maxwell ringlets, while a review of the normal modes
identified in this work is presented in Section 11. Section 12 sum-
marizes our findings concerning resonantly-forced perturbations,
and in Section 13 we provide constraints on Saturn’s gravity field
provided by the Titan and Maxwell ringlets. We summarize our
conclusions in Section 14. A brief review of the relevant resonance
dynamics and essential formulae is provided in Appendix A.

2. Normal modes

The concept of normal modes in planetary rings was introduced
by Borderies et al. (1986), based on their model for viscous interac-
tions in dense, self-gravitating rings, and discussed in more detail
in the context of narrow rings by Longaretti and Rappaport
(1995). This model predicts that outward- and inward-propagating
density waves could arise spontaneously in such a ring and, in the
presence of a feedback mechanism, could lead to finite-amplitude
standing waves in the ring. The presence of a sharp outer edge can
provide this feedback, as an outward-propagating trailing density
wave will be reflected as an inward-propagating leading wave with
the same number of arms m and pattern speed Q, (see below). In a
narrow ringlet, the reverse process can then happen at the inner
edge, converting the leading wave back into a trailing wave. Inter-
ference between the two traveling waves then gives rise to a stand-
ing wave, which is trapped between the inner and outer edges of
the ringlet. Fundamental to this picture of normal modes as stand-
ing density waves is the basic fact that, for any particular value of
m, leading and trailing waves rotate with the same angular speed
but propagate in opposite radial directions (Shu, 1984).

Such modes are unrelated to any external agency, but their
geometry and frequencies are closely akin to the perturbations
produced by inner or outer Lindblad resonances due to distant sat-
ellites. In particular, the radial displacements associated with such
modes vary with longitude A and time t as e/™~9, where the fre-
quency o is given by

w=mQ, = (M- 1)N+ Weec. (1)

Here, n is the local keplerian mean motion and @s. is the apsidal
precession rate due to Saturn’s gravity field, as given by Eq. (3)
below. ©,, known as the pattern speed, is the angular rotation rate
of the perturbation in inertial space. In this expression, a positive
value of m corresponds to an ILR-type normal mode, while a nega-
tive value of m corresponds to an OLR-type normal mode, as defined
below. Note that, in either case, Q, is positive.

A requirement for such an amplification process to work, in the
presence of viscous (i.e., collisional) damping, is that the wave-
length of the density waves be comparable to the width of the ring-
let. This in turn favors m = 1 normal modes, as their wavelengths
are much longer than those of their siblings (Shu, 1984). Indeed,
it is possible to reinterpret a typical precessing eccentric ringlet
as an example of such an m = 1 normal mode, as the predicted pat-
tern speed is simply Q, = W, (Longaretti, 1989).

Direct observational evidence for normal modes in narrow ring-
lets (other than the familiar m = 1 modes) was first provided by
the Uranian y and ¢ rings, where French (1988a) showed that the
observed nonkeplerian distortions could be interpreted as normal
modes with m=0 and m =2, respectively. With widths of
~5 km, these two rings are sufficiently narrow for the above dou-
ble-reflection process to work.

Perhaps not so immediately apparent is the fact that similar
normal modes can exist at the sharp inner or outer edge of a broad
ring. In a differentially-rotating disk, density waves with a given
value of |m| and a particular pattern speed can propagate only in
a limited radial range. The limits of this range are defined by the
corresponding inner and outer Lindblad resonances, as defined by
Eq. (1) for positive and negative values of m. Long trailing waves
propagate away from either an inner or outer Lindblad resonance,
towards the corotation resonance where €, = n, while long leading
waves propagate towards either Lindblad resonance.”’ Leading

2 In a gaseous disk, both short and long-wavelength waves are possible, but the
former are essentially sound waves and have no relevance to particulate rings.
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waves are reflected when they encounter either resonance, being
converted to long trailing waves (Shu, 1984).

Consider first a ring with a sharply-defined outer edge, within
which the viscous overstability mechanism of Borderies et al.
(1986) spontaneously generates a wide spectrum of leading and
trailing density waves, which then propagate inwards and out-
wards from their source regions. Inward-propagating waves will
viscously damp and disappear. But an outward-propagating trail-
ing wave will encounter the gap edge and reflect back towards
its source as a leading wave with the same m-number and pattern
speed. If the pattern speed of these waves is such that the inner
Lindblad resonance (ILR) - i.e., the radius where Eq. (1) is exactly
satisfied for a positive value of m - is within a few radial wave-
lengths interior to the ring edge, then the leading wave will reflect
at this virtual resonance and reappear as an outward-propagating
trailing wave, thus providing the desired feedback mechanism.
The result is a standing wave that is trapped between the ILR
and the outer ring edge, with a pattern speed appropriate to a res-
onance location slightly interior to the ring edge. We refer to the
resulting distortion as an ILR-type normal mode, for short.

Spitale and Porco (2010) and Nicholson et al. (2014) identified
normal modes of exactly this type with m =1, 3, 4 and 5 at the
outer edge of Saturn’s B ring. Each of these modes was found to
have a pattern speed which corresponds to an ILR located a few
tens of km interior to the ring edge, except for the m =1 mode
whose radial wavelength is longer, and for which the resonant cav-
ity is substantially wider.

The basic wave-generation process is identical at the inner edge
of a broad ring, but in this case a spontaneously-generated
inward-propagating trailing wave reflects at the ring’s inner edge,
becoming an outward-propagating leading wave. Such a wave can
then reflect at its outer Lindblad resonance (OLR) - i.e.,, the radius
where Eq. (1) is exactly satisfied for a negative value of m - again
providing feedback and establishing a resonant cavity. As before,
the pattern speed is given by Eq. (1), but with a negative m, and
we refer to the resulting distortion as an OLR-type normal mode.
In this case, the pattern speed is expected to be that appropriate
to a resonance location slightly exterior to the ring edge.

Unlike the situation in narrow ringlets, such as the Uranian y
and ¢ rings, the normal modes on the inner and outer edges of a
broad ring are confined to narrow resonant cavities near each edge
and do not communicate with one another. They are thus quite
independent. It is also possible, at least in the small-amplitude
regime where the waves are linear, to have multiple normal modes
co-existing at a single ring edge. The dispersion relation for density
waves implies that the width of each resonant cavity scales as
2/lm—1], where X is the background surface mass density
(Nicholson et al., 2014).

It is important to recognize the distinction between resonantly-
forced perturbations and normal modes, both of which satisfy Eq.
(1). In the former case, the m-value and pattern speed are
determined by the perturbing satellite and our equation serves
implicitly to determine the resonant radius a,es where the perturba-
tions are expected to be strongest. In the latter case, the same equa-
tion specifies the allowed angular frequencies of the normal modes
that can exist at (or near) any given radius for different values of m.
But since both forms of perturbation obey the same underlying
dynamics and thus Eq. (1), it follows that an m—lobed distortion
at a particular ring edge will have almost the same pattern speed
regardless of whether it is externally-forced or arises as a normal
mode. This can sometimes lead to ambiguities of interpretation.

Normal modes with m = 0 are a special case, inasmuch as their
radial and density perturbations are axisymmetric and their pat-
tern speed is zero. However, their temporal oscillation frequency,
w = |mp| is nonzero and is equal to n— W = K, the local
epicyclic frequency. Neither leading nor trailing, m = 0 waves can

propagate both inwards and outwards, but it can be shown that
in this case only the outer Lindblad resonance exists (Shu, 1984).
Normal modes with m = 0 are thus expected to exist only at inner
ring edges, or outer gap edges.

3. Observations

Our data set for this paper includes Cassini ring occultation
observations from the VIMS (Brown, 2004), UVIS (Colwell et al.,
2010), and RSS (Kliore, 2004) instruments obtained between May
2005 and October 2010. It is a subset of the observations used in
Paper III for our analysis of Cassini Division features and to estab-
lish the absolute radius scale for the rings in Paper IV, which papers
will contain a full description of the data analysis and circum-
stances of each occultation. For our present purposes, we refer
the reader to French et al. (2010a) and Nicholson et al. (2014) for
a summary of the key characteristics of the Cassini radio and stellar
occultation experiments, as well as a description of our techniques
for measuring the locations of individual ring features and correct-
ing for spacecraft trajectory errors in the reconstruction of the
occultation geometry.

For sharp-edged ring features, individual measurements of the
edge location have typical uncertainties of 100-200 m, and in some
of the best cases, the RMS residuals for orbit fits to nominally cir-
cular features are as low as 100 m. At present, we estimate the
accuracy of the radius scale from occultation to occultation to be
about 200 m (based on these fits and on a comparison of predicted
and observed relative phases of individual density wave crests in
the C ring by Hedman and Nicholson (2013)). The absolute accuracy
of the radius scale is estimated to be about 300 m, limited primar-
ily by current uncertainties in the direction and precession rate of
Saturn’s pole (Jacobson et al., 2011). These uncertainties are likely
to be reduced when more recent Cassini observations are incorpo-
rated into the global solution for Saturn’s ring geometry.

4. Ring orbit determination
4.1. Dynamical models

Our least-squares fitting program uses a standardized kine-
matic model for all ring edges, with a set of free parameters that
can be selectively included or excluded, as desired for specific fea-
tures. The basic model is of a precessing, inclined keplerian ellipse,
specified by the usual expression:
a(l—e?)

r(i’t):l+e cosf’

(2)
where the true anomaly f =1 — @ = 41— @, — wW(t — tp). Here, 1, A
and t are the radius, inertial longitude and time of the observation,
a and e are the ring edge’s semi-major axis and eccentricity, @ and
@ are its longitude of periapse and apsidal precession rate, and t is
the epoch of the fit. For most features, we assume that the ring edge
lies in Saturn’s mean equatorial plane, assuming a constant rate and
direction for the precession of Saturn’s pole over the course of the
Cassini observations considered here. For inclined features, we
include three additional parameters: i (inclination relative to the
mean ring plane), @y (longitude of the ascending node) and Q
(nodal regression rate), and compute the intercept point of the
ray from the spacecraft to the Earth or star with the specified
inclined ring plane. The zero-point for the inertial longitudes 7,
Wy and Q (as well as §,, and €,, below) is the ascending node of Sat-
urn’s equator on the Earth’s equator of J2000. All of our models use
a common epoch of 2008 January 1, 12:00 UTC = JD 245 4467.0, as
in Paper I. As a priori values for @ and Q we calculate the expected
precession rates @se. and Q... from the combined effects of Saturn’s
zonal gravity harmonics J,, J,, and Jg (Nicholson and Porco, 1988;
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French et al., 1982) and the secular precession induced by the pla-
net’s major satellites (Null et al., 1981):

: [GM[3, (R\® 5. 15 (R\*
Weee = ?{EJZ<E> (14 e? —2sin l)—zj4<a>

27 5 45 105 1/R\® 1<m ,.1
+{@]2—§]d4 +W.]6:| <a> t2 j 1 % b3z 3)

e B3] (- o) [

351 , 315 105 1/R\® 1<—m 5
+[H]2 +§1d4+ﬁ]6} (a) +Z : M“jbm ;4

where the summation is carried out over 7 external satellites of
mass m; and orbital radius g;, o; = a/a;, and b;/z(ocj) is a Laplace
coefficient as defined by Brouwer and Clemence (1961).> M and R
are the mass and equatorial reference radius of Saturn, respectively.

In addition to the keplerian orbit, our model for any given ring
allows for other modes of radial distortion, each of which is
specified by an equation of the form:

Ar(4,t) = —An cos(m0), (5)
where
0= —Qyt—to) — O (6)

and m is the number of radial minima and maxima in the pattern.
This expression describes free or normal modes of oscillation, as
described in Section 2, where A, and §,, are the mode’s radial
amplitude and phase,” respectively, and the pattern speed @, is its
angular rotation rate in inertial space. As discussed above, @, is
expected to be close to that of a Lindblad resonance located at the
particles’ orbit (Borderies and Longaretti, 1987; French et al,
1991), as given by Eq. (1). Thus we take as an a priori estimate

Qp = [(M = 1)n + Wgec /m, (7)

where the mean motion n and apsidal precession rate @s.. — given by
Eq. (3) - are evaluated at the semimajor axis of the edge. As noted in
Section 2, a positive value of m corresponds to an ILR-type normal
mode, while a negative value of m corresponds to an
OLR-type normal mode. We expect to find the former at the outer
edges of ringlets or the inner edges of gaps, and the latter at the inner
edges of ringlets or the outer edges of gaps. In either case, , is posi-
tive. For orbits about an oblate planet, n is given by the expression
(R.A. Jacobson, private communication, 2009), based on the epicylic
expression derived by Borderies-Rappaport and Longaretti (1994):

~ [eM 3. /R\? 5 . 2. [15 9 ,1/R\*
n= F{H—ZJZ(E) (1+4e” —16sin”i) — {EJ4+§JZ} (E)

27 45 35 71/R\® m;
+ [@E +a]2.]4 +3*216} (a) - ZM] [ocjzb;/z - chbg/z] },
j

8)

where again the external satellite terms are very small and may be
neglected for our purposes.

For each mode, the additional fit parameters are A, €, and Jp,.
We note that an m = 1 ILR-type mode is equivalent, at least to first

3 Note that in these expressions, a is the mean, or geometric, semimajor axis of the
ring feature as defined in Eq. (2), rather than the osculating semimajor axis, which
differs by an amount of O(aj, (R/a)?) or several hundred km in the outer C ring. The
external satellite contributions to the precession rates are small: of order
14 x1074°d" at the orbit of the Titan ringlet (Nicholson and Porco, 1988) and
increasing to 5x1074°d™" in the outer A ring. Solar and general-relativistic
perturbations are even smaller and may be neglected for our purposes.

4 More specifically, 6., is the longitude at epoch of one of the m radial minima.

order in e, to a precessing keplerian ellipse with A; = ae, Q, = Wsec
and §; = @y, the longitude of pericenter at t = 0.

Eq. (5) can also be used to describe radial perturbations forced
by a Lindblad resonance with an external satellite, the principal
difference being that in this case the pattern speed, m-value, and
phase are all determined by the satellite’s orbital parameters,
and Eq. (1) now serves to specify implicitly the exact resonance
location a.s. The reader is referred to Appendix A for explicit
expressions for Q, and 6,, for each of the four Lindblad resonances
suspected to be relevant for the C ring features we study here.

Our model also includes terms describing possible vertical
oscillations, using an equation of the form:

Z(2,t) = By, sin(m0), 9)
with
0=21—Qpt—to) — €m. (10)

Again, this expression can accommodate either free or resonantly-
forced modes, as appropriate. B, and €, are the mode’s vertical
amplitude and phase, respectively, and in this case the pattern
speed €, is expected to be close to that of a vertical resonance
located at the particles’ orbit. We therefore take as an a priori
estimate

Qp ~[(m = 1)n + Qe /m, (11)

where Q.. is the nodal regression rate as given by Eq. (4). In this
expression, a positive value of m corresponds to an IVR-type normal
mode, or to a forced perturbation at a satellite IVR. Note that an
m = 1 mode is equivalent, to first order in i, to an inclined keplerian
orbit with B, = a sini, Q, = Qe (the nodal regression rate) and
€1 = Qo (the longitude of the ascending node at t = 0). See Appendix
A for explicit expressions for Q, and €, for the Mimas 3:1 IVR, the
most important vertical resonance in the C ring.

Our nominal model for a given ringlet or gap edge thus has up
to 7+ 3n free parameters: 4 or 7 for the precessing keplerian
ellipse and three for each of the n additional forced and/or normal
modes.

4.2. Ring feature fits

The Cassini occultations used for this study comprise nearly 150
separate one-dimensional scans across Saturn’s rings, obtained
under a wide range of viewing geometries, ring opening angles,
and spacecraft distances from the rings. We determine the orbital
characteristics of individual ring and gap edges by first measuring
the observed times of these features in each occultation profile,
and then using a well-tested least-squares orbit-fitting code to
solve for the ring orbital elements that give the best match to
the ensemble of observations. The observed times, defined as the
equivalent half-light times at normal incidence, are determined
by least squares fits of a standard template to the shape of each
feature, as described in detail in French et al. (2010a). The ring
event times from such fits are converted into a set of two-dimen-
sional intercept points in the ring plane penetrated by the occulta-
tion, based on the assumed inclination for the ring, the orientation
of Saturn’s pole in inertial space, and the heliocentric time-depen-
dent positions of the radiation source and the observer. The
occultation geometry is computed using the heliocentric vector
algorithm described in Appendix A of French (1993), with minor
modifications as noted in French et al. (2010a). The algorithm
incorporates non-relativistic light travel time corrections (and
general relativistic bending of starlight by Saturn for Earth-based
stellar occultation observations, but not included as part of the
present study). For the Cassini stellar occultations considered here,
we use the Hipparcos catalog star positions (ESA, 1997), account-
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ing for parallax and proper motion computed instantaneously for
each individual ring measurement. We use the most recent recon-
structed Cassini spacecraft trajectory files, planetary ephemerides,
and planetary constants files and the SPICE software toolkit from
NASA’s Navigation and Ancillary Information Facility (Acton,
1996).°

A key requirement for both accurate orbit determinations and
precise identification of resonance locations is a reliable absolute
radius scale for the rings. Previous solutions for the geometry of
Saturn’s ring system made use of Voyager radio and stellar occulta-
tions (Nicholson et al., 1990), augmented by extensive Earth-based
observations of the occultation of 28 Sgr in 1989 (French, 1993)
and subsequent Hubble Space Telescope stellar occultations
(Bosh, 1994). For this work, we have derived an absolute ring
radius scale based on Cassini occultation data alone, both to take
advantage of the sheer abundance and high quality of these obser-
vations, and to reduce the systematic errors in the solution result-
ing from uncertainties in the direction of Saturn’s rotational axis
due to precession. As part of this solution, we also make first-order
corrections to the spacecraft trajectory at the time of each stellar or
radio occultation chord, since the a priori positional uncertainty in
the Cassini spacecraft location is ~1 km and (especially for grazing
viewing geometries) small errors in spacecraft position can be
amplified several-fold in the derived ring plane radius.

We proceed in an iterative fashion by identifying a set of puta-
tive circular and equatorial ring features, and then fitting simulta-
neously for their keplerian orbital elements and for an along-track
timing offset for each relevant segment of the spacecraft trajectory
as a simple, one-parameter correction for trajectory errors and/or
slight errors in the catalog positions of the occulted stars. After
each round of fits, we eliminate candidate rings that are measur-
ably non-circular or inclined or show large RMS errors (due, per-
haps, to uncertainties in measuring the edge location, or to
intrinsic unmodelled variations in the shape of the ring), and retain
only those occultation events with four or more circular features.
In the end, we identified ~60 circular features in the C and B rings,
and in the Cassini Division (each with from 83 to 142 individual
measurements, for a total of over 6000 data points) to determine
trajectory offsets and an absolute radius scale to use for the
remainder of this study. No circular features were identified in
the A ring.

RMS residuals for these circular features are in all cases less
than ¢ = 0.25 km, and in some cases below 0.10 km. These residu-
als should not be confused with the relative accuracies of the orbi-
tal radii of different circular features, or the absolute accuracy of
the radius scale itself. For a feature with N = 100 individual mea-
surements, the corresponding statistical error in the fitted semima-
jor axis is ~o/vN, or a few tens of meters, as seen below in the
tabulated fit results for individual ring features. This represents
the jitter in the fitted radial position resulting from the statistical
scatter in the residuals arising from measurement errors in the
locations of the ring edges themselves, unmodelled ring dynamical
effects, and/or residual systematic errors in the geometric solution
such as stellar position errors. A separate question altogether is the
absolute accuracy of the radius scale, which depends primarily on
uncertainties in the precession and nutation of Saturn’s rotational
pole due primarily to solar torques transmitted to the planet itself
via Titan and lapetus. The polar precession rate is of interest in its
own right because it depends strongly on the planet’s moment of
inertia, an important constraint on models of Saturn’s interior,
but an accurate determination of the pole’s precession rate from
occultations will require inclusion of results from pre-Cassini occ-
ultations, which is beyond the scope of this work. For present

5 Available online at ftp://naif.jpl.nasa.gov/pub/naif/.

purposes, we estimate the accuracy of the radius scale from occul-
tation to occultation to be about 200 m, based on comparisons of
fit results, and its absolute accuracy to be about 300 m. As a point
of comparison, our current radius scale agrees to within ~1 km
with that derived by French (1993). Additional details of this
procedure will be described in Paper IV.

Although in-plane perturbations manifest themselves directly
as radial offsets with respect to a keplerian model, out-of-plane
perturbations must be handled differently. In such cases, the
apparent radial offset of the ring depends on the vertical displace-
ment z, on the elevation of the stellar line of sight with respect to
the ring plane B,, and on the longitude of observation /i. Denoting
the inertial longitude of the line of sight to the star as 4., then some
straightforward geometry shows that the apparent radial displace-
ment of the ring segment in the occultation profile is given by
(Nicholson et al., 1990; Jerousek et al., 2011):

_ zcos¢
Ar = tanB. ’ (12)

where ¢ = /1 — /.. For vertically-perturbed rings, we add the above
term to our ring model, where z(4,t) is given by Eq. (9).

For any particular star, both B, and /. are fixed, but we see that
Ar depends on z and ¢. For occultations near the ring ansae (where
¢ ~ 90° or 270°), the radial displacement is almost zero, even if z is
substantial. But for occultation cuts near the sub-spacecraft point
or its antipode, where ¢ ~ 180° or 0°, |Ar| ~z/tanB,. In such a
favorable situation, and if B, is small, the apparent radial displace-
ment can be much greater than z. In searching for the signatures of
vertical perturbations, or in placing an upper limit on them, we
have found it useful to plot Ar vs |cos¢/tanB,| and look for a
correlation between these two quantities.

We evaluate the goodness of fit for a particular model relative
to its competitors using the reduced y? statistic, defined by

= N——Np Z [Tobs (45 £) — Tmoa (4, t)]zv (13)

where N is the number of independent data points and N' = N — N,
is the number of degrees of freedom for the particular fit. This is
expressed more intuitively in terms of the root-mean-square
residual per degree of freedom, o = /2.

Note that we do not weight the individual data points, primarily
because we suspect that the dominant errors are systematic rather
than statistical in nature. These can include errors in the geometric
reconstruction for a particular occultation, due for example to an
unmodelled spacecraft trajectory error, or to a ringlet edge being
indistinct or otherwise badly-behaved and thus difficult to
measure accurately. Since the RMS residuals of an orbit fit vary
substantially from ring to ring, we fit each ring separately and scale
the nominal errors in the fitted orbital parameters by ¢. This is an
appropriate procedure when post-fit residuals are well represented
by a gaussian distribution, which we find to be the case for all of
the fits reported here.

As in Paper I, in many cases we have found it useful to search for
possible free or forced modes, and distinguish these from apparent
perturbations with little statistical significance. This is done by first
fitting and removing a standard keplerian model, plus any already-
identified normal modes, and saving the residuals. We then
employ a spectral-scanning program which systematically scans
through a specified range of pattern speeds for a given value of
m, centered on the expected value. At each value of Q,, this
program fits a 2-parameter model specified by Eq. (5) or (9) to
the residuals. An unusually large amplitude occurring at or very
close to the expected value of €,, combined with a sharp drop in
the post-fit residuals, indicates the likely presence of a real mode.
Such mode-scanning can be done for either purely radial or vertical



P.D. Nicholson et al./Icarus 241 (2014) 373-396 379

perturbations, and can even be used to search for an ordinary incli-
nation (i.e., Eq. (9) with m = 1) when the nodal regression rate is
uncertain.

Our standard procedure is first to fit a standard precessing
keplerian ellipse to the data, remove this signature from the mea-
sured radii, and then carry out a sequential search for any non-zero
inclination and normal modes using our spectral scanning pro-
gram. If a mode with a significant amplitude is identified, its ampli-
tude, pattern speed and phase are included as additional fit
parameters and the fit is redone. Residuals from this new fit are
then scanned for additional, weaker modes. This procedure is iter-
ated until no new statistically significant modes are found in the
spectral scans. In general we search for all modes with values of
m from —15 to +15, after first checking for any predicted reso-
nantly-forced perturbations. In most cases, the agreement is excel-
lent between the pattern speeds derived by spectral scanning and
from the least-squares fits, but the amplitudes vary somewhat
when all parameters are permitted to float together. Our tabulated
parameters are always from the final least-squares fit.

5. Titan ringlet

The so-called Titan (or Colombo) ringlet is a prominent narrow
ringlet that occupies the outer third of the 170 km-wide Colombo
gap in the inner C ring, at a mean radius of ~77,880 km. It is on
average ~23 km wide and generally appears completely opaque
in occultation profiles. Both edges are invariably sharp at the
100 m level (Jerousek et al., 2011) and are readily measured. A ser-
ies of stellar occultation profiles of the gap and its ringlet are
shown in Fig. 2, arranged to illustrate its relationship with the orbi-
tal longitude of Titan. As originally discussed by Porco et al.
(1984b), the apoapse of the ringlet is roughly aligned with the
mean longitude of Titan, which is the anticipated orientation for
a set of forced ring particle orbits located exterior to the Titan apsi-
dal resonance (see Appendix A).

Keplerian model fits to both edges of the Titan ringlet are shown
in Fig. 3 and summarized in Table 1. Listed here for each edge are
the best-fitting semimajor axis a, radial amplitude ae, longitude of
pericenter @y, and the apsidal precession rate @, as well as the
number of data fitted N and post-fit RMS residual ¢. We find radial
amplitudes of 17.4 and 27.2 km for the inner and outer edges,
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Fig. 2. The region of the Colombo gap and Titan ringlet as seen in a series of 14
optical depth profiles derived from VIMS y Cru occultations with very similar
geometry. The individual profiles are offset vertically and arranged in order of
increasing longitude relative to Titan (4 — /r, as labeled in each profile) to illustrate
the relation of the m = 1 radial perturbation to the position of the satellite. The
Titan 1:0 resonance is located at a radius of 77857.4 km (see text). Note that, in
addition to the ringlet, both gap edges have visible eccentricities (see text).
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Fig. 3. Measurements of the radii of the inner and outer edges of the Titan ringlet,
as a function of true anomaly, f = 2 — @. Solid lines show the best-fitting keplerian
models derived separately for both edges. Arrows indicate the mean longitude of
Titan at the epoch of the fit, while the horizontal line shows the predicted radius of
the apsidal (or 1:0) resonance at 77857.4 km, where @s.. = n (Titan).

respectively, and apsidal precession rates and periapse longitudes
for both edges that are equal to within their uncertainties. The final
two columns, labeled Aw and Aay, in Table 1, specify the difference
between the fitted precession rate and the calculated value
(from Eq. (3)) at the fitted semimajor axis, and the corresponding
amount by which the fitted semimajor axis would have to be
shifted to match the observed value of @. The latter is given by
Aas = Aw/(dw/da).

The mean semimajor axis of the ringlet (computed as the aver-
age of the inner and outer edge values) is a = 77878.7 km, 21.3 km
outside the theoretical location of the Titan apsidal resonance
Qres = 77857.4 km, as calculated using the latest published esti-
mates for Saturn’s zonal gravity harmonics (see Appendix A). Fur-
thermore, the best-fitting apsidal rates of 22.5750 + 0.0008° d "
and 22.5756 + 0.0008° d ! for the inner and outer edges are much
closer to Titan’s mean motion of 22.5770° d ! than they are to the
local precession rates given by Eq. (3). This can be seen from the
values of Aag, in Table 1, which show that the fitted values of @ for
both edges correspond to a common radius of ~77,856 km. This is
~23 km interior to the ringlet's mean radius, but within 1 km of ays.

The close association between this ringlet and the Titan 1:0 res-
onance is further strengthened by the observation that the pericen-
ter longitudes of both edges differ from the mean longitude of
Titan at epoch by 176°, very close to the expected value of 180°
for orbits exterior to a.s. Further discussion is deferred to Sec-
tion 12.1 where we also examine other nearby resonantly-forced
features in the C ring.

While the keplerian fits to both edges of the Titan ringlet are
quite good, their residual scatter is significant, as is evident from
Fig. 3. The RMS residuals for pure keplerian fits are 3.0 km and
2.1 km for the inner and outer edges, respectively. These are con-
siderably larger than the measurement errors for such well-
defined edges and strongly suggest the presence of additional per-
turbations. Scans for normal modes reveal the presence of a strong
m = 0 mode on the inner edge, with an amplitude of 3.7 km, as
illustrated in Fig. 4. In addition, we find evidence for weaker
OLR-type modes on this edge with m = —2 and -5 and amplitudes
of 0.8 and 0.5 km. Similar scans of the outer edge reveal three
potential ILR-type modes with m = 2, 3 and 4 and amplitudes that
vary from 0.9 to 1.6 km.

Our full suite of normal modes for both edges is documented in
Table 1, where we list for each mode the m-value, the best-fitting
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Table 1
Titan ringlet and Colombo gap orbital elements.
ID Feature a (km) m ae (km) @o(°)? @(°/d) Aw(°/d) Aag (km)
N rms (km) asini (km) Q(%) QC/d) AQ(°/d) Aay, (km)
Ap (km) om(°) Qp(°/d) AQp(°/d) Aap (km)
487 Colombo gap IEG 77747.89 + 0.04 1 3.11+0.06 96.90 + 0.88 22.57346 +0.00170 -0.12127 11236 +1.57
45 0.23 [0.00]"
63 Titan ringlet IER 77867.13 +0.09 1 17.39+0.12 270.54 +£0.34 22.57503 + 0.00082 0.01192 -11.13+0.77
86 0.62 [0.00]"
0 3.84+0.10 4093 +1.79 1391.16334 + 0.00400 -0.14413 5.45+0.15
-5 0.45+0.11 60.87 +2.81 1692.06574 + 0.00714 -0.06973 2.13+0.22
-2 0.77 +0.11 30.21+4.10 2109.40889 + 0.01063 -0.11882 292 +0.26
62 Titan ringlet OER 77890.21 +0.14 1 27.20+0.18 270.70 £ 0.32 22.57562 +0.00077 0.03719 —34.78 +0.72
89 0.94 [0.00]"
2 1.55+0.17 172.61 +3.05 717.94917 4+ 0.00717 0.05868 —4.11+0.50
3 1.54+0.17 110.60 +2.15 949.74161 + 0.00517 0.06822 —-3.65+0.28
4 090+0.18 80.30 +2.51 1065.62338 + 0.00602 0.05854 —-2.80+0.29
43 Colombo gap OEG 77926.01 + 0.04 1 4.89 +0.05 280.02 +0.51 22.57696 +0.00118 0.07343 —-68.79 +1.11
75 0.27 [0.00]"

¢ The epoch is UTC 2008 January 1, 12:00:00.
b Quantities in square brackets were held fixed during orbit determination.

radial amplitude A, phase d,,, and pattern speed Q,. Also listed are
the difference between the fitted value of Q, and that predicted by
Eq. (1), denoted by AQ,, and the corresponding radial offset. The
latter is given by Aa, = AQ,/(dQ,/da). (Note that the results given
in the tables represent the final least-squares fit values, and differ
slightly from those produced by the less-accurate spectral scan-
ning program.)

The RMS residuals for the final fits, including the three normal
modes on each edge, are 0.62 km for the inner edge and 0.94 km
for the outer edge. Neither edge appears to show a significant incli-
nation, and we have set i = 0 for the final fits.

Because of the significant difference in eccentricity between its
inner and outer edges, the Titan ringlet exhibits a distinct width-
radius relation, as shown in Fig. 5. In the upper panel we plot the
individual radii for both edges, Ar =r; —a and r, — a, as functions
of cosf, while in the lower panel we plot the actual measured
widths as a function of the local mean radius, AF = (r; +1,)/2 — a.
(We use a to denote the mean semimajor axis of the inner and
outer edges, and an upper-case A to denote departures from our
best-fitting model or from a predicted value, as in AQ, above.)
For a narrow ringlet with edges given by keplerian ellipses whose
elements differ by éa and Je, and assuming that the pericenters are
aligned (i.e., w = 0), the local radial width is given by

W(f) = éa — (ade + eda) cosf = da(1 — qcosf), (14)

where q = ade/da + e, so that, if e < 1 we have the linear relation

W(AT) ~ 5a+%eAf. (15)
In both panels, the red lines indicate the radii and widths calculated
from the best-fitting keplerian models for the two edges, while the
green lines indicate the envelope of the radial variations associated
with the normal modes we have identified. Note that the presence
of the normal modes results in quite a large scatter in the width at
any given value of the true anomaly or mean radius. From the fitted
keplerian models, we calculate values for the mean width
sa = 23.1 km, mean eccentricity e = 2.88 x 10~ and eccentricity
gradient g = 0.433 that are used in Section 10 to update previous
estimates of mass and surface density for this ringlet (Porco et al.,
1984b).

In addition to the radial variations in the ringlet, Fig. 2 shows
that both the inner and outer edges of the Colombo gap are also
noticeably perturbed, with the distortions on the inner edge being
opposite in phase from those of the ringlet and the outer edge. This

is to be expected for resonantly-forced perturbations, since the res-
onant radius as falls within the gap but interior to the ringlet’s
centerline. In this situation, the periapse of the gap’s inner edge is
expected to be aligned with Titan, while the apoapses of the ringlet
and outer gap edge are expected to track the satellite. Fits to both
edges, also documented in Table 1, show that the forced eccentric-
ity A; ~ 3.1 km on the inner edge and 4.9 km on the outer edge,
with pericenters that differ by 183° and pattern speeds consistent
with Titan’s mean motion of 22.5770° d .

6. Maxwell ringlet

Inhabiting the widest (~260 km) gap in the C ring at a mean
radius of ~87,510 km, the Maxwell ringlet has long been consid-
ered to embody almost perfectly the paradigm of a freely-precess-
ing eccentric ringlet (Esposito, 1983; Porco et al., 1984b). It also has
the largest mean eccentricity of any Saturnian ringlet, with the
exception of the F ring (Bosh et al., 2002), as well as a substantial
eccentricity gradient q.

In Fig. 6 we plot the radii of both edges of the Maxwell ringlet vs
their true anomalies, together with the keplerian fits listed in
Table 2. The radial amplitude ae = 18.9 km on the inner edge and
58.0 km on the outer edge. The RMS residuals for both edges are
remarkably small - 0.5 and 0.7 km, respectively — with almost all
individual data points falling on the model curves at the scale of
the figure. However, unlike the situation with the Titan ringlet,
the best-fitting precession rates of the inner and outer edges of
14.69572 +0.00022° d™' and 14.69314 4+ 0.00005° d™" differ by
over 10 times the estimated uncertainty in the rate of the inner
edge. If this difference had persisted for the past 30 years (the
interval between the Voyager flybys and the latest Cassini data),
then the pericenters of the inner and outer edges would now differ
by almost 30°, which is at odds with the small but statistically-sig-
nificant difference we find of 1.6 + 0.1°. The implication, therefore,
is that the apsidal precession rates of the two edges may vary
slightly relative to their long-term mean values. We will return to
this possibility in Section 10. Further evidence for such variations
comes from what appears to be a second m = 1 mode on the ring-
let’s inner edge with an amplitude ae ~ 0.6 km and a slightly faster
pattern speed. The beat period of the two m = 1 modes is ~11 year.

As in the case of the Titan ringlet, the deviations in the fitted
precession rates from the local secular rates Aw are best visualized
in terms of the equivalent radial offsets, Aas. For the inner edge,
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Fig. 4. A plot illustrating the discovery of an m = 0 normal mode on the inner edge
of the Titan ringlet. The upper panel shows the RMS residual for the fits as the
assumed pattern speed Q, is scanned across the predicted value for this feature,
while the lower panel shows the corresponding radial amplitude Ao. The solid
vertical line indicates the expected value of Q, =i = 1391.361°d™", while the
dashed vertical line shows the rate that yields the best fit to the data:
1391.163° d"'. Horizontal dashed lines show the minimum residual of 1.13 km
for N = 89 data points and the corresponding maximum amplitude of Ay = 3.74 km.

Aag = +30.5 km, whereas for the outer edge it is —24.3 km. In
other words, the inner edge precesses at a rate appropriate to a
semi-major axis of a; + Aa; = 87510.8 km, while the outer edge
precesses at a rate appropriate to a very similar semi-major axis
of a, + Aag; = 87515.0 km. These are quite close to the ringlet’s
geometric mean radius of a = 87509.8 km. In Section 13 we dis-
cuss the constraint this result puts on the planet’s zonal gravity
harmonics.

Scanning for additional normal modes turns up nothing of sig-
nificance on the inner edge, and only marginally-significant modes
with m =2 and m = 4 on the outer edge, with amplitudes of 0.2
and 0.3 km. Our overall post-fit RMS residuals for the inner and
outer edges are 0.23 km and 0.16 km, respectively, which are
among the lowest recorded for any noncircular feature we have
studied and comparable to the best (circular) fiducial features.

Again, neither edge appears to show a significant inclination,
and we have set i = 0 for the final fits.

As might be expected, given the very small normal mode ampli-
tudes, the Maxwell ringlet exhibits an extremely clean width-
radius relation, as shown in Fig. 7. Its mean width and eccentricity
are 5a = 59.1 km and e = 4.40 x 10~%, and the average eccentricity
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Fig. 5. The width-radius relation for the Titan ringlet. The upper panel shows the
measured radii of both edges, relative to the mean semi-major axis of the inner and
outer edges, a, with red lines indicating the best-fitting keplerian ellipses. Green
lines show the envelope of maximum variation for the normal modes on each edge.
The lower panel shows the radial width of the ringlet, as a function of the local
radius of its centerline 7(4, t) — a. Here the red line shows the mean width calculated
from the keplerian fits to both edges, while the green lines again show the envelope
of maximum variation due to the normal modes. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

gradient g = 0.662. There is almost no discernible deviation from
the linear relation of Eq. (15). The minimum and maximum model
widths are 19.98 and 98.16 km.

Although there is no strong satellite resonance within the Max-
well gap,° the outer edge of this gap is noticeably eccentric, like that
of the Colombo gap. A keplerian fit to this edge, also presented in
Table 2, reveals an amplitude ae = 1.1 km and a precession rate very
similar to that of the nearby Maxwell ringlet but 0.056° d' faster
than the predicted local value of @s. The pericenter longitude dif-
fers by 171 + 3° from that of the Maxwell ringlet. It thus seems very
likely that the gap edge’s eccentricity is in fact forced by that of the
nearby ringlet, in a manner similar to that described by Borderies
and Goldreich (1983) for a nearby satellite. A phase difference of
~180° between the pericenters of the two edges is quite consistent
with this picture, inasmuch as the natural precession rate of the
outer gap edge is slower than that of the ringlet, and the response
of a simple harmonic oscillator to forcing at a frequency greater than
its natural frequency is normally 180° out of phase with the forcing
term. The inner edge of the Maxwell gap is less distinct than the

5 The relatively-weak Atlas 2:1 ILR falls just exterior to the gap at 87646.9 km,
where it drives a low-amplitude density wave (Baillié et al., 2011).
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Fig. 6. Measured radii of the inner and outer edges of the Maxwell ringlet as
functions of true anomaly. Solid lines show the best-fitting keplerian models
derived separately for both edges.

outer edge, and our measurements show no detectable eccentricity
above the RMS noise level of 0.4 km.

The Maxwell ringlet is not, however, without some surprises. In
Fig. 8 we illustrate its internal structure, again using a series of
optical depth profiles from VIMS occultations of the bright star y
Crucis. With an elevation angle of B, = 62.3°, these are amongst
the highest-SNR profiles available, and they show a puzzling wave-
like pattern of peaks and troughs extending across much of the
ringlet’s width. The character of these oscillations seems to change
systematically with true anomaly. Similar wavelike structure is
seen in some, but not all, UVIS and RSS profiles, and in the high-
est-resolution ISS images (see Fig. 4a in Porco (2005)). This wave
is currently the subject of investigation and will be the subject of
a future paper.

7. Bond ringlet

In addition to the broad Maxwell gap, the outer C ring is home
to two much narrower gaps, each of which is associated with a sec-
ond-order resonance with Mimas. The first of these, 37 km wide
and originally labeled by its approximate Saturnicentric distance
of 1.47 R, is now known as the Bond gap. It is occupied by a nar-
row, sharp-edged ringlet with a mean radius of ~88,710 km and a
width of ~17 km, whose optical depth is substantially higher than
that of the surrounding material. The inner edge of this ringlet very
nearly coincides with the Mimas 3:1 IVR at 88702.2 km, which
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Fig. 7. The width-radius relation for the Maxwell ringlet. The upper panel shows
the measured radii of both edges, relative to the mean semi-major axis of the inner
and outer edges, a, with red lines indicating the best-fitting keplerian ellipses. The
lower panel shows the radial width of the ringlet, as a function of the local radius of
its centerline 7(4, t) — a. Here the red line shows the mean width calculated from the
keplerian fits to both edges. The green lines show the envelope of maximum
variation due to the normal modes. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

might be expected to produce detectable vertical distortions, while
the Prometheus 2:1 ILR at 88713.1 km falls near its centerline (see
Fig. 11 in Nicholson et al. (1990)). A previous investigation by
Porco and Nicholson (1987) produced evidence for radial
variations in the ringlet edges of a few km, but no clear signature
of resonant perturbations or a free eccentricity.

Table 2
Maxwell ringlet and gap orbital elements.
ID Feature a (km) m ae (km) w@o(°)* w(°/d) Aw(°/d) Adg (km)
N rms (km) asini (km) Q0(°) Q(°/d) AQ(/d) Aag, (km)
Am (km) Sm(°) Qp(°/d) AQp(°/d) Aay (km)
163 Maxwell gap IEG 87342.77 £ 0.05 1 [0.00]°
102 0.43 [0.00]°
61 Maxwell ringlet [ER 87480.29 +0.02 1 18.93 +£0.03 55.60+0.10 14.69572 + 0.00022 -0.01875 30.53+0.36
105 0.23 [0.00]°
60 Maxwell ringlet OER 87539.36 + 0.02 1 58.02 +0.02 57.20+0.02 14.69314 + 0.00005 0.01488 —24.32+0.09
105 0.16 [0.00]°
2 0.19 +£0.03 73.26 +3.63 599.52336 + 0.00823 0.08375 —-7.95+0.78
4 0.29 +£0.02 16.55+1.22 891.94002 + 0.00289 0.12007 —-7.75+0.19
164 Maxwell gap OEG 87610.12 £ 0.05 1.11 £ 0.06 22854 +3.12 14.69150 + 0.00716 0.05649 -92.63+11.75
102 0.41 [0.00]"

2 The epoch is UTC 2008 January 1, 12:00:00.
b Quantities in square brackets were held fixed during orbit determination.
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Scans arranged assumingm = 1, Q_ = 14.694°/day
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Fig. 8. A sequence of optical depth profiles of the Maxwell ringlet derived from
eleven VIMS y Cru occultations. The individual profiles are offset vertically and
arranged in order of increasing true anomaly. At this scale both gap edges appear
circular, but measurements of the outer edge, at 87,610 km, show that it has a small
eccentricity that is out of phase with that of the ringlet (see text). Note the wavelike
internal structure in the inner two-thirds of the ringlet.

Surprisingly, our 109 measurements of the inner edge show no
obvious radial variations, and a simple keplerian fit yields very
small radial and vertical amplitudes of ae=0.1km and
asini = 0.2 km, with RMS residuals of only 0.28 km. Given the
presence of the Mimas IVR, we also carried out spectral scans to
search for forced vertical distortions with m = 2. However, we find
no evidence for the anticipated signature at pattern speeds near
the predicted rate of 573.4750° d™! (see Table 10 in Appendix A);
our fits set an upper limit on the vertical amplitude of ~0.13 km,
within a range of 10° d™' centered on this value. For further discus-
sion see Section 11.2 below.

In contrast to the inner edge, a remarkably rich set of modes is
found on the outer edge of this ringlet, withm = 2, 3,4, 5, 6 and 7.
Strongest of these signatures is an m = 2 mode with an amplitude
of ~1.1 km, as shown in Fig. 9. The indicated pattern speed is
587.289° d !, very close to that of the Prometheus 2:1 resonance,
which is equal to the satellite’s mean motion of 587.2852°d "
(see Table 10). The predicted rate for an m = 2 normal mode at this
radius is a slightly slower 587.224° d™'. (Recall that resonantly-
forced and normal mode distortions of an edge with the same
value of m have almost the same pattern speeds.) Fig. 10 shows
the Bond ringlet’s outer edge as a function of m = 2 phase, after
subtracting the higher-m modes discussed below; the resonant sig-
nature is seen here quite clearly, despite its amplitude of only
~1.1 km.

The mean radius of the Bond ringlet’s outer edge is 88719.2 km,
or 6.1 km exterior to the Prometheus 2:1 ILR. Despite this rela-
tively-large separation, a check of the orientation of the m =2
mode supports the hypothesis that this distortion is in fact forced
by the Prometheus resonance: the longitude of minimum radius,

d, = 105.1 4 1.5° matches quite well the value of 112.9° predicted
for orbits exterior to this resonance (see Appendix A). Geometri-
cally, our fit implies that one of the apoapses of the m = 2 pattern
lags ~8° behind the satellite.

RMS residuals from the m = 2 model of the Bond ringlet’s outer
edge remain substantial at ~0.7 km, which led us to carry out a
search for additional normal modes. We find statistically-signifi-
cant signatures for m=3, 4, 5, 6 and 7, with amplitudes of
0.3-0.5 km. Our best overall fit for the outer edge is summarized
in Table 3; the post-fit residual of 0.32 km is comparable to that
of the inner edge, with mode amplitudes ranging from 0.30 km
for m=5 and 6 to 0.55 km for m = 3. We also find evidence for
two very weak normal modes on the inner edge, with amplitudes
of less than 0.2 km.

Note that, unlike the Titan and Maxwell ringlets, neither edge of
the Bond ringlet shows a significant m = 1 perturbation, corre-
sponding to a precessing keplerian ellipse. Nor do we find any evi-
dence for a measurable inclination, with an upper limit on asini of
~0.3 km. A sequence of profiles derived from the VIMS ) Crucis
occultations is shown in Fig. 11, arranged to illustrate the domi-
nant m = 2 mode associated with the Prometheus 2:1 ILR.

Fits to both edges of the Bond gap show them to be circular,
with RMS residuals of 0.76 km for the inner edge, which is rather
indistinct and difficult to measure accurately, and 0.30 km for the
outer edge.

With no appreciable eccentricity on either edge, the Bond
ringlet does not have a conventional width-radius relation. As
shown in the lower panel of Fig. 12, the small width variations that
do exist are positively correlated with the mean radius, simply
because both are controlled largely by the m = 2 perturbation on
the outer edge.

8. Dawes gap and embedded ringlet

The outermost and narrowest of the three gaps in the outer C
ring is located at ~90,210 km. Originally labeled by its approxi-
mate Saturnicentric distance of 1.495 Rs, it is now known as the
Dawes gap. The gap itself is only ~20 km wide, but it is bordered
on its inner edge by an unusually-opaque plateau-like feature,
62 km wide. This feature has previously been referred to as the
1.495 Rs ringlet, but it is not detached from the rest of the C ring
and thus does not properly merit the term “ringlet.” Colwell
et al. (2009) refer to it as an embedded ringlet, and designate it
as ER16. The inner edge of the Dawes gap (or the outer edge of
the embedded ringlet) is quite sharp and nearly coincides with
the Mimas 3:1 ILR at 90198.3 km. This is the second-strongest
Lindblad resonance in the C ring’ and is expected to produce detect-
able radial distortions. The much weaker Pandora 2:1 ILR falls at
90167.8 km, near the centerline of the embedded ringlet and
~30 km interior to the gap edge (see Fig. 11 in Nicholson et al.
(1990)). A previous investigation of the ringlet by Porco and
Nicholson (1987) produced strong evidence for radial variations on
its outer edge (equivalent to the inner gap edge) of at least 10 km,
but was unable to establish a convincing pattern consistent with
either a free eccentricity or a forced perturbation due to the Mimas
or Pandora ILR.

Our new measurements confirm the highly-variable nature of
the inner gap edge. A simple keplerian least-squares fit yields a
substantial eccentricity with an amplitude ae = 5.4 km, although
we note that the best-fitting apsidal precession rate is 0.020° d'
faster than predicted, corresponding to a radial offset of
Ad, = —37.9 km, or about one-half the width of the ringlet. But
this fit leaves unacceptably-large RMS residuals of ~4 km.

7 The strongest is the Titan 1:0 apsidal resonance.
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Fig. 9. A plot illustrating the m = 2 radial perturbation on the outer edge of the
Bond ringlet. The upper panel shows the RMS residual for the fits as the assumed
pattern speed @, is scanned across the predicted value for this feature, while the
lower panel shows the corresponding radial amplitude A,. The solid vertical line
indicates the expected normal mode value of Q, = 587.224° d ', while the dashed
vertical line shows the rate which yields the best fit to the data: 587.289° d . This
perturbation is almost certainly due to the Prometheus 2:1 ILR, whose predicted
pattern speed of 587.2852°d ' is denoted by a large X. Horizontal dashed lines
show the minimum residual of 0.73km for N=110 data points, and the
corresponding maximum amplitude of A, = 1.06 km.

Scanning reveals an m = 2 pattern with Q, = 572.500° d™! and an
amplitude of ~5.2 km (see Fig. 13). The rate expected for a normal
mode at this radius is 572.463°d" and the calculated pattern
speed for the Mimas 3:1 ILR is 572.4749° d "' (see Appendix A).
So in this case, the observed pattern speed is significantly faster
than either the free or forced frequency. (Note that secular pertur-
bations from the relatively dense 1.495 Rs ringlet, or from the B ring,
might modify the local apse rate, but these will not affect the Mimas
pattern speed.) This unexpectedly rapid rate is confirmed by a least-
squares fit, which yields Q, = 572.5054 + 0.0015° d'; fixing the pat-
tern speed at the resonant value leads to significantly larger residuals.

Despite these minor but puzzling discrepancies in the fitted
pattern speeds, we find that the mean radius of the inner gap edge
of 90200.4 km is within ~2 km of the resonant radius for the
Mimas 3:1 ILR and that the m = 2 phase of §, = 62.9 4- 0.7° closely
matches the predicted value of 65.4° for orbits interior to this
resonance.® On balance, therefore, we conclude that the m =2

8 It might be asked if this perturbation could instead be due to the weaker and
more distant Pandora 2:1 ILR, but in this case the predicted pattern speed is much
faster at 572.7886° d ™' and the expected m = 2 phase is 115.8°, both of which are far
from the best-fitting values.
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Fig. 10. Radial variations on the outer edge of the Bond ringlet, plotted vs m = 2
phase, mf = 2[4 — Q,(t — to) — &,], after removal of the smaller normal modes listed
in Table 3. Note that the apocenter is approximately aligned with Prometheus, as
expected for orbits exterior to the 2:1 ILR, but lags by ~8°, as indicated by the
arrow. In this figure, as well as in similar figures below, red crosses denote data
from RSS occultations while blue asterisks indicate data from UVIS and VIMS stellar
occultations. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

perturbation on the inner edge of the Dawes gap is indeed forced
by the Mimas 3:1 ILR, but that this picture is likely to be incomplete.
It is possible, for example, that the m = 2 pattern is librating about
the equilibrium configuration with a period of several decades, as
discussed in Section 12.3.

When both m =1 and m =2 modes are included, the RMS
residuals for the inner edge of the Dawes gap are greatly reduced,
but only to 1.6 km, suggesting that additional perturbations may
be present. Indeed, further scans reveal evidence for two additional
ILR-type normal modes on this edge, with m = 3 and 5 and ampli-
tudes of 1.5 and 0.9 km, respectively. With all four components fit-
ted, the RMS residuals are reduced to 0.75 km, as summarized in
Table 4. The upper panel of Fig. 14 shows the radial residuals vs
true anomaly, after removal of the m =2, 3 and 5 perturbations,
while the lower panel shows the residuals vs m = 2 phase, after
removal of the m = 1, 3 and 5 perturbations.

A sequence of profiles derived from the VIMS y Crucis occulta-
tions is shown in Fig. 15, arranged to illustrate the m = 2 mode
associated with the Mimas 3:1 ILR. The seemingly-erratic varia-
tions that remain here are due to the large m =1 (i.e., keplerian)
perturbations on this edge.

Asin the case of the Maxwell gap, the outer edge of the Dawes gap
also shows evidence of an eccentricity that may be sympathetically
forced. Aleast-squares fit, reported in Table 4, yields an amplitude of
ae = 2.3 £ 0.1 km and a precession rate of 13.171° d " that is fairly
close to that of the inner gap edge but much faster than the local
apsidal rate at this radius (note that Aw =+0.022°d™', or
Aag = —40.7 km). The difference of 172 + 3° between the pericen-
ters of the two edges is also consistent with this suggestion, since
the natural precession rate of the outer edge is less than the fre-
quency at which it is being forced by the relatively massive ringlet
at the inner edge.

Finally, we offer a few comments on the inner edge of the
embedded ringlet at 1.495 Rs. A glance at Fig. 15 shows that this
edge is much less sharp than the outer edge, with the optical depth
decreasing gradually over ~10 km until it blends in with the back-
ground C ring. In this respect, the ringlet is more like a typical C
ring plateau feature. Nevertheless, we have measured the half-light
radius of this edge and carried out a standard keplerian fit. The
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Table 3
Bond ringlet and gap orbital elements.
ID Feature a (km) m ae (km) @o(°)* @(°/d) Aw(°/d) Aag (km)
N rms (km) asini (km) Q(°) QC/d) AQ(°/d) Aag, (km)
Ap (km) om (%) @p(°/d) AQy(°/d) Aap (km)
111 Bond gap IEG 88686.01 +0.14 1 [0.00]"
55 0.76 [0.00]"
59 Bond ringlet IER 88701.89 +0.03 1 [0.00]"
109 0.28 [0.00]"
0 0.17 £0.04 79.75 +13.61 1146.43579 +£0.03378 —0.38569 20.08 +1.76
3 0.16 £ 0.04 88.49 +4.60 778.35308 + 0.01085 —0.18359 13.72 £0.81
58 Bond ringlet OER 88719.24 +0.04 1 [0.00]°
106 0.32 [0.00]"
2 1.08 £0.05 105.07 +1.48 587.29003 + 0.00333 0.06685 —6.57+0.33
3 0.55 +0.06 107.67 +1.85 778.34105 + 0.00450 0.03649 —-2.73+034
4 0.47 +£0.05 40.22 +1.75 873.86707 +0.00421 0.02182 —-1.46 £0.28
5 0.30+0.06 52.06 +1.91 931.20532 + 0.00440 0.03566 —2.24+0.28
6 0.30 +0.06 30.39+1.73 969.40781 + 0.00413 0.02187 -132+0.25
7 0.41 +£0.05 14.05+1.16 996.70499 + 0.00277 0.02171 -1.27 £0.16
110 Bond gap OEG 88723.04 + 0.04 1 [0.00]°
96 0.30 [0.00]"
2 The epoch is UTC 2008 January 1, 12:00:00.
b Quantities in square brackets were held fixed during orbit determination.
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edge of the ringlet appears to be circular, but measurements of the outer edge in
Fig. 10 show that it has a radial amplitude of 1.08 & 0.05 km, along with several
additional normal modes. The outer gap edge at 88,723 km is circular, but quite
hard to see at this scale.

results, also listed in Table 4, indicate a possible small eccentricity
ae = 1.4+ 0.1 km. However, the precession rate of 13.229°d " is
significantly faster than is expected at this radius.

We conclude by noting the small but consistent discrepancy
between the fitted apsidal precession rates on all three edges mea-
sured in and near the Dawes gap and the rates predicted from Eq.

<Ar> (km)

Fig. 12. A two-panel plot of Bond ringlet’s width-radius relation, in the same
format as Figs. 5 and 7. The weak correlation of width and mean radius results
largely from their mutual dependence on the m = 2 perturbation acting on the
outer edge of the ringlet.

(3) and Saturn’s zonal gravity harmonics. Expressed in terms of the
equivalent radial offsets Aag, these are —67 km at the inner edge of
the embedded ringlet, —38 km at the inner edge of the gap, and
—41 km at the outer edge of the gap. We can offer no good
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Fig. 13. A periodogram of the inner edge of the Dawes gap for m = 2, after removal
of the m = 1 perturbation. The format is the same as that of Fig. 9. A strong peak
with an amplitude of over 5 km is seen at a pattern speed of 572.500° d~', similar to
but significantly faster than that of both the Mimas 3:1 ILR at 572.4749°d™" -
denoted by the large X - or that of an m =2 normal mode at this radius
(572.463°d7").

explanation for this, as the additional apsidal precession seems to
be too large to attribute to secular perturbations from the B ring,
even for a surface mass density above 100 g cm 2 (Nicholson and
Porco, 1988; French et al., 2014a).

9. Other features

In addition to the four known gaps with narrow, embedded
ringlets discussed above, we searched diligently for other
noncircular features in the C ring that might have eluded previous
studies. We identified and fitted nearly 80 additional features,
including nearly 40 embedded ringlets, 22 plateau edges, and nine
unnamed gap edges in the inner C ring. With the exception of ~25
features in the inner C ring that are detectably perturbed by the
Titan 1:0 resonance (see Section 12.1 and Fig. 19 below), no addi-
tional noncircular features were found with radial amplitudes
greater than ~0.5 km. Most of the newly-measured features have
excellent orbit fits, with RMS residuals as low as 0.14 km. Three
of the nine gap edges have RMS residuals below 0.20 km, and will
serve as excellent benchmarks to establish the absolute radius
scale of the inner C ring.

There are four very narrow gaps in the innermost C ring,
between 74,535 km and 74,632 km, which we refer to informally

as gaps A-D (visible but unlabeled in Fig. 1). In general, the interior
edges of these gaps are quite sharp, with RMS residuals of
~0.15 km. However, the inner edge of gap B, at 74,588 km, is mea-
surably inclined, with asini = 0.5 km.

An exception to this pattern of sharp inner edges is provided by
the heretofore unstudied gap at a radius of 75,728-75,807 km,
labeled G1 by Colwell et al. (2009), which has a gradual and indis-
tinct inner edge and a sharp outer edge (RMS residuals of 0.26 km
and 0.17 km, respectively). The latter shows only a forced m =1
perturbation due to the Titan 1:0 resonance with an amplitude of
0.18 km.

Among the most distinctive and prominent features in the C
ring are the 11 plateau regions, designated P1 to P11 by Colwell
et al. (2009) (see Fig. 1). The majority of these were listed as circu-
lar features by French (1993), and indeed we find that nearly all of
the 22 plateau edges are highly circular, with typical RMS residuals
below 0.20 km.

The C ring is also punctuated by a host of embedded ringlets. In
addition to those previously enumerated by Colwell et al. (2009),
we have identified and fitted nearly 20 others. Nearly all of these
are also circular and equatorial, with RMS residuals ranging from
0.17 km to 0.7 km. An interesting exception is the ERS8 ringlet at
77,650 km, just inside the Colombo gap. Appearing in our data
set as two peaks separated by ~6 km, the inner and outer compo-
nents show rather large forced m =1 Titan perturbations with
amplitudes of 1.75 km and 1.81 km, plus additional free m =1
modes of 0.45 km and 0.23 km and inclinations (asini) of 0.36
and 0.30 km, respectively. The RMS residuals of the orbit fits are
0.21 km for the inner feature and 0.13 km for the outer feature.

10. Ringlet masses

Using the updated width-radius relations for the Titan and
Maxwell ringlets shown in Figs. 5 and 7, we can revise the esti-
mates for ringlet mass and mean surface density based on Voyager
observations (Esposito, 1983; Porco et al., 1984b). The underlying
model is that of Goldreich and Tremaine (1979), who postulated
that the tendency of individual ring particle orbits in an eccentric
ringlet to differentially precess under the influence of an oblate
planet’s gravity field is counteracted by gravitational interactions
within the ringlet. This model requires that the outer edge of the
ringlet be more eccentric than the inner edge, and the required
mass is proportional to the planet’s gravitational quadrupole
moment J, and inversely proportional to the average eccentricity
gradient q ~ ade/da. Mass estimates based on this model have also
been published for the Uranian «, B, ¢ and € rings (Nicholson and
Matthews, 1983; French et al., 1986, 1988b).

For simplicity, and following previous work, we use the analytic
expression for the ringlet mass derived by Borderies et al. (1983),
who divided the ringlet into two interacting streamlines. In units
of the planet’s mass M, the total ring mass is given by

=2 () () o

where the dimensionless factor H is given by

H(q) = 177 v1-¢ (17)
PV1-@

Although more complex models have been developed, in which the
ring is divided into as many as 80 separate streamlines (Goldreich
and Tremaine, 1979; Marouf et al., 1987), the resulting mass esti-
mates differ by less than 50% from that given by Eq. (16).

Our results are given in Table 5, using the model parameters
from Tables 1 and 2. In addition to the ringlet masses, we list the
mean surface mass densities, ¥ = M,/(2mada). For comparison,
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Table 4
Dawes ringlet and gap orbital elements.
ID Feature a (km) m ae (km) @o(°)? @ (°/d) Aw(°/d) Aag (km)
N rms (km) asini (km) Q0(°) Q(O/d) AQ(O/d) Aay, (km)
An (km) om(°) Qp(°/d) AQ,(°/d)  Aay (km)
57 Dawes ringlet IER 90137.87 +£0.06 1 1.35+0.08 88.38 +2.80 13.22898 + 0.00630 0.03560 —66.79 +11.81
109 0.50 [0.00]°
56 Dawes gap IEG 90200.38 +£0.10 1 6.10+0.12 69.24 +1.05 13.18027 + 0.00239 0.02014 —37.92 +4.50
112 0.75 [0.00]°
2 5.27+0.11 62.92 + 0.67 572.50536 + 0.00150 0.03448 —-3.54+0.15
3 1.46+0.11 41.67 £1.57 758.94278 + 0.00342 0.03512 —-2.74+0.27
5 0.89 +0.11 71.02 +1.47 908.10954 + 0.00342 0.05245 —-3.43+0.22
112 Dawes gap OEG 90220.77 +£0.07 1 2.29+0.07 24179+ 1.63 13.17088 + 0.00328 0.02158 —40.67 +6.18
61 0.32 [0.00]"
2 0.43 +0.06 157.21 £4.55 572.48458 + 0.00853 0.21244 —21.80+0.88

2 The epoch is UTC 2008 January 1, 12:00:00.
b Quantities in square brackets were held fixed during orbit determination.
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Fig. 14. Radial displacement of the inner edge of the Dawes gap vs true anomaly
/4 — @ (top) and m = 2 phase m0 = 2[4 — Q,(t — to) — ;] (bottom), after subtracting
the perturbations from two smaller modes listed in Table 4. Note the similar
amplitudes of the two dominant perturbations, the second of which is attributed to
the Mimas 3:1 ILR (see text). The maximum of the m = 2 pattern lags the predicted
longitude by ~2.5°.

we list the corresponding values for the Huygens ringlet and for
the Uranian € ring, using updated parameters from Paper III and
French et al. (1991). All four rings yield surprisingly similar masses
and very similar surface densities. The latter suggest average mass-
weighted particle radii of 3X/4pt ~ 20 cm, assuming an internal
density p = 0.5 gcm3, appropriate to porous water ice, and an

Scans arranged assuming m = 2, £2p=572.505°/day
20T{TTT{TTT{TTT{TYT{TTT{TTT{T

Normal Optical Depth

0 il IR B BN | S —
90.12 90.14 90.16 90.18 90.20 90.22  90.24

Radius (1000 km)

Fig. 15. A sequence of optical depth profiles of the Dawes gap and its associated
embedded ringlet derived from eleven VIMS y Cru occultations. The individual
profiles are offset vertically and arranged in order of increasing m = 2 phase, using
the best-fitting pattern speed. This highlights the forced perturbation of the inner
gap edge due to the Mimas 3:1 ILR, shown in Fig. 14. Note that the outer edge of the
gap at 90,221 km is also noticeably non-circular; our fits show a dominant m =1
signature with a radial amplitude of 2.3 £ 0.1 km (see text).

average optical depth 7t =2. The ringlet masses estimated in
Table 5 are equivalent to spheres of such porous ice 18-26 km in
diameter.

The derived surface densities of 20.3 and 22.2 g cm 2 for the
Titan and Maxwell ringlets are consistent with previous estimates
of 17 +5 gcm 2 (Porco et al.,, 1984b), and are roughly 4-10 times
larger than the background C ring surface density determined from
density waves (Baillié et al., 2011; Hedman and Nicholson, 2013).
The ringlet values are comparable to the Uranian € ring result of
25 g cm~2 (Goldreich and Tremaine, 1979), based on the latter’s
multi-streamline model. However, more recent theoretical models
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Table 5

Ringlet masses derived from self-gravity models.
Ringlet Titan Maxwell € ring” Huygens”
a (km) 77,879 87,510 51,149 117,814
de (km) 224 38.5 404.0 28.4
sa (km) 23.1 59.1 58.1 185
q=ade/da 0.433 0.662 0.651 0.022
H(q) 0.583 0.762 0.748 0.50
M,—/M(10’“) 0.40 1.27 7.57 0.97
M, (10" kg) 2.30 7.23 6.57 551
> (gem2) 203 222 35.2 402

¢ Based on data from French et al. (1991).
b Based on data from French et al. (2014a).

that include collisional as well as gravitational interactions
between the ring particles suggest that the above simple calcula-
tion may significantly underestimate the true surface mass density
(Chiang and Goldreich, 2000), so the actual numerical values in
Table 5 should be treated with caution.

The above discussion implicitly assumes that the pericenters of
the inner and outer ringlet edges are aligned, i.e., that é@w = 0. In
reality, dissipative forces within the ring, associated with inelastic
collisions between the ring particles, are expected to result in a
phase lag across the ring, with 6w = @, — @; < 0 (Borderies
et al., 1983). Such phase lags have been measured for the Uranian
o and B rings (Nicholson and Matthews, 1983), although this issue
has not been revisited using the full set of available Uranian ring
data. Our results show no significant phase lag for the Titan ringlet,
with 6@ = 0.16 = 0.5°, and a small phase lead across the wider
Maxwell ringlet of 6@ = +1.6 £ 0.1°. The latter, together with the
small but statistically significant difference in @ between the inner
and outer edges (see Table 2), suggests instead that the Maxwell
ringlet may be internally librating about an equilibrium configura-
tion, as contemplated by Longaretti and Rappaport (1995). We will
leave the interpretation of these results to future work.
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11. Normal mode frequencies and amplitudes

The amplitudes of the free normal modes we have identified on
the edges of the noncircular ringlets in the C ring are summarized
in Figs. 16 and 17. Their distribution is remarkably consistent with
the theoretical picture outlined in Section 2. As expected, we find
ILR-type modes on the outer edges of ringlets and the inner edges
of gaps (where density waves can propagate outwards from the ILR
towards the sharp edge) and OLR-type modes on the inner edges of
ringlets and the outer edges of gaps (where density waves can
propagate inwards from the OLR). In general, although not invari-
ably, we find that the mode amplitude decreases with increasing
|m| for any particular edge.

On the inner edge of the Titan ringlet we find OLR-type modes
with m =0, —2 and -5, while on the outer edge we find ILR-type
modes with m = 2, 3 and 4. For the Maxwell ringlet we find weak
ILR-type modes on the outer edge with m = 2 and 4. For the Bond
ringlet we again find ILR-type modes on the outer edge, with
m=3,4,5,6and 7, as well as the m = 2 perturbation due to the
Prometheus 2:1 resonance, and a very weak m = 0 OLR-type mode
on the inner edge. Finally, at the inner edge of the Dawes gap we
find unforced ILR-type modes with m =3 and 5, as well as the
m = 2 perturbation due to the Mimas 3:1 resonance.

The only apparent exceptions to this pattern are a very weak
m = 3 ILR-type mode seen on the inner edge of the Bond ringlet
and a weak m = 2 ILR-type mode on the outer edge of the Dawes
gap. With an amplitude of only 160 m and a pattern speed equal
to that of the m = 3 mode on the ringlet’s outer edge, the former
probably represents the evanescent tail of the much stronger outer
edge mode (see Table 3), attenuated across the ringlet’s width of
17 km. (Note that for this mode, Aa, = +13.7 km, confirming that
it is actually associated with the ringlet’s outer edge, as expected.)
The latter is discussed in Section 11.3 below and is likely to be a
forced response to the strong but distant Mimas 3:1 ILR.

Titan Ringlet OER
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Fig. 16. A histogram of normal mode amplitudes for the inner and outer edges of the Titan and Maxwell ringlets. The left column shows inner ringlet edges while the right
column shows outer ringlet edges. Positive values of m indicate ILR-type modes and negative values (or 0) indicate OLR-type modes. Red bars indicate free or normal modes,
purple denotes resonantly-forced perturbations, and green denotes unforced m = 1 keplerian perturbations.



P.D. Nicholson et al./Icarus 241 (2014) 373-396 389

Bond Ringlet IER

1000~~~ ~—~~~~—~——~—~—~~—————-
=~ 100F-~-~-~-~-——~—~—~~—————-— -~~~
€
=
< X
010F---------- «‘ ———————
oot v v o oo o b b
9-8-7-6-5-4-3-2- 10123456789
m
Dawes Gap OEG
1000 ———-———~——————————— =~ —— - —
- 100F-=--=-----——--~|--~"-"-—-- - -~
= 00
=
13
<
010F-~----------~|- y ————————
001 L v v v vy
2

Bond Ringlet OER

10W0fF--—--—-——~~"~~~~—~———— - —

T 1M00F------------p -
=
E
<

010F -~ -—————-——————— - - -

001 L v v v v vy -

9-8-7-6-5-4-3- 2-10123456789

m
Dawes Gap IEG

100fF - —--—-——————~~—~~——————

T 100 ---------- - -F1------
=
3
<

010 -—~—~---~-—-~-~-—- -Ft--F----

001 L v v v vy oy I

-9-8-7-6-5-4-3- 210123456789

Fig. 17. A histogram of normal mode amplitudes for the inner and outer edges of the Bond ringlet and Dawes gap. The left column shows inner ringlet edges or outer gap
edges, while the right column shows outer ringlet edges or inner gap edges. Positive values of m indicate ILR-type modes and negative values (or 0) indicate OLR-type modes.
Red bars indicate free or normal modes, purple denotes resonantly-forced perturbations, and green denotes m = 1 keplerian perturbations. An asterisk calls attention to the
anomalous ILR-type m = 3 mode on the inner edge of the Bond ringlet, which we attribute to the evanescent tail of the mode on the outer edge (see text).

In addition to the ILR/OLR mode dichotomy between outer
and inner ringlet edges, the resonant cavity model outlined in
Section 2 implies that in order to reflect the leading density
wave, the resonant radii for each mode must lie within the ring
material, rather than in the adjacent gap. For inner edges of
ringlets (or outer edges of gaps), we thus expect that
Gres > Oeqge, While for outer edges of ringlets (or inner edges of
gaps), we expect that dres < Geage. The final column in Tables
1-4 lists the separation, Adp = Gres — Geage for each identified
mode, calculated from the best-fitting and predicted pattern
speeds using

Qp(obs) — Q,(pred)

Ady = =40, Jda

(18)

In this expression, the predicted pattern speed is computed from Eq.
(1), using the best-fit value for the mean radius of the edge. Since
dQ,/da < 0 in all cases considered here, a positive value of Aa, indi-
cates that the observed pattern speed is less than that predicted at
the ring edge, and thus that the corresponding resonant radius is
exterior to the edge in question.

The calculated values of Aa, are plotted for individual edges in
Fig. 18, as a function of the value of m. (We have omitted those
edges with no or very weak modes.) As predicted by the model,
we find that Ag, is positive for the OLR-type modes on the inner
edge of the Titan ringlet, and negative for all ILR-type modes on
the outer edges of the Titan and Bond ringlets, as well as the inner
edge of the Dawes gap. Furthermore, the absolute value of Aa,
generally decreases with increasing |m|, which is consistent with
the fact that, for a given surface mass density, the wavelength of
density waves scales as (jm —1|)™" (Shu, 1984). To illustrate the
trends, we have overplotted curves of Aa, = —9/|m — 1| km and
Aa, = —6/|m — 1| km for the Titan ringlet IER and the Bond ringlet
OER, respectively.

Based on the well-known dispersion relation for density waves,
we can use the data in Fig. 18 to make a rough estimate of the sur-
face mass density near the edges of the C ringlets. The method is
the same as that outlined by Spitale and Porco (2010) and
Nicholson et al. (2014) for the outer edge of the B ring, and
amounts to assuming that the distance Aa, between each mode’s
resonant radius and the ring edge is equal to 1/4 of the first wave-
length of the corresponding density wave. Using Eq. (19) in
Nicholson et al. (2014), which is based on the WKB approximation
to the dispersion relation, and taking an amplitude-weighted aver-
age over all modes for a given edge, we obtain the mean surface
densities listed in Table 6. Allowing for the observation that this
simple formula underestimates the true surface density by about
a factor of 4 (based on numerical simulations by P. Goldreich (per-
sonal communication, 2013) using the nonlinear density wave
model of Borderies et al. (1986)), we find likely mass densities
ranging from 7 g cm 2 for the Bond ringlet to 12 g cm 2 for the
1.495 R ringlet and ~24 g cm~2 for the Titan ringlet. The latter is
quite similar to that obtained above from the self-gravity model,
which provides further support for the validity of the resonant-
cavity model.

We defer a more complete discussion of normal modes to Paper
IlI, where we will present a much larger body of evidence for
numerous ILR- and OLR-type modes on the edges of several narrow
gaps and ringlets in the Cassini Division.

12. Resonant perturbations

In our study of noncircular features in the C ring, we have iden-
tified three instances where resonant perturbations by satellites
appear to play a dominant role in shaping ringlet or gap edges.
As summarized in Table 7, these are: (1) the Titan ringlet, both of
whose eccentric edges precess at a rate which closely matches
Titan’s orbital mean motion; (2) the outer edge of the Bond ringlet,
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Fig. 18. The locations of calculated normal mode resonant radii relative to the corresponding ringlet and gap edges in the C ring. For each edge, the value of Aaq, is plotted vs
m, with negative values of the latter indicating OLR-type modes. Vertical lines denote ringlet or gap edges, and shading indicates the presence of ring material. Resonantly-
forced and m = 1 keplerian perturbations are excluded. Note that the magnitude of Aa, generally decreases with increasing |m|, as illustrated by the overplotted curves
Aa, = —-9/|m — 1| km and Aa, = —6/|m — 1| km for the Titan ringlet IER and the Bond ringlet OER, respectively.

Table 6
Ringlet mass densities derived from normal modes.
Ring edge Titan [ER Titan OER Bond OER Dawes IEG
a (km) 77,867 77,890 88,719 90,200
m values 0,-2, -5 2,3,4 3-7 3,5
> (gem™2) 6.5 5.2 1.7 3.0°
2 The two modes give discrepant results of 2.0 & 6.1 g cm™2.
Table 7
Resonant model fits.
Feature Titan C/L? Bond OER Dawes IEG
Resonance Titan 1:0 ILR Prom. 2:1 ILR Mimas 3:1 ILR
m 1 2 2
a (km) 77878.7 +£0.15 88719.2+ 0.1 90200.4 + 0.1
Am (km) 22.30+0.15 1.08 £0.05 526+0.11
Q(°d™h) 22.5753 4+ 0.0008 587.290 + 0.003 572.5054 4+ 0.0015
Sm (°)° 270.62+0.3 105.1+1.5 62.9+0.6
Adges (km) -21.3+0.15 -6.1+0.1 -21+0.1
AQp (°d7h) —0.0017 £ 0.0008 0.005 + 0.003 0.0305 + 0.0015
Adm (%) -69+03 -78+15 -25+06
Aprea (km) 18.1 0.3 3.8

@ Centerline of ringlet: mean of fitted values for inner & outer edges.
> At epoch 2008 January 1, 12:00 UTC = |D 2454467.0.

which shows a small but significant m = 2 distortion rotating with
Prometheus; and (3) the inner edge of the Dawes gap, which shows
a much larger m =2 distortion rotating at close to the rate
predicted for the Mimas 3:1 ILR. In this section, we summarize
the evidence for resonant forcing, compare the observed radial
amplitudes with those predicted by theory, and examine several
other weakly-perturbed nearby features.

In Table 7, we list for each feature the best-fitting semimajor
axis a, resonant amplitude A, pattern speed ©,, and phase J,. Also
listed are the corresponding differences between the observed and
predicted pattern speeds AQ, and orientations Adn,, as well as the
difference Ades = ares — ag; between the resonant radius and the
mean fitted radius of the ring edge.® The predicted values are all
taken from Table 10 in Appendix A. For the predicted phases, we
have assumed that ¢, = 180° where the edges are clearly located
exterior to the resonant radius (both Titan ringlet edges and the
Bond ringlet’s OER), and ¢, = 0° when most of the ringlet’s mass is
located interior to the resonant radius (Dawes gap inner edge).

The amplitudes of resonant perturbations are more difficult to
predict with any accuracy than are the corresponding pattern
speeds and phases. Not only are ring particles not the isolated test
particles for which the expressions in Appendix A were derived,
but even for an isolated object the predicted amplitude depends
sensitively on its distance from the exact resonant radius
ares. Within the context of the test particle model (see, for example,
Section 10.3.2 of Murray and Dermott (1999)), the predicted
amplitude is given by A, ~ S/|a — as|, where the resonance
strength S is determined by the mass and orbital elements of the
perturbing satellite. For the resonances in question, numerical val-
ues of S are given in Table 10, based on expressions from Porco and
Nicholson (1987) and Nicholson and Porco (1988), updated to
reflect current estimates of the satellite masses (Jacobson et al.,
2008b). Using these strengths, together with the observed values
of Aaes, we calculate the predicted amplitudes listed in the last
row of Table 7.

9 This is deliberately defined in the same manner as Aa,, and Aa, above, in that it is
the amount by which the calculated resonant radius is offset from the observed radius
of the edge.
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Fig. 19. Fitted amplitudes, phases and pattern speeds vs radius for m=1
perturbations induced at a distance by the strong Titan 1:0 ILR. The curve in the
upper panel shows the predicted amplitude, based on a simple test-particle model
and the calculated resonance strength S =382 km? (see Table 10). The middle
panel shows the phase of the perturbation relative to Titan; note that the
orientation changes by 180° from inside to outside the resonant radius, in accord
with the same model. The lower panel shows the best-fitting pattern speed Q,
compared to Titan’s mean motion of 22.577° d .

12.1. Titan ringlet

In agreement with previous studies (Porco et al., 1984b;
Nicholson and Porco, 1988; Melita and Papaloizou, 2005), we find
that both edges of the eccentric Titan ringlet are effectively locked
to the mean longitude of Titan. As expected for orbits exterior to
the resonant radius, the apoapse of the ringlet is aligned with the
satellite, with a small phase lag of 7°. This lag could plausibly rep-
resent either an equilibrium offset due to viscous dissipation
within the ringlet, or a libration of the ringlet’s orientation with
respect to its mean orientation. One might hope to detect directly
any such a libration in the Cassini data, but as its anticipated period
is ~50years (Nicholson and Porco, 1988), a much longer
baseline of observations will probably be required. The mean
best-fitting pattern speed of the inner and outer edges is
22.5753 +0.0008° d !, or only 26 away from the mean motion of
Titan, which together with the small phase lag argues against a
significant libration.

Given the strength of the Titan 1:0 apsidal resonance, which is
comparable to that of the Mimas 2:1 ILR at the outer edge of the B
ring (Hedman et al., 2010), its influence might be expected to be
detectable over a significant radial range. Indeed, we have already
noted in Fig. 2 that both the inner and outer edges of the Colombo

gap show distinct m = 1 perturbations, apparently locked to the
orbital longitude of Titan. The apoapse of the outer edge is approx-
imately aligned with Titan (i.e., ¢, = 180°), as expected for orbits
exterior to the resonant radius, as is the periapse of the inner edge
(i.e., ¢ = 0°), which is located interior to dyes.

Indeed, we find that similar forced perturbations are detectable
in more than two dozen other features located throughout the
inner C ring, and as much as 3500 km from the resonance. Fig. 19
shows the amplitude and phase of these forced eccentricities vs
the radial location of the corresponding features. The measured
amplitudes A; = ae compare well with those predicted using the
theoretical resonant strength, S. All measured phases are
consistent with ¢, = 0° for radii less than a,s and with ¢, = 180°
for radii greater than as, a strong indication that the measured
eccentricities are real, despite their small sizes.

12.2. Bond ringlet

Unlike the Titan ringlet, where the observations seem to be lar-
gely in accord with theoretical expectations, the Bond ringlet
remains something of an enigma. The first of the two resonances
in this neighborhood is the Mimas 3:1 IVR, located within 0.3 km
of the inner edge of the ringlet, but our attempts to find the
anticipated m = 2 vertical distortion on this edge met with failure.
Unlike radial distortions, vertical perturbations can be difficult to
detect in occultation data, unless the inclination of the line of sight
to the star (or Earth) with respect to the ring plane, usually
denoted B,, is small. But our Cassini data set contains 15 stellar
occultations with |B,| < 30° and 5 with |B.| < 15°, which should
be quite sensitive to any vertical perturbations. It is possible that
our sparse sampling does not cover the maximum vertical
excursions, or that the vertical amplitude is simply too small to
be detected in our data. At the observed mean radius of the inner
edge, 88701.9 km, the predicted amplitude is B, ~ &/|a—
Gres| = 2.3 km, although we note that an error of 1km in the
absolute radius scale could reduce this to ~0.5 km, which is more
compatible with our upper limit. In contrast to the Titan 1:0 reso-
nance, whose location is very sensitive to Saturn’s higher-order
zonal gravity harmonics (Nicholson and Porco, 1988), ordinary
satellite resonances such as the Mimas 3:1 IVR can be readily
calculated with sub-km accuracy.

The observed m = 2 perturbation on the outer edge, on the other
hand, appears to be much larger than that expected to be produced
by the Prometheus 2:1 ILR, though both the pattern speed and
phase of the measured distortion match the resonant model well.
In this case, the mean radius of the edge is 88719.2 km and
Adgs = —6.1 km. Using the resonance strength from Table 10, we
find a predicted amplitude of A; ~ S/|a — drs| = 0.3 km, much less
than our best-fit value of 1.08 4 0.05 km. A possible answer to this
puzzle was provided by Longaretti and Rappaport (1995), who
found that a narrow ringlet can have a finite-amplitude equilibrium
configuration, even in the absence of external forcing, if it is
viscously overstable. In this case, the Prometheus resonance may
simply provide a ‘seed’ m =2 perturbation that subsequently
grows to the equilibrium value (P-Y. Longaretti, private
communication).

12.3. Dawes gap

As described in Section 8, the relatively-large m = 2 perturba-
tion at the inner edge of the Dawes gap seems almost certainly
to be due to the nearby Mimas 3:1 ILR, even though the fitted
pattern speed is significantly faster than the expected value. The
difference in Q, is 0.0305 + 0.0015° d™', or 200 (see Table 7). In
this case, we have Ad,s = —2.1 km and the measured amplitude
of 5.3 +£0.1 km is in fairly good agreement with the test-particle
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model, which predicts that A, ~ &/|a — ars| = 3.8 km. These
results might be reconciled if the resonant argument, and thus
the whole m = 2 pattern, is librating about its equilibrium value
of ¢, = 0°. The libration period would be of order 27/AQ, ~ 30
year, making such a libration undetectable over the relatively short
span of Cassini observations. A similar situation exists at the outer
edge of the B ring with the much stronger Mimas 2:1 ILR, where
the instantaneous amplitude of the m = 2 distortion varies from
only a few km to over 70 km with a period of 5.4 year (Spitale
and Porco, 2010; Nicholson et al., 2014).

We note for completeness that the weaker Pandora 2:1 ILR,
which is located more than 30 km interior to the gap edge, should
produce a perturbation at the inner gap edge of ~0.02 km, far too
small to detect in the present data, and with a substantially faster
pattern speed.

One might ask if, like the Titan 1:0 resonance, the influence of
the Mimas resonance may also be seen further away from the res-
onant radius. In fact, our fit to the outer edge of the Dawes gap,
which is located ~22 km exterior to the 3:1 resonance, does reveal
a small m =2 perturbation at the expected pattern speed (see
Table 4). The phase d, = 157 & 5° is consistent with that expected
for orbits exterior to the resonance (see Table 10), while the pre-
dicted amplitude A; ~ &/|a — ares| = 0.36 km also matches the
observed value of 0.43 + 0.06 km.

13. Constraints on Saturn’s zonal gravity harmonics

Our revised models for the Maxwell and Titan ringlets provide
potentially-valuable constraints on Saturn’s zonal gravity harmon-
ics, J5, J4, Jg, €tc. In the case of the freely-precessing Maxwell ring-
let, this follows directly from comparing the observed apsidal
precession rate with that calculated from Eq. (3), while for the res-
onantly-forced Titan ringlet the constraint is provided indirectly by
comparing the observed eccentricity with that predicted by the
resonance model described in Appendix A.

Looking first at the Maxwell ringlet, we recall from Section 6 that
the best-fitting values of @ for the inner and outer edges are very
similar (although not identical), with that of the inner edge corre-
sponding to the predicted rate for a radius of a; + Aa; = 87510.8+
0.4 km while that of the outer edge corresponds to that predicted
for a radius of a, + Aa; = 87515.0 + 0.1 km. We may take the aver-
age of these two radii, weighted by the inverse of their uncertainties,
87514.2 km, as our best estimate of the dynamical “center of mass”
of the Maxwell ringlet, which we denote by a(calc). (This result, of
course, depends on our adopted set of Saturn’s zonal gravity coeffi-
cients, derived by Jacobson et al. (2008a) and listed for convenience
in Table 8.) This may be compared with the observed mean semi-
major axis of the ringlet. To first order, this is given by the mean of
the inner and outer edges, a = 87509.8 4 0.03 km (see Table 2),
but a better estimate is provided by the average semi-major axis,

Table 8

Adopted values for Saturn’s gravity field.”
Parameter Value Units
GM 37,931,208 km? 572
R 60,330 km
b 16290.7 10°¢
Ja -9355 10°¢
Js 90.4 107¢
Js -10.0 10°°
Jio 2.0 1076
Jiz -05 10°¢

2 Values for GM and J, — Jg from Jacobson et al. (2008a). Nominal values for J;,
and J;, from Nicholson and Porco (1988).
P Equatorial reference radius.

weighted by the normal optical-depth profile. Integrating
several high-SNR VIMS profiles near quadrature, we find that
a(obs) = 87512.4 + 0.1 km.

The difference éa = a(calc) — a(obs) = +1.8 km is only margin-
ally significant, given the adjustments to a(calc) and a(obs) made
above, but may be attributable to small errors in the adopted
values of Saturn’s zonal gravity harmonics. Denoting the necessary
corrections to J, by dJ,, etc, and following the approach of
Nicholson and Porco (1988), we may write the resulting constraint
in algebraic form:

0w >N 0

2 5a =522 41, . 19
oa ‘s ajZn 2n ( )

(The left hand side of this equation is simply < Aw >, the difference
between the weighted average precession rate of the ringlet and
that predicted to apply at its optical depth center.) The numerical
values of the partial derivatives, based on expressions given by
Nicholson and Porco (1988) and evaluated at a, are listed in Table 9.
For example, if we were to correct the predicted precession rates,
and thus a(calc), by adjusting J, or Js, while keeping the other zonal
coefficients at their present values, we would need -either
0, =+11x10°or 9y =—-13 x10°°.

Turning now to the Titan ringlet, we cannot use the fitted apsi-
dal precession rate to constrain the harmonic coefficients, as this is
set by Eq. (1) to be equal to the mean motion of Titan, nr. However,
if the libration amplitude of the ringlet is negligible, as we con-
cluded in Section 11.1, then so is its free eccentricity and we
may conclude that the observed eccentricity is entirely forced. In
this situation, we may assume, as did Nicholson and Porco
(1988), that the ringlet’s mean eccentricity can be used to deter-
mine the distance of the ringlet’s center of mass from the resonant
radius aes. For the center of mass radius, we use the average of the
fitted semi-major axes for the inner and outer edges,
a=77878.7 £0.15 km (the very high optical depth of the Titan
ringlet precludes calculating a weighted mean radius as we did
for the Maxwell ringlet above). For the forced eccentricity we use
the average of the fitted m =1 amplitudes for both edges,
A; =22.30+0.15 km, as listed in Table 7.

Using the resonance strength from Table 10, and noting that the
apoapse of the ringlet is aligned with Titan, we find that the
deduced (or “observed”) value of Ad,s = S/A; = —17.1 km. The
estimated location of the apsidal resonance, based on the Titan
ringlet’'s mean forced eccentricity, is thus @+ Ad.s = 77861.5
+0.2 km, where the quoted error bars reflect only our 1o fit
parameter uncertainties. Systematic uncertainties in the ring’s
absolute radius scale are likely to add an additional uncertainty
of ~0.3 km (French et al., 2014b). (This may be compared with
the previous estimate for the resonant radius by Nicholson and
Porco (1988) of 77852 + 13 km.

Table 9
Ringlet sensitivities to Saturn’s zonal gravity coefficients.?

Parameter Titan ringlet Maxwell ringlet
Qres O @ (km) 77857.4 87509.8

otr/oa (> d" km ) —0.001072 —0.000613

ow /o), (¢d ") 1265.36 840.40

0w /o), (¢d ") ~1905.88 ~1001.06
ow/o)s (°d ") 2005.31 833.50

ow/d)s (°d ") -1807.29 ~594.53
081/0)0 (0 d 1) 1492.70 388.65

063/0), (0 d ) ~1165.46 ~240.19

2 Based on gravity parameters from Jacobson et al. (2008a) and for a reference
radius of 60,330 km.
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Comparing this observed value with the predicted resonant
radius in Table 10, calculated using the zonal gravity harmonics
of Jacobson et al. (2008a), we find that dJa = a(calc)—
Qres(ObS) = —4.1 + 0.3 km. (The fairly good agreement between
the observed and predicted radii for the apsidal resonance is not,
of course, completely unexpected inasmuch as Jacobson (2006)
and Jacobson et al. (2008a) made use of a similar Titan ringlet con-
straint - based on Voyager data - published by Nicholson and
Porco (1988) in their global solution for Saturn’s gravity field.)
The corresponding constraint on the zonal gravity coefficients is
again given by Eq. (19), with the partial derivatives evaluated at
ares and listed in Table 9. Again as an example, if we were to match
the resonant radius, and thus the forced eccentricity, by adjusting
J4 or Jg, while keeping all the other zonal coefficients at their
present values, we would need either §/, = —2.3 x 107° or §J; =
+2.2 %107,

Although the corrections to the gravity field implied by our
results for the Maxwell and Titan ringlets appear to be inconsis-
tent, as indicated by the differing signs for éa, the magnitudes of
the implied changes to J, and/or J; are small and comparable to
the 10 uncertainties quoted for the current gravity solution
(Jacobson et al., 2008a) of £1.0 and 5.1, respectively, in units of
10°%. It thus appears that very little adjustment to this solution
is warranted by our results. We caution, however, that the esti-
mates made in this section are rather crude. More refined calcula-
tions would take into account gravitational and viscous
interactions within the Titan and Maxwell ringlets, which presum-
ably act to enforce the observed state of uniform apsidal precession
across each ringlet (Chiang and Goldreich, 2000; Melita and
Papaloizou, 2005). Only then can the mean precession rate, or aver-
age forced eccentricity, be accurately linked to an effective mean
semi-major axis. To reinforce this caution, we note that the Titan
ringlet, in the absence of such internal forces, would be expected
to have a larger eccentricity on its inner edge — which is closer to
the apsidal resonance - than on its outer edge, i.e, a negative
eccentricity gradient, which is in violent disagreement with the
observations. Unfortunately such a calculation is beyond the scope
of this paper and must be deferred to a subsequent numerical
study.

An improved set of zonal gravity coefficients should take into
account not only the constraints provided by the Maxwell and
Titan ringlets as well as all available spacecraft tracking data gen-
erated by the Cassini orbiter (Jacobson, 2006), and the observed
precession rates of Saturn’s natural satellites, but also any addi-
tional constraints from the rings. These may come from the apsidal
precession of noncircular features in the D ring (Hedman, 2007;
Hedman et al., 2014), as well as from the tightly-wound vertical
corrugation identified there and in the C ring (Hedman et al,
2011). It is in order to facilitate such a future synthesis that we
provide the updated ringlet constraints in Eq. (19) and Table 9.
By leaving these in algebraic form, we allow for future refinements
to the ringlet parameters as well as more realistic self-gravity
models and the inclusion of presently unmodelled contributions
to @, such as precession induced by nearby or distant ring material.
(An estimate of the latter for the Titan ringlet of 0.0019° d~' was
made by Nicholson and Porco (1988).)

14. Conclusions

We have carried out a comprehensive survey of sharp-edged
features in Saturn’s C ring, using data from radio and stellar
occultation experiments carried out by the Cassini spacecraft over
a period of 5 years. Over 100 occultations are included in the com-
bined data set, and up to 90 different features have been measured
in each one. Our goal has been to identify and characterize all

measurably noncircular features, with the ultimate aims of under-
standing the role played by satellite resonances in sculpting the C
ring, and of increasing our understanding of the internal dynamics
of narrow ringlets in general and their interactions with the gaps
that harbor them.

14.1. Ringlet descriptions

As first noted by Esposito (1983), Porco et al. (1984b) and Porco
and Nicholson (1987), the four prominent narrow gaps in the C
ring each either contain a noncircular ringlet, or have one or more
measurably noncircular edges. In some cases we find that these
distortions are forced by nearby resonances with external
satellites, but in others they represent either freely-precessing
keplerian ellipses or more complex modes of oscillation, which
we refer to as normal modes.

The Colombo gap in the inner C ring (77,750-77,925 km)
contains a narrow, opaque and eccentric ringlet, generally known
as the Titan ringlet, whose eccentricity appears to be primarily
(or perhaps entirely) forced by the nearby Titan 1:0 (or apsidal)
resonance. From its mean amplitude ae = 22.3 km, we calculate a
revised radius for the apsidal resonance of 77861.5 4+ 0.5 km, or
9 km greater than that adopted by Nicholson and Porco (1988) in
their study of this ringlet in Voyager observations. In addition to
the ringlet itself, we find evidence for resonantly-forced perturba-
tions on both gap edges and on ~25 other features as far as
3500 km from the resonance. Smaller perturbations on both inner
and outer edges of the Titan ringlet are attributable to normal
modes with wavenumbers m =0, —2 and -5 on the inner edge
and m =2, 3 and 4 on the outer edge. Amplitudes range from
0.5 to 3.8 km.

The Maxwell ringlet, on the other hand, appears to be essen-
tially a freely-precessing eccentric ringlet, with an amplitude that
varies from 18.9 km on the inner edge to 58.0 km on the outer
edge. It occupies the eponymous gap at 87,350-87,610 km and
its edges exhibit only a few very low-amplitude normal modes.
Although this ringlet is not influenced by any known satellite
resonance, its internal density profile shows a systematic wavelike
structure, which is the subject of a current investigation. The outer
edge of the Maxwell gap shows a radial variation with an ampli-
tude of ~1 km that appears to be a forced eccentricity driven by
its proximity to the ringlet.

Much narrower than either the Colombo or Maxwell gaps, the
Bond gap at 88,686-88,723 km is half-filled by the sharp-edged
and relatively opaque Bond ringlet. This ringlet has no measurable
eccentricity (i.e., an m = 1 perturbation), but its outer edge exhibits
an m = 2 signature with an amplitude of 1.1 km that is evidently
forced by the nearby Prometheus 2:1 inner Lindblad resonance,
in addition to at least 5 weaker normal modes with m =3, 4, 5,
6 and 7. To our surprise, we find no evidence for radial or
out-of-plane distortions at the Bond ringlet’s inner edge, despite
its proximity to the Mimas 3:1 inner vertical resonance.

Outermost of the C ring gaps is the Dawes gap at 90,202-
90,220 km, which is bounded on its inner edge by a 60 km-wide
plateau-like structure but does not contain a conventional
detached ringlet. The inner edge of the gap shows two large
perturbations of comparable amplitude: an elliptical (i.e., m=1)
signature with ae = 6.1 km and an m = 2 perturbation of ampli-
tude 5.3 km. Although the latter is almost certainly driven by the
nearby Mimas 3:1 ILR, to judge from its phase and amplitude, its
pattern speed is significantly greater than predicted. Additional
smaller perturbations reflect normal modes with m = 3 and 5. Like
both the Colombo and Maxwell gaps, the outer edge of the Dawes
gap shows what appears to be a small forced eccentricity, in this
case due to the strongly-perturbed inner edge.
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14.2. Normal mode summary

The identification of numerous normal modes co-existing on
the sharp edges of ringlets and gaps is probably the most impor-
tant new result of the present study. Although such modes had
been seen in the very narrow Uranian y and § rings (French,
1988a), where they extend across the entire width of each ring,
only the outer edge of the B ring has been previously known to
exhibit what we may call “edge modes” (Spitale and Porco, 2010;
Nicholson et al., 2014). The distribution of modes is in excellent
agreement with theoretical predictions, with ILR-type modes on
outer ringlet (and inner gap) edges and OLR-type modes on inner
ringlet (and outer gap) edges, as illustrated in Figs. 16 and 17.
Not at all clear, however, is what determines which particular
modes will appear on any given edge, and what process sets their
amplitudes. In general, there is a trend of decreasing amplitude
with increasing azimuthal wavenumber m, but the limited data
from the C ring do not permit further generalizations.

The exact pattern speed of a mode, which must satisfy Eq. (1), is
set by the requirement that the corresponding inner or outer Lind-
blad resonance be located at distance from the ring edge Aa, that
permits a standing density wave to be established in the region
between them. This is illustrated quite well in Fig. 18, where we
also see that modes with larger values of |m| generally have nar-
rower resonant cavities. In particular, we note that no normal
mode has been identified that has a resonant radius that falls in
the gap beyond the ring material.

14.3. Self-gravity model & surface mass densities

Under the assumption that a ringlet’s self-gravity is sufficient to
counteract the expected differential apsidal precession of its inner
and outer edges due to Saturn’s oblateness, we have estimated the
surface mass densities of the Titan and Maxwell ringlets from their
average eccentricity gradients, determined from updated width-
radius relations. We find ¥ =20.3 gcm™2 for the Titan ringlet
and 22.2 g cm 2 for the Maxwell ringlet, consistent with previous
estimates based on both two streamline and multi-streamline
models. More recent theoretical models suggest that these might
substantially underestimate the actual surface density, but the
similarity between the two values is notable.

14.4. Future directions for research

The precise kinematic models we have developed for the vari-
ous noncircular ringlet and gap edges in the C ring should provide
input and boundary conditions for more sophisticated models of
narrow ringlet dynamics, such as that of Melita and Papaloizou
(2005) and Hahn and Spitale (2013). Improved characterization
of normal mode frequencies might provide a new method for
estimating ring surface mass densities (Section 11), and perhaps
even lead to insights into the mechanism by which the sharp edges
of many ringlets and gaps are maintained against collisional
diffusion.

The sheer abundance of normal modes on the edges of many
(but by no means all) ringlet and gap edges is one of the most sur-
prising results of this investigation, prompting questions about
their excitation, amplitudes, and regional distribution. Hahn and
Spitale (2013) have shown that normal modes, once present in a
ring edge, have long persistence times, something that can be
tested on the decadal timescale by extending the time baseline
of the present study by including additional Cassini occultation
observations.

Both the calculated radius of the Titan 1:0 ILR and the measured
apsidal precession rate of the Maxwell ringlet provide improved
constraints on the higher zonal harmonics of Saturn’s gravity field,

especially J; and Jg, but with some sensitivity through J;, and
beyond (Nicholson and Porco, 1988; Jacobson, 2006). Combining
these with measurements of other noncircular or inclined ring fea-
tures should yield improved estimates of the gravity coefficients,
compared to those derived from spacecraft tracking data alone.

Future Cassini occultation observations should permit refine-
ments to the present models, especially to the fitted precession
rates and pattern speeds, and the addition of Voyager and other
pre-Cassini data for the Titan and Maxwell ringlets may lead to
even better values.

A by-product of this work, to be explored in Paper 1V, is the
establishment of an accurate absolute radius scale for the rings,
with residual errors likely to be at the 100 m level, and a definitive
measurement of the precession rate of Saturn’s pole. Present esti-
mates of the latter (French, 1993; Jacobson et al., 2011) indicate
a period of order 1.8 Myr, but a more accurate value would impose
a significant constraint on the planet’s polar moment of inertia and
thus on its internal density distribution.
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Appendix A. Satellite resonances

In this section we provide some relevant theoretical back-
ground for the satellite resonances invoked in Sections 5-8, and
collect the necessary numerical values in one place for easy
reference. For more details on the calculation of resonance
strengths the interested reader is referred to the Appendix in
Porco and Nicholson (1987). Unless otherwise mentioned, all pat-
tern speeds, resonant radii and predicted phases have been
updated using satellite orbital elements from Jacobson et al.
(2008b) and Saturn gravity field parameters from Jacobson et al.
(2008a).

The resonances discussed here fall into one of two categories:
Lindblad resonances, which produce radial forces and thus excite
eccentricities in ring particle orbits; and vertical resonances, which
produce normal forces and thus excite orbital inclinations. At a
Lindblad resonance, the ring particle experiences radial force vari-
ations due to a particular component of the satellite’s gravitational
potential at a frequency equal to its natural radial oscillation, or
epicyclic frequency . For a potential component that varies with
longitude and time as e/™—Y the resonant condition is

m(n — Q) = %K, (20)

where n is the ring particle’s keplerian angular velocity and the pat-
tern speed of the potential is defined by its angular rotation rate
Q, = w/m. Noting that K = n — @, we have the expression for
Qp in Eq. (1) above. In Eq. (20) the + sign corresponds to an inner
Lindblad resonance, where n > Q,, and the — sign corresponds to
an outer Lindblad resonance, where n < ©,. We can in fact combine
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both ILRs and OLRs into a single expression for €, by assigning a
sign to m: positive for an ILR and negative for an OLR.

The situation is similar at a vertical resonance, where the ring
particle experiences out-of-plane force variations at a frequency
equal to its natural vertical oscillation frequency p. For the same
potential component, the resonant condition becomes

m(n— Q) = . (21)

Noting that it = n — Qq, we have the expression for Q, given in Eq.
(11) above. Again, both inner vertical resonances exist with n > Q,
and outer vertical resonances with n < @, which can be combined
by assigning a sign to m.

A satellite on a circular, equatorial orbit gives rise to perturba-
tions with all possible values of |m|, but all rotate at an angular fre-
quency equal to the satellite’s keplerian angular velocity, i.e.,
Q, = n'. Such perturbations lead to first-order Lindblad resonances,
where

(M — 1)1 + Wee = m'. (22)

Examples of such resonances include the Prometheus 2:1 ILR at the
outer edge of the Bond ringlet, with m = 2, and the Titan apsidal or
1:0 resonance, with m = 1.

A satellite on an eccentric and/or inclined orbit can give rise to a
much richer spectrum of perturbations that also involve the satel-
lite’s own epicyclic and vertical frequencies k' and p'. In general,
the frequency of such perturbations can be written as

w=mQ, =mn' + kiK' +py
-~ p2, (23)

sec?

=(m+k+p)n' — k.

sec

where k and p are integers. Substituting this into Eq. (20) or Eq. (21),
we have the condition to be satisfied at a higher-order Lindblad or
vertical resonance:

(M — )N + @gec = (M + Kk + p)N’ — kil — PLlccs (24)
or
(M — 1)+ Quec = (M + k+ p)N' — kTl — PQlec- (25)

Here, primed quantities refer to the perturbing satellite and
unprimed quantities to the ring particle. Relevant examples of sec-
ond-order resonances include the Mimas 3:1 ILR, withm =2, k=1
and p =0, and the Mimas 3:1 IVR withm =2, k=0and p = 1.

At each resonance, the response of ring particles is best
described in terms of a slowly-changing resonance variable. For a
Lindblad resonance this is given by

¢pr=m-1)i+w@w— (m+k+p)i +ka +pQ, (26)
while for a vertical resonance it is
¢py=m-1A+Q—(m+k+p)) +ka' +pQ. (27)

Making use of the expression for @, in Eq. (23), we can rewrite the
satellite terms in these equations in the form —m[&y + Q,(t — to)],
where the constant

éo = [(m+k+p)iy — kwy — pQy]/m. (28)

For particles located exactly at a Lindblad resonance, Eq. (24)
implies that d¢,/dt =0. An examination of the planetary
perturbation equations shows that stable solutions exist only for
¢ =0 (generally for a < as) or ¢ = (for a > a,) (Murray and
Dermott, 1999).

An ensemble of ring particles located at or near such a Lindblad
resonance will move on eccentric orbits given approximately by
the expression:

r(4,t) ~a[l —e cos(.— @)]. (29)

Substituting for @ in terms of ¢, and using Eqs. (23) and (28) above,
this becomes

r(2,t) ~a[l —e cos(m[A — & — Qy(t — to)] — ¢1)]- (30)

This is the same as Eq. (5) in Section 4.1, where the phase angle
Om = o + ¢y /m.

At a vertical resonance Eq. (25) implies that d¢, /dt = 0. Starting
with the analogous expression for particles moving on low-inclina-
tion orbits

Z(A,t) ~ asin(i) sin(1— Q), (31)
and substituting for © in terms of ¢, we obtain
z(4,t) = asin(i) sin(m[i— & — Qp(t —to)] — ¢v), (32)

which is the same as Eq. (9) in Section 4.1, with the phase angle
€m = o + Py/m.

Using the above expressions for €,, 6, and €,, we can calculate
the relevant pattern speeds and predicted phases for each of the
satellite resonances discussed above. For a first-order ILR, we have
k=p=0 so that Q, =n’, as noted above, and &, = 4;, so that
Om = /g for orbits interior to dre, and 6, = Ay + m/m for orbits
exterior to d.s. For the Mimas 3:1 ILR, we have m =2,
k=1,p=0 so that Q,=03n"-w,)/2 and =
(3% — @y +¢;)/2. For the Mimas 3:1 IVR, we have
m=2,k=0,p=1 so that Q,= 3n’—§2gec)/2 and €, =
(34 — Qy + éy)/2. In Table 10 we list the corresponding numerical
values for the five resonances discussed in Sections 5-8.

Also included in this table are estimates of the strength of each
resonance S, expressed in terms of the predicted amplitude of
radial or vertical distortions at a distance of 1 km from the reso-
nant radius a.s. These strengths are taken from Nicholson and
Porco (1988) and Table IV of Porco and Nicholson (1987), with
the satellite masses and orbital elements updated to the values
given by Jacobson et al. (2008b) or Spitale et al. (2006). For both
Lindblad and vertical resonances in planetary rings, the forced
amplitude, A,, or By, is expected to vary as §/|a — a.s|, though this
linear expression is likely to break down when the amplitude is
comparable to |a@ — @y, i€, for |a— aes| <+/S. Closer to the
resonance, streamline-crossing will occur in this simple model of
noninteracting test-particles and, in reality, interparticle collisions
and ring self-gravity will limit the maximum amplitude.

Table 10

Resonance parameters.*
Resonance Titan 1:0 Mimas 3:1 Prom 2:1 Pand 2:1 Mimas 3:1

ILR IVR ILR ILR ILR

m 1 2 2 2 2
k 0 0 0 0 1
p 0 1 0 0 0
n(d! 225770  381.9835° 587.2852 572.7886 381.9835"
w (°d7!) 0.0014 1.0008 2.7577 2.5996 1.0008
@(d" -0.0014  -0.9995 —2.7444 25874  —0.9995
Q(°d™h 22.5770  573.4750 587.2852 572.7886 572.4749
res (km) 77857.4  88702.2 88713.1 90167.8 90198.3
2 (° 97.5 347.2 22.9 25.8 347.2
@, (°) 207.5 190.9 135 250 190.9
Q (°) 2493 1325 211 145 1325
& (0) 97.5 94.6 229 25.8 65.4
Sm Or €m () 975 94.6 22.9 25.8 65.4
omorey ()¢ 2775 184.6 1129 115.8 155.4
S (km?) 382 0.71 1.90 0.61 7.97

2 At epoch 2008 January 1, 12:00 UTC = ]D 2454467.0. See text for definitions.
b Average mean motion in 2005-2010.

¢ For ¢, or ¢y = 0°; expected values in bold face.

4 For ¢, or ¢, = 180°; expected values in bold face.
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