
Icarus 279 (2016) 78–99 

Contents lists available at ScienceDirect 

Icarus 

journal homepage: www.elsevier.com/locate/icarus 

A vertical rift in Saturn’s inner C ring 

Philip D. Nicholson 

a , ∗, Matthew M. Hedman 

b 

a Department of Astronomy, Cornell University, Ithaca NY 14853, United States 
b Department of Physics, University of Idaho, Moscow ID 83844, United States 

a r t i c l e i n f o 

Article history: 

Received 17 June 2015 

Revised 6 January 2016 

Accepted 19 January 2016 

Available online 3 February 2016 

Keywords: 

Occultations 

Saturn, rings 

Dynamics 

a b s t r a c t 

In 1988 Rosen and Lissauer identified an unusual wavelike feature in Saturn’s inner C ring as a bending 

wave driven by a nodal resonance with Titan (Science 241, 690). This is sometimes referred to as the 

−1 : 0 resonance since it occurs where the local nodal regression rate is approximately equal to −n T , 

where n T = 22 . 577 ◦ d −1 is Titan’s orbital mean motion. We have used a series of 44 stellar occultation 

profiles of this wave observed by the Cassini VIMS instrument to test their hypothesis. We find that, as 

predicted, this wave is an outward-propagating m = 1 spiral with a leading orientation and a retrograde 

pattern speed approximately equal to −n T . But the most intriguing feature associated with the wave is 

a narrow gap that lies ∼7 km outside the resonance. This gap varies noticeably in width and is seen 

in roughly 3/4 of the occultation profiles, appearing to rotate with the wave in a retrograde direction. 

We have developed a simple kinematical model that accounts for the observations and consists of a 

continuous but very narrow gap (radial width � 0.6 km), the edges of which are vertically distorted 

by the propagating bending wave as it crosses the region. Differences in viewing geometry then largely 

account for the apparent width variations. We find vertical amplitudes of 3.8 km for the inner edge and 

1.2 km for the outer edge in 2008, with nodes misaligned by ∼110 °. Moreover, both edges of the gap 

are slightly eccentric, with pericenters aligned with Titan, suggesting that the eccentricities are forced by 

the nearby Titan apsidal resonance. We hypothesize that the gap forms because the local slopes in the 

bending wave become so great that nonlinear effects result in the physical disruption of the ring within 

its first wavelength, beyond which point the wave re-establishes itself with a reduced amplitude. 

© 2016 Elsevier Inc. All rights reserved. 
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1. Introduction 

The most prominent wave in Saturn’s C ring is the Titan nodal

bending wave, driven by the Titan −1 : 0 inner vertical resonance

(IVR) and first described in Voyager radio occultation (RSS) data by

Rosen and Lissauer (1988) . At this resonance, the nodal regression

rate of ring particles is equal in magnitude, but opposite in sign,

to the mean motion of Titan. Because of its negative pattern speed

( i.e., the wave pattern rotates in the retrograde direction) this wave

propagates radially outwards, unlike most bending waves, and is

predicted to take the form of a 1-armed leading spiral. A curious

feature of the Voyager RSS profile of the nodal bending wave is a

15 km wide gap in the inner part of the wave train, located at a

radius of ∼77, 530 km. Rosen and Lissauer (1988) suggested that it

was not a real gap, but an artifact of the very shallow incidence an-

gle of the RSS occultation combined with the tilted surface of the

ring due to the bending wave. Essentially, a region of ring whose

surface normal is tilted towards the observer can appear much
∗ Corresponding author. Tel.: +16072558543. 
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ess-opaque than its neighbors when the measured transmission is

onverted to normal optical depth using the standard formula. The

ap’s sharp edges, in this picture, were associated with multiple

ay crossings through the warped ring. This unique feature, com-

ined with some inconsistencies in the dynamical parameters for

he wave implied by the analysis by Rosen and Lissauer (1988) , led

s to reexamine this region in the several dozen stellar occultation

rofiles obtained to date by the Cassini VIMS investigation. 

We find that the gap, far from being unique to low-elevation

ngle occultations, appears in ∼3/4 of the VIMS profiles, including

any obtained at quite high elevation angles. In the VIMS data,

owever, it is at most 5 km wide, much narrower than in the Voy-

ger RSS profile, and in ∼1/4 of the VIMS profiles it disappears

ompletely, only to be replaced by a local maximum in optical

epth. Our investigation shows that the gap is in fact real, but that

ts edges are vertically distorted by the wave in which it is embed-

ed: in effect it is a vertical “tear” in the rings more than a radial

ap. Variations in the viewing geometry of the occultations lead

o the large apparent variations in the gap’s width, and even to

ts disappearance at some longitudes. The description of this novel

eature, and its relationship to the nearby Titan −1 : 0 IVR and to

http://dx.doi.org/10.1016/j.icarus.2016.01.024
http://www.ScienceDirect.com
http://www.elsevier.com/locate/icarus
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Fig. 1. An optical depth profile of the inner C ring derived from the VIMS α Aurigae occultation on the Cassini orbit designated Rev 41, showing the spatial context for the 

present study. The lower panel shows the region that contains the Titan ringlet and nodal bending wave at a scale expanded by a factor of 10, and a radial resolution of 

2 km. The Titan apsidal (or 1:0) resonance falls within the Colombo gap at 77,862 km, where it controls the shape of the eccentric Titan ringlet, while the Titan nodal (or 

−1 :0) resonance at 77,525 km drives the outward-propagating bending wave visible at ∼77, 550 km. 
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he bending wave that harbors it, form the subject of the present

aper. 

The Titan nodal bending wave is located ∼300 km interior

o the 170 km-wide Colombo gap, which is home to an narrow,

paque and eccentric ring generally known as the Titan ringlet.

he latter is so-named because of its close association with the

itan apsidal resonance, where the local apsidal precession rate

f ring particles matches the mean motion of Titan. 1 An overall

iew of the inner C ring, and of the region including the Colombo

ap, the Titan ringlet and the nodal bending wave is provided in

ig. 1 . Studies of the Titan ringlet by Porco et al. (1984) demon-

trated that it is well-described by a simple keplerian ellipse, pre-

essing under the influence of Saturn’s zonal gravity harmonics.

ut because it is located very near the Titan 1:0 ILR, and because

ts apoapse is closely aligned with Titan, Porco et al. (1984) con-

luded that the ringlet’s eccentricity is likely to be forced by the

psidal resonance. This idea was further pursued by Nicholson and

orco (1988) , who used the ringlet’s eccentricity to place a con-

traint on Saturn’s zonal gravity harmonics. A recent reanalysis of

he Titan ringlet by Nicholson et al. (2014b ) using Cassini data con-

rmed this picture and provided improved orbital elements for the

inglet, while also identifying similar but smaller-amplitude forced

ccentricities for many other sharp-edged features in this region

f the C ring. We shall see below that these radial distortions also

xtend across the bending wave. 

We begin with a review of the relevant characteristics of ver-

ical resonances and bending waves in Section 2 , before provid-
1 This resonance is a special case of an inner Lindblad resonance (ILR), and is 

ften referred to as the 1:0 ILR. 

a  

q  

a

m  
ng a brief description of our occultation dataset in Section 3 . In

ection 4 we discuss our measurements, orbital fits and the under-

ying kinematic model. We summarize our conclusions and discuss

he possible origin of the bending wave gap in Section 5 . 

. Theoretical background 

.1. Resonance geometries 

Our kinematic model for the Titan bending wave gap is based

n a simple consideration of the geometry associated with Lind-

lad and vertical resonances, and in particular with apsidal and

odal resonances. In this section we review the basic resonance

quations, including the pattern speeds and orbit geometries rel-

vant to our problem. For a more general discussion of resonant

erturbations in rings, the interested reader is referred to Ap-

endix A of Nicholson et al. (2014b ) or to the text by Murray and

ermott (1999) . 

Vertical resonances have much in common with the more fa-

iliar Lindblad, or eccentric, resonances. In the vicinity of a Lind-

lad resonance, a ring particle experiences radial force variations

ue to a particular component of the satellite’s gravitational po-

ential at a frequency equal to its natural radial oscillation, or

picyclic frequency κ . The situation is similar at a vertical reso-

ance, where the ring particle experiences out-of-plane force vari-

tions at a frequency equal to its natural vertical oscillation fre-

uency μ. For a potential component that varies with longitude

nd time as e i (mλ−ωt) , the resonant condition is 

 (n − �p ) = ±μ. (1)
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2 We note that Rosen and Lissauer (1988) followed a similar procedure, but 

adopted a smaller value of a res for the −1 : 0 IVR of 77,515 km, based on the es- 

timate for the radius of the Titan 1:0 resonance of 77, 852 ± 13 km by Nicholson 

and Porco (1988) . 
where m is an integer, n is the ring particle’s keplerian angular

velocity and the pattern speed of the potential is defined by its an-

gular rotation rate �p = ω/m . In this expression, the + sign corre-

sponds to an inner vertical resonance (IVR), where n > �p , and the

− sign corresponds to an outer vertical resonance (OVR), where n

< �p . Since μ = n − ˙ �sec , where ˙ �sec is the local nodal regression

rate, we have the equivalent expression for an IVR of 

m �p = (m − 1) n + 

˙ �sec . (2)

Vertical resonances only arise when the perturbing m oon is on

an inclined orbit, and the pattern speed thus depends partly on

the satellite’s own vertical frequency μ′ = n ′ − ˙ �′ 
sec as well as its

orbital mean motion n ′ . In general, the frequencies of such pertur-

bations can be written as 

ω ≡ m �p = mn 

′ + kκ ′ + pμ′ (3)

where κ ′ = n ′ − ˙ � 

′ 
sec is the satellite’s epicyclic frequency and k and

p are integers. For the Titan nodal (or −1 : 0 ) resonance, we have

m = 1 and k = p = −1 , so that we have the resonant condition 

˙ �sec = �p = n 

′ − κ ′ − μ′ = −n 

′ + ˙ � 

′ 
sec + 

˙ �′ 
sec . (4)

Here, primed quantities refer to Titan and unprimed quantities to

the ring particle. Note that Eq. (4) implies that the pattern speed

associated with the nodal resonance is negative , but approximately

equal in magnitude to Titan’s mean motion n T . 

Analogous expressions describe inner and outer Lindblad res-

onances, with μ → κ . But in this case, the strongest resonances

arise with a satellite on a circular, equatorial orbit and the pattern

speed of the perturbation is simply equal to the satellite’s keple-

rian angular velocity, i.e., �p = n ′ . Such perturbations lead to first-

order Lindblad resonances, where 

m �p = (m − 1) n + ˙ � sec = mn 

′ . (5)

An example of such a resonance is the aforementioned Titan apsi-

dal (or 1:0) resonance, where m = 1 and the resonance condition

becomes simply 

˙ � sec = �p = n 

′ . (6)

Here ˙ � sec = n − κ is the local apsidal precession rate and n ′ = n T =
22 . 577 ◦ d 

−1 . 

At either the apsidal or nodal resonance, the response of a ring

particle is best described in terms of the slowly-changing reso-

nance variable φ. For the apsidal resonance this is given by 

φL = � − λ′ , (7)

while for the nodal resonance it is 

φV = � + λ′ − � 

′ − �′ , (8)

where λ′ is the satellite’s mean longitude. For ring particles lo-

cated exactly at either resonance, we see from Eqs. (6) and (4) that

d φL /d t = 0 or d φV /d t = 0 . Examination of the Lagrange perturba-

tion equations shows that stable equilibrium configurations exist

only for φ = 0 (when a < a res ) or φ = π (when a > a res ) ( Murray

and Dermott, 1999 ). 

An ensemble of ring particles located at or near the apsidal

resonance will move on eccentric keplerian orbits given approxi-

mately by the expression: 

r(λ, t) � a [ 1 − e cos (λ − � ) ] . (9)

Substituting for ϖ in terms of φL , this becomes 

r(λ, t) � a [ 1 − e cos (λ − λT − φL ) ] . (10)

where we have used the more specific ‘T’ subscript to denote Ti-

tan’s orbital elements. In physical terms, this means that the orbits

of the perturbed ring particles form a set of nested ellipses that
evolve around the planet at the same rate as Titan’s orbital mo-

ion. Either the pericenter or apocenter of the ellipses are aligned

ith Titan, depending on the value of φL . 

Indeed, the narrow, opaque ringlet located within the Colombo

ap (see Fig. 1 ) has a semimajor axis that is only ∼21 km ex-

erior to the Titan apsidal resonance and is quite well-described

y this expression ( Porco et al., 1984 ). The current best-fitting

odel for this ringlet has a radial amplitude for its centerline of

e = 22 . 3 ± 0 . 2 km and a phase, φL = 173 . 1 ± 0 . 3 ◦ ( Nicholson et al.,

014b ), close to the expected value of 180 ° for orbits exterior to

he resonance. 

At the nodal resonance, we start with the analogous expression

or particles moving on low-inclination keplerian orbits: 

(λ, t) � a sin i sin (λ − �) . (11)

ubstituting for � in terms of φV , we obtain 

(λ, t) � a sin i sin (λ + λT − � T − �T − φV ) , (12)

here we have again used the more specific ‘T’ subscript to denote

itan’s orbital elements. This expression, along with Eq. (10) , forms

he basis of our kinematic models in Section 4 . 

Note that the vertical displacement depends on the angle λ +
T , rather than on the difference, as in Eq. (10) . In physical terms,

his means that the orbits of the perturbed ring particles form a

et of nested inclined circles that revolve around the planet at ap-

roximately the same rate as Titan’s orbital motion, but in the op-

osite direction. (Titan’s apse and node, ϖT and �T , precess with

eriods of order 700 yr and may be treated as constants for all

ractical purposes.) This curious situation arises because inclined

rbits regress under the influence of an oblate planet, and because

he nodal resonance is third-order, unlike the first-order apsidal

esonance. 

We conclude this subsection by estimating the locations of the

esonant radii for the Titan 1:0 and −1 : 0 resonances. For this we

eed accurate values for the local precession rates ˙ � sec and 

˙ �sec .

e use the same expressions provided by Nicholson and Porco

1988) in their study of the Titan ringlet, which include the effects

f Saturn’s zonal gravity harmonics J 2 through J 12 , as well as the

ecular precession induced by the planet’s major satellites, but ne-

lect terms of order e 2 J 2 . (The latter approximation is sufficient,

iven that the eccentricities involved here are of order 3 × 10 −4 or

ess.) In fact, the satellite contributions to the precession rates are

lso negligible: they are of order 1 . 4 × 10 −4 deg d 

−1 at the dis-

ance of the Titan ringlet ( Nicholson and Porco, 1988 ), or ∼10 −5 of

he dominant J 2 term. Solar and general-relativistic perturbations

re even smaller and may be neglected for our purposes. 

Using the gravity harmonics of Jacobson (2008) , we calculate

he predicted radius of the 1:0 ILR to be 77,857.4 km, while the

orresponding radius for the −1 : 0 IVR is 77,521.4 km, or 336 km

nterior to the ILR. (Although the values of J 8 , J 10 and J 12 for Sat-

rn are unknown, we used the same nominal values of −10 , 1 and

0 . 5 adopted by Nicholson and Porco (1988) , all in units of 10 −6 

nd based on interior models.) In their study of the Titan ringlet,

icholson et al. (2014b ) revised the apsidal resonance location to

 res = 77 , 861 . 5 ± 0 . 5 km by using the observed eccentricity of the

inglet (assumed to be resonantly forced) to estimate its distance

rom the resonance. On the plausible assumption that this correc-

ion of 4.1 km reflects small errors in Saturn’s gravity harmonics,

specially for J 6 and above, we can similarly adjust the predicted

alue for the IVR to a = 77 , 525 . 5 ± 0 . 5 km. 2 
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.2. The nodal bending wave 

While we do not attempt to model the bending wave itself in

he present work, it is likely that the wave is ultimately respon-

ible for the existence of the gap we are studying. It thus seems

ise to recap some of the salient characteristics of bending waves

efore we embark on our analysis of the occultation data. 

In the same manner that Lindblad resonances in Saturn’s rings

aunch spiral density waves that propagate away from the resonant

adius, vertical resonances can launch spiral vertical perturbations

nown as bending waves. For a full theoretical discussion, the in-

erested reader is referred to the review by Shu (1984) and for de-

ailed modeling of bending waves see the papers by Gresh et al.

1986) and Lissauer (1985) . Unlike density waves, which propagate

utwards from an ILR and inwards from an OLR, bending waves

enerally propagate inwards from an IVR and outwards from an

VR. This is a consequence of the fact that μ > n > κ in a keple-

ian disk. 

Nodal bending waves, however, violate the usual rule by prop-

gating outwards from the IVR that drives them. This is ultimately

ue to their negative pattern speed (cf. Eq. (4) ). They can thus re-

emble density waves, and in fact have sometimes been mistaken

or them ( Cuzzi et al., 1981; Tiscareno et al., 2013 ). 

A second aspect of bending waves that sets them apart from

ensity waves is their fundamental geometry. A density wave pro-

uces periodic variations in the rings’ surface mass density, usu-

lly manifested observationally as variations in optical depth or

rightness. Bending waves, on the other hand, involve wavelike

ertical displacements in the ring plane, without significant vari-

tions in surface density. The visibility of such variations depends

trongly on the viewing geometry, both on the elevation angle and

n the azimuthal direction at which the light ray penetrates the

ing plane. Bending waves can even ‘disappear’ under conditions

f near normal viewing or illumination, or when they are observed

n a direction parallel to the wave crests. Conversely, they are most

isible when observed at low elevation angles, or orthogonal to the

ave crests. The unusually low elevation angle of the Voyager ra-

io occultation experiment ( B = 5 . 6 ◦) led to a very strong signa-

ure for the Mimas 5:3 bending wave in the A ring ( Gresh et al.,

986 ), as well as to the discovery of the Titan −1 : 0 wave by Rosen

nd Lissauer (1988) . Detailed models for both of these waves led to

he conclusion that the radio beam had penetrated the ring plane

ore than once in the strongest parts of the wave trains, leading

o highly non-sinusoidal wave profiles. 

The radial wavenumber of a bending wave, like that of a density

ave, depends primarily on the surface mass density of the ring, as

ell as the value of m . At distances of at least a few wavelengths

rom a res , it is given by the asymptotic expression ( Hedman and

icholson, 2013; Shu, 1984 ): 

 (r) = 

[
3(m − 1) + 

21 

2 

J 2 

(
R 

a res 

)2 
]

M(r − a res ) 

2 πσ0 a 
4 
res 

(13) 

here σ 0 is the average background surface mass density. Here,

 and R are the mass and equatorial radius of the planet. Typ-

cal density waves in the C ring have wavelengths of 1 –2 km at

istances of a few kilometers from a res , corresponding to surface

ensities of a few g cm 

−2 ( Baillié et al., 2011; Hedman and Nichol-

on, 2014 ), but for waves driven at nodal resonances, where m = 1

nd the term proportional to J 2 dominates the quantity in brack-

ts, the wavelengths are much longer. 3 As a result, the Titan nodal

ending wave has a wavelength of ∼5 km even at a distance of
3 This arises due to the absence of the particle’s mean motion in the resonance 

onditions, Eqs. (6) and (4) . 

a  

a  

r  

r  
5 km from the resonance and its signature can be resolved out to

75 km from a res . 

Rosen and Lissauer (1988) provide convenient numerical ex-

ressions for the radial wavelength and vertical amplitude of the

itan −1 : 0 bending wave, in terms of the unknown value of σ 0 : 

 π/k � 209 

σ0 

r − a res 
km , (14)

nd 

 V � 

334 

σ 1 / 2 
0 

meters . (15) 

hese are based on analytic expressions for linear waves derived

y Shu (1984) . 

For the Titan nodal bending wave, we thus expect to see a ver-

ical distortion with an m = 1 spiral pattern, rotating opposite to

he direction of orbital motion with a pattern speed �p � −n T =
22 . 577 ◦ d 

−1 , and propagating outwards from the IVR at ∼77,

25 km. A final quirk is that this wave is expected to take the form

f a leading spiral, unlike the more common trailing waves with m

 1. This is yet another consequence of the negative pattern speed.

. Observations 

For the present study, we use data from a series of 44 stellar

ccultations observed by the Visual and Infrared Mapping Spec-

rometer (VIMS) on the Cassini spacecraft ( Brown et al., 2004 ). In

ccultation mode, the instrument’s imaging capability is disabled

nd it stares in a fixed direction towards the target star. At every

ntegration (typically 20–80 ms in duration), a 31-channel spec-

rum of the star is acquired and recorded, along with the start time

f the measurement. In order to reduce background light from the

ings to a minimum, we use only the data obtained at a wave-

ength of 2.9 microns, corresponding to a very strong water ice

bsorption band. The measured stellar flux as a function of time

s converted to the line-of-sight transmission through the rings T ,

y normalizing the observed count rate by that obtained when the

tar is seen outside the rings, and then to normal optical depth via

he usual expression 

n = − sin | B ∗| ln (T ) (16)

here B ∗ is the elevation of the star above the ring plane. The

esponse of the instrument to the incident flux is quite linear, to

ithin the accuracy of ground calibrations, but the signal to noise

atio varies considerably between datasets, primarily because of

he varying brightness of the stars employed. Typically, the instru-

ental noise level is < 1% and the statistical errors in τ n are <

.01. However, the zero level for τ n can vary during the course of

n occultation if the star moves slightly within the field of view

f the detector, changing the unocculted stellar count rate; we do

ot attempt to correct such systematic errors here as we are pri-

arily interested in the locations of features rather than in model-

ng their optical depths. For further details on how these observa-

ions are made and reduced the reader is referred to the papers by

edman et al. (2007b ); Nicholson and Hedman (2010) or Hedman

nd Nicholson (2013) . 

Occultation geometry is calculated based on the reconstructed

pacecraft trajectory, the known position of the star from the Hip-

arcos catalog, corrected for proper motion and parallax at Sat-

rn ( ESA, 1997 ) and the direction of Saturn’s pole ( Jacobson et al.,

011 ). Such ab initio calculations, however, are typically in error

y ∼1 km, due mostly to residual trajectory uncertainties, so we

lso apply a simple timing correction to each dataset based on an

nalysis by R.G. French of a large suite of occultations by circular

ing features. (See Nicholson et al., 2014a for more details.) The

esulting ring radii are on a scale that is internally consistent to
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Fig. 2. The region of the Titan −1 :0 bending wave as seen in a series of optical 

depth profiles derived from VIMS stellar occultations obtained over a period of 6 

years, for a wide range of geometries. The individual profiles are offset vertically 

and arranged in order of increasing phase parameter θ = λ + λT − � T − �T , as la- 

beled on each profile. The Titan −1 :0 IVR is located at a radius of 77,525 km (see 

text). In most profiles between 5 and 7 wave crests can be seen. Note the variable- 

width gap that appears at ∼77532 km in many of the profiles. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. The region of the Titan −1 :0 bending wave as seen in a series of 14 opti- 

cal depth profiles derived from VIMS γ Cru occultations with very similar geome- 

try. The individual profiles are offset vertically and arranged in order of increasing 

phase parameter θ = λ + λT − � T − �T , as labeled on each profile. The Titan −1 :0 

IVR is located at a radius of 77,525 km. Note the gradual change in appearance of 

the region at 77,532 km from a gap to a peak at θ ∼ −147 ◦, and then back to a 

gap at θ ∼ +49 ◦ . Also visible here is the outward progression of the bending wave 

crests with increasing phase, indicative of a leading spiral waveform. 
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within 200 m, and whose absolute uncertainty is believed to be

∼300 m or less. The final product for each occultation is thus a ra-

dial profile of normal optical depth τ n ( r ) at an effective wavelength

of 2.9 μm. 

In Fig. 2 we present a series of profiles for the region contain-

ing the Titan nodal bending wave, obtained from 11 occultations

observed between March 2007 and July 2013. Each profile is iden-

tified by the name of the star and by a number (the ‘Rev’) that

identifies the particular Cassini orbit on which the observation was

obtained; an appended ‘i’ or ‘e’ indicates the ingress or egress por-

tion of the occultation, some of which yielded two cuts across the

C ring. These particular profiles were chosen for their high signal

to noise ratios, and also to illustrate the variable appearance of the

wave and of the embedded narrow gap. The profiles are arranged

in order of increasing values of the vertical phase parameter 

θ = λ + λT − � T − �T , (17)

following Eq. (12) . In the best data, as many as twelve crests can be

identified in the wave between radii of 77,535 and 77,575 km, but

in all cases the amplitude of the wave seems to decrease notice-

ably and abruptly at ∼77, 560 km. A similar decrease was observed

in the Voyager occultation data by Rosen and Lissauer (1988) , who

refer to the strong-wave region as the ‘near wave’ and the weak-

wave region as the ‘far wave’. We will also adopt this convenient

terminology. In some data sets – most notably the two β Peg oc-

cultations shown here – the wave profile is strongly peaked, sug-

gesting that the line of sight to the star is almost tangential to

the distorted ring plane at these locations. These generally corre-

spond to stars with smaller elevation angles with respect to the

ring plane; for β Peg, B ∗ = 31 . 7 ◦. 

Turning now to the gap seen in the inner part of many of these

wave profiles at a radius of ∼77, 532 km, we see a surprising di-

versity in its appearance, although in no case do we see a gap as

wide as the 15 km observed in the Voyager RSS occultation pro-

file ( Rosen and Lissauer, 1988 ). Instead, the gap is widest in the

β Peg 170 and λ Vel 173 profiles, where its radial width is 5.6 and

4.6 km, respectively. It is narrowest in R Cas 65 at ∼0.8 km. In

several of the profiles shown in Fig. 2 , there is no gap at all, but
ather a local peak in optical depth at about the same radius. This

eak ranges in width from ∼1.2 km in R Cas 194 and μ Cep 185

o 3.0 km for β Peg 104. When we do see a gap, frequently it is

anked by maxima in optical depth. Conversely, when we see a

eak there is often a very narrow dip on one or both sides, though

ot an empty gap; the two β Peg profiles provide perhaps the best

xamples. 

On first inspection, the variable appearance of the gap in Fig. 2

ppears to be random, both in time and with respect to the phase

arameter θ that is expected to control vertical perturbations by

he nearby Titan −1 : 0 IVR (cf. Eq. 12 ). But if this variable appear-

nce is due in part to vertical distortions, then we also need to

onsider the effect of the varying observation geometry between

he occultations. 

Fortunately a convenient way to control for viewing geometry

s provided by a sequence of 17 occultations of the star γ Cru

bserved over an 8-month period in 20 08/20 09. All of these oc-

ultations have very similar geometry, with identical stellar eleva-

ion angles, B ∗ = −62 . 35 ◦ and inertial longitudes that lie within a

airly limited range ( ∼50 °). In Fig. 3 we present profiles from 14

f these occultations, again sorted by the phase parameter θ . A

uch clearer pattern now emerges in the region around the gap

t 77,532 km. 

Starting at the bottom of this figure, at θ � −150 ◦, we see two

rofiles with extremely narrow gaps ( ∼0.5 km). The next three

rofiles, from Revs 93, 101 and 81, span a fairly wide range of

147 ◦ < θ < −31 ◦ and all show prominent but narrow peaks, of

hich the widest is γ Cru 101 at −47 . 9 ◦. Above these we have

hree profiles that might be described as ambiguous, from Revs 96,

9 and 94, all of which fall in a restricted range of phase between

10 . 3 ◦ and +8 . 6 ◦. But starting at Rev 77 at θ = +49 . 4 ◦, and con-

inuing through Rev 71 at +168 . 2 ◦, all six remaining profiles show

efinite gaps. Moreover, these gaps vary systematically in width,

eaching a maximum of 2.4 km at θ = 100 ◦ for γ Cru 100. 

This systematic variation in gap/peak morphology is evidently

trongly correlated with the phase parameter θ , which in turn

uggests that the underlying cause is to be found in vertical
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4 Except for the Voyager RSS occultation, where the radial range was 77,510–

77,540 km 

5 Except for the Rev 104 β Pegasii occultation, where a maximum optical depth 

of 0.1 was used. 
6 The VIMS instrument pauses briefly after every 64 samples to obtain an instru- 

mental background measurement, resulting in periodic gaps in the light curve. 
istortions of the ring plane by the Titan −1 : 0 resonance. To a first

pproximation, we see a periodic variation in peak or gap width

ith extrema at θ ∼ −50 ◦ and ∼+ 100 ◦ and transitions between

eak and gap morphology at θ ∼ −147 ◦ and ∼+ 10 ◦. That this cor-

elation with θ is not simply a coincidence is demonstrated by the

act that, over the 8-month time span of the γ Cru occultations,

he pattern of vertical distortions due to the Titan IVR has ro-

ated by ∼8 × 30 × 22 . 5 ◦ d 

−1 � 5400 ◦, or 15 complete revolutions

round the planet. The probability that we should see such a corre-

ation by chance is thus very small indeed. We therefore conclude

hat the apparent variations in the radial width of the gap at ∼77,

32 km are in all probability revolving around Saturn at a pattern

peed of �p � −n T , as expected for perturbations forced by the

itan −1 : 0 IVR. In the next section we develop a simple geomet-

ic model that can account quantitatively for these variations, not

nly in the γ Cru data but in all of the available VIMS occultation

rofiles. 

Fig. 3 also serves to illuminate the geometry of the bending

ave itself. Note that the wave appears relatively muted in these

rofiles, due to the high elevation angle. If one mentally connects

he peaks in (apparent) optical depth from one profile to the next

t is also clear that the radius of any given peak increases with in-

reasing values of θ , or equivalently with increasing inertial longi-

ude at a given instant of time. This implies that the wave is in-

eed a leading spiral, as predicted by Rosen and Lissauer (1988) .

his sets it apart from all other known density and bending waves

een in Saturn’s rings with the exception of the Iapetus −1 : 0 wave

 Tiscareno et al., 2013 ). Furthermore, it is apparent on closer in-

pection of this figure that there is only a single arm in the spiral,

s tracing any peak from bottom to top of the diagram brings one

o the next peak in the wave. The m = 1 nature of the nodal bend-

ng wave is thus also confirmed by our observations. Note that in

ost of the γ Cru profiles only the near-wave region is clearly vis-

ble, at r < 77, 560 km, unlike the situation for the lower-elevation

ccultations in Fig. 2 where the wave can be traced as far as ∼77,

85 km in some instances. 

Before leaving Fig. 3 , we draw the reader’s attention to two

arrow features located on either side of the prominent gap at

7,532 km. In particular, there is a persistent minimum in opti-

al depth at ∼77, 528 km, while at ∼77, 535 km there is a narrow

eature that often appears as a gap, but in a few instances, such as

he γ Cru profiles for revs 77 and 100, appears instead as a peak in

ptical depth. These features are also seen in several of the profiles

n Fig. 2 . They do not appear to form part of the bending wave it-

elf and we will return to their possible interpretation in Section 5 .

. Data analysis 

.1. Modeling the gap width variations 

The variations in gap width seen in Fig. 3 , where the occultation

eometry is quite similar for each observation, strongly suggest

hat the underlying perturbation is vertical in nature, and forced by

he Titan −1 : 0 nodal resonance. A simple model that could account

or these observations involves a narrow gap of uniform width, ei-

her or both of whose edges is perturbed vertically by the IVR. A

ketch of such a model is presented in Fig. 9 below. As the pat-

ern of perturbations rotates at the pattern speed �p � −n T , the

nner and outer edges will alternately approach and recede from

ne another, when viewed from any direction other than at normal

ncidence. If the vertical amplitude of the inclined edge(s) is suffi-

iently large, then the two edges will appear to overlap at some

hases and the gap will disappear. A minimum requirement for

his to happen is that the vertical amplitude A V be greater than

r tan B ∗, where �r is the radial gap width and B ∗ is the elevation

f the stellar line of sight with respect to the ring plane. To first or-
er, it does not matter whether it is the inner or outer edge that is

erturbed, or if both edges are perturbed with differing amplitudes

nd/or phases; only the differences in amplitude and/or phase be-

ween the two edges are really important to the gap width varia-

ions. 

In order to test such a model, we first need to quantify the vari-

tions in gap width seen in Figs. 2 and 3 . To this end, we wrote an

utomated procedure that first searches for an empty gap within

he radial range 77,528.0 to 77,535.0 km 

4 in each occultation pro-

le, and then determines the radii within this range of the falling

nd rising edges. These are defined as the points where the gradi-

nt d τ / dr is negative and the largest in magnitude ( r 1 ) or positive

nd largest in magnitude ( r 2 ). In the event that no gap is found,

hen the program searches for a peak, defined by the criterion that

he maximum optical depth exceeds 0.35. 5 Again, the falling and

ising edges are measured and designated r 1 and r 2 . In each case,

he apparent radial width of the gap W is recorded as r 2 − r 1 , but

 negative value of W indicates a peak in τ instead of a gap. All

easured profiles were inspected by eye to verify that the edges

dentified by the automated procedure were sensible. Uncertain-

ies in r 1 and r 2 are estimated by taking the difference in radius

etween adjacent samples in each data set, as we did not attempt

o interpolate between points. These do not include systematic un-

ertainties in the radius scale for each occultation, though as noted

bove these are believed to be only ∼200 m. For the Voyager RSS

ccultation, we assumed uncertainties in r 1 and r 2 of 400 m, the

adial resolution of the diffraction-corrected profile. 

Table 1 lists our measured radii, r 1 and r 2 , along with the cor-

esponding event time measured in seconds from the J20 0 0 epoch

20 0 0 Jan 1.5 ET), ring longitude λ, the value of B ∗, Titan’s angu-

ar elements λT , �T and ϖT , the phase parameter θ and several

ther secondary quantities defined below. In Fig. 4 we show se-

ected profiles with the corresponding measured edge radii, cho-

en to illustrate both wide and narrow gaps as well as peaks of

arying width. Optical depth profiles of the gap region for all of

ur measured occultation profiles are shown at higher resolution

n Appendix A. Out of a total of 44 occultation profiles, 29 yielded

seful measurements, seven of which are peaks and the remainder

re gaps. Measured widths vary from −3 . 0 to 5.6 km. In ten cases

here no clear gap or peak was identified, or where the visible

ap was too narrow to measure accurately, the radii in the table

re set to zero. An additional five profiles were discarded because

f an unfortunately-located data dropout. 6 Table 2 provides a list

f the 15 occultation profiles that were not included in our analy-

is, together with a brief explanation of the reason(s) for omitting

ach one, and whether or not an obvious gap or peak is seen in

he data. 

Our first model assumes a constant intrinsic radial gap width

 0 , and vertical distortions at one or both edges for which the

ifferential am plitude is governed by Eq. (12) : 

z(λ, t) = A G sin (θ − φV ) , (18)

here we again use the shorthand notation θ = λ + λT − � T − �T .

he parameter A G is the difference in vertical amplitude, a sin �i

etween the outer and inner edges of the gap. (For simplicity, we

ave assumed here that the ascending nodes of both edges are

ligned, i.e., that the resonance variable φV is the same at both

dges. We will relax this assumption in the next section.) The ap-

arent radial offset of a ring segment in an occultation profile
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Table 1 

Occultation observations of the gap in the Titan −1 :0 bending wave. 

Star Rev ET (seconds) r 1 (km) r 2 (km) λR B ∗ λ∗ λT �T ϖT λR − λT θ λR − λ∗ β

alpAur 034 i 218339789 .285 77532.570 ± 0.886 77533.453 ± 0.887 17 .5 50 .9 −46 .6 179 .9 −110 .9 −152 .4 −162 .4 100 .7 64 .2 0 .354 

RHya 036 i 220948858 .922 0.0 0 0 ± 0.0 0 0 0.0 0 0 ± 0.0 0 0 170 .3 −29 .4 70 .8 140 .2 −110 .8 −152 .4 30 .2 −146 .3 99 .5 0 .293 

alpAur 041 i 227949821 .298 77531.719 ± 0.157 77534.078 ± 0.157 338 .8 50 .9 −46 .6 170 .6 −110 .8 −152 .2 168 .2 52 .4 25 .4 0 .734 

RCas 065 i 262013534 .368 77529.688 ± 0.273 77530.508 ± 0.273 43 .1 56 .0 −137 .1 71 .4 −110 .7 −151 .6 −28 .3 16 .8 −179 .8 −0 .673 

gamCru 071 i 266193909 .739 77530.922 ± 0.281 77532.055 ± 0.283 182 .6 −62 .3 50 .7 83 .3 −110 .7 −151 .6 99 .3 168 .2 131 .9 0 .350 

gamCru 073 i 267426581 .797 0.0 0 0 ± 0.0 0 0 0.0 0 0 ± 0.0 0 0 181 .6 −62 .3 50 .7 47 .1 −110 .7 −151 .5 134 .5 130 .9 130 .9 0 .343 

gamCru 077 i 269858704 .956 77532.469 ± 0.144 77533.477 ± 0.143 180 .5 −62 .3 50 .7 −33 .4 −110 .8 −151 .5 −146 .1 49 .4 129 .8 0 .336 

gamCru 078 i 270467180 .572 77530.758 ± 0.144 77531.188 ± 0.144 180 .3 −62 .3 50 .7 119 .4 −110 .8 −151 .5 60 .9 −158 .1 129 .6 0 .334 

gamCru 079 i 271046046 .578 0.0 0 0 ± 0.0 0 0 0.0 0 0 ± 0.0 0 0 178 .5 −62 .3 50 .7 −83 .0 −110 .8 −151 .4 −98 .5 −2 .3 127 .8 0 .321 

gamCru 081 i 272320912 .482 77532.477 ± 0.267 77531.672 ± 0.267 177 .6 −62 .3 50 .7 −110 .8 −110 .8 −151 .4 −71 .6 −31 .0 127 .0 0 .315 

gamCru 082 i 272956697 .097 77531.383 ± 0.268 77532.977 ± 0.267 177 .2 −62 .3 50 .7 51 .9 −110 .8 −151 .4 125 .3 131 .2 126 .5 0 .312 

gamCru 086 i 275504222 .525 77532.227 ± 0.400 77533.828 ± 0.400 176 .1 −62 .3 50 .7 0 .5 −110 .8 −151 .4 175 .6 78 .7 125 .4 0 .304 

gamCru 089 i 277409273 .905 77530.531 ± 0.268 77531.070 ± 0.268 175 .8 −62 .3 50 .7 133 .5 −110 .8 −151 .3 42 .3 −148 .5 125 .2 0 .302 

gamCru 093 i 280045799 .684 0.0 0 0 ± 0.0 0 0 0.0 0 0 ± 0.0 0 0 208 .9 −62 .3 50 .7 102 .5 −110 .8 −151 .3 106 .5 −146 .5 158 .2 0 .487 

gamCru 094 i 280681953 .353 0.0 0 0 ± 0.0 0 0 0.0 0 0 ± 0.0 0 0 191 .6 −62 .3 50 .7 −85 .1 −110 .8 −151 .2 −83 .2 8 .6 140 .9 0 .407 

gamCru 096 i 282014757 .256 0.0 0 0 ± 0.0 0 0 0.0 0 0 ± 0.0 0 0 184 .9 −62 .3 50 .7 −97 .2 −110 .9 −151 .2 −77 .9 −10 .3 134 .2 0 .365 

gamCru 100 i 285034650 .489 77530.547 ± 0.142 77532.961 ± 0.142 225 .9 −62 .3 50 .7 −27 .9 −110 .9 −151 .2 −106 .2 100 .0 175 .2 0 .522 

gamCru 101 i 285861804 .302 0.0 0 0 ± 0.0 0 0 0.0 0 0 ± 0.0 0 0 225 .9 −62 .3 50 .7 −175 .9 −110 .9 −151 .2 41 .8 −47 .9 175 .2 0 .522 

gamCru 102 i 286686970 .887 77531.391 ± 0.342 77533.102 ± 0.342 225 .5 −62 .3 50 .7 40 .4 −110 .9 −151 .2 −174 .8 168 .0 174 .9 0 .522 

TXCam 102 i 286988465 .218 0.0 0 0 ± 0.0 0 0 0.0 0 0 ± 0.0 0 0 302 .9 61 .3 −48 .8 116 .5 −110 .9 −151 .2 −173 .6 −38 .5 −8 .3 0 .542 

betPeg 104 i 288914760 .900 77535.055 ± 0.423 77532.094 ± 0.423 341 .0 31 .7 −147 .7 −94 .1 −110 .9 −151 .1 75 .0 148 .9 128 .7 −1 .013 

alpAur 112 i 297808816 .493 0.0 0 0 ± 0.0 0 0 0.0 0 0 ± 0.0 0 0 8 .2 50 .9 −46 .6 65 .3 −111 .1 −151 .0 −57 .1 −24 .5 54 .8 0 .468 

alpOri 117 i 304633645 .446 0.0 0 0 ± 0.0 0 0 0.0 0 0 ± 0.0 0 0 44 .3 11 .7 −41 .0 49 .5 −111 .2 −150 .8 −5 .2 −4 .3 85 .3 0 .400 

omiCet 135 i 333276705 .145 0.0 0 0 ± 0.0 0 0 0.0 0 0 ± 0.0 0 0 347 .5 3 .5 −95 .7 −22 .1 −111 .7 −150 .3 9 .6 −132 .7 83 .2 1 .958 

alpCMa 168 i 394197559 .388 77530.977 ± 0.391 77533.320 ± 0.390 80 .8 −13 .5 −30 .8 53 .1 −112 .5 −149 .3 27 .7 35 .6 111 .6 1 .533 

alpCMa 169 i 396265908 .655 77532.172 ± 0.389 77531.008 ± 0.389 80 .4 −13 .5 −30 .8 −123 .8 −112 .5 −149 .2 −155 .8 −141 .7 111 .2 1 .508 

betPeg 170 e 397972561 .762 77528.117 ± 0.175 77533.703 ± 0.175 77 .2 31 .7 −147 .7 −36 .2 −112 .5 −149 .2 113 .3 −57 .2 −135 .1 −1 .147 

betPeg 172 i 401621329 .364 0.0 0 0 ± 0.0 0 0 0.0 0 0 ± 0.0 0 0 313 .7 31 .7 −147 .7 −166 .7 −112 .6 −149 .2 120 .4 48 .7 101 .4 −0 .320 

lamVel 173 i 403834486 .398 77528.883 ± 0.384 77533.492 ± 0.384 155 .4 −43 .8 0 .3 51 .4 −112 .6 −149 .2 104 .0 108 .5 155 .1 0 .946 

alpLyr 175 i 406604371 .860 77531.953 ± 0.248 77534.188 ± 0.248 266 .6 35 .2 144 .6 55 .0 −112 .6 −149 .1 −148 .4 −136 .7 122 .0 −0 .751 

WHya 179 i 411903454 .213 77532.883 ± 0.144 77532.445 ± 0.144 149 .1 −34 .6 75 .7 2 .6 −112 .6 −149 .0 146 .4 53 .4 73 .3 −0 .415 

WHya 180 i 413052876 .409 77531.242 ± 0.142 77532.945 ± 0.142 149 .7 −34 .6 75 .7 −55 .3 −112 .6 −149 .0 −155 .0 −4 .0 73 .9 −0 .400 

WHya 181 i 414202115 .325 77530.078 ± 0.142 77532.492 ± 0.142 149 .8 −34 .6 75 .7 −116 .6 −112 .6 −148 .9 −93 .7 −65 .2 74 .0 −0 .398 

muCep 185 e 418014163 .987 77533.938 ± 0.087 77532.641 ± 0.087 39 .9 59 .9 −175 .5 155 .1 −112 .7 −148 .9 −115 .3 96 .6 −144 .7 −0 .473 

RCas 185 i 418068359 .832 0.0 0 0 ± 0.0 0 0 0.0 0 0 ± 0.0 0 0 334 .2 56 .0 −137 .1 169 .9 −112 .7 −148 .9 164 .3 45 .6 111 .3 −0 .244 

gamCru 187 i 419920448 .053 77532.812 ± 0.099 77533.211 ± 0.099 155 .5 −62 .4 50 .7 −60 .8 −112 .6 −148 .9 −143 .7 −3 .8 104 .8 0 .134 

gamCru 187 e 419929826 .253 77530.602 ± 0.099 77532.492 ± 0.396 221 .8 −62 .4 50 .7 −58 .3 −112 .6 −148 .9 −79 .9 65 .0 171 .1 0 .518 

muCep 191 i 423057424 .470 77531.648 ± 0.195 77532.820 ± 0.195 290 .7 59 .9 −175 .5 35 .4 −112 .6 −148 .9 −104 .7 −132 .4 106 .2 −0 .162 

RCar 191 i 423391571 .838 77529.750 ± 0.229 77530.898 ± 0.229 146 .5 −63 .5 −0 .2 119 .7 −112 .7 −148 .8 26 .8 167 .7 146 .7 0 .417 

RCas 191 i 423133926 .880 0.0 0 0 ± 0.0 0 0 0.0 0 0 ± 0.0 0 0 297 .7 56 .0 −137 .1 54 .3 −112 .6 −148 .9 −116 .7 −106 .5 74 .8 0 .177 

muCep 193 i 425124139 .750 0.0 0 0 ± 0.0 0 0 0.0 0 0 ± 0.0 0 0 290 .9 59 .9 −175 .5 −144 .0 −112 .6 −148 .8 75 .0 48 .4 106 .4 −0 .164 

2Cen 194 i 426575188 .025 77530.484 ± 0.401 77532.094 ± 0.401 157 .6 −40 .7 75 .6 −123 .8 −112 .6 −148 .8 −78 .6 −64 .8 82 .0 −0 .161 

2Cen 194 e 426584852 .205 77533.438 ± 0.401 77531.430 ± 0.401 225 .1 −40 .7 75 .6 −121 .1 −112 .6 −148 .8 −13 .8 5 .4 149 .5 1 .001 

RCas 194 e 426259216 .449 77532.859 ± 0.229 77531.711 ± 0.229 83 .3 56 .0 −137 .1 149 .5 −112 .7 −148 .8 −66 .2 134 .2 −139 .6 −0 .513 

Table 2 

List of rejected occultation profiles. 

Star/rev θ a βb Data gap? Notes 

R Hya 036 −146 0 .30 Unresolved gap 

gamCru 073 131 0 .34 Y 1–2 km wide gap 

gamCru 079 −2 0 .32 No obvious feature 

gamCru 093 −146 0 .49 Y No obvious feature 

gamCru 094 9 0 .41 No obvious feature 

gamCru 096 −10 0 .36 Y Narrow peak? 

gamCru 101 −48 0 .52 Y 1-2 km wide peak 

TX Cam 102 −38 0 .54 2 km peak; bad geometry 

alpAur 112 −24 0 .47 2 km peak; low resol’n 

alpOri 117 −4 0 .40 No obvious feature 

omiCet 135 −133 1 .96 Broad, indistinct peak; low resol’n 

betPeg 172 49 −0 .32 Y No obvious feature 

R Cas 185 46 −0 .24 Indistinct narrow peak 

R Cas 191 −106 0 .18 Indistinct narrow peak 

muCep 193 48 −0 .16 No obvious feature 

a θ = λ + λT − � T − �T . 
b β = ( tan B eff ) 

−1 = cos (λ − λ∗) / tan B ∗ . 
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Fig. 4. A subset of occultation profiles for the region of the gap seen in the Titan −1 :0 bending wave illustrating our measurements of the inner and outer gap edges. These 

are indicated by vertical dot-dashed lines. The first profile is from the Voyager 1 RSS occultation, while the remainder are from Cassini VIMS stellar occultations, as labeled. 

Crosses indicate individual occultation measurements, acquired at intervals of 20 to 80 ms. Short data gaps in some VIMS profiles ( e.g., W Hya 179i or W Hya 181i) indicate 

periods of background measurement. The apparent gap width is greatest in the Voyager 1 and β Peg 170e profiles, and narrowest in γ Cru 187i. The widest peak is in β Peg 

104i and the narrowest is in W Hya 179i. 
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epends on its vertical displacement z , on B ∗, and on the longitude

f observation λ. If the inertial longitude of the line of sight to

he star, projected onto the ring plane, is denoted by λ∗, then the

pparent radial displacement is given by δr = −z/ tan B eff , where

he effective elevation angle, B eff is given by Gresh et al. (1986) ;

erousek et al. (2011) ; Nicholson et al. (1990) : 

an B eff = 

tan B ∗
cos (λ − λ∗) 

. (19) 

or any particular star, both B ∗ and λ∗ are fixed, but we see that

r depends on z and λ, both of which vary between occultations.

or occultations near the ring ansae (where λ − λ∗ � ±90 ◦), B eff →
90 ° and the radial displacement is almost zero, even if z is sub-

tantial. But for occultation cuts near the sub-spacecraft point or

ts antipode, where λ − λ∗ � 180 ◦ or 0 °, B eff � ±B ∗. In such a sit-

ation, especially if | B ∗| is small, the apparent radial displacement

an be much greater than the actual vertical displacement z . 

Combining these two expressions, we obtain the following

odel for the apparent radial width of the gap (or peak): 

 mod (λ, t) = W 0 − A G β sin (θ − φV ) , (20)

here we introduce the convenient parameter β ≡ ( tan B eff ) 
−1 =

os (λ − λ∗) / tan B ∗. Note that, in this expression, a negative value

f W indicates that the outer edge of the gap will appear at a ra-

ius less than that of the inner edge. In such an instance, the two
dges of the gap will overlap along the line of sight to the star,

esulting in a doubling of the measured optical depth. This we in-

erpret as the origin of the peaks in the occultation profiles, and

he width of the model peak is simply given by | W |. Thus our

odel applies both to gaps and peaks, according as W is posi-

ive or negative. We fit this model to the observations using the

DL MPFIT2DFUN routine ( Markwardt, 2009 ), which performs a

onlinear weighted least-squares fit. Individual data points are as-

igned nominal uncertainties equal to the radial sampling interval

f the data set. 

Our best fit to the Cassini data alone is shown as the red

urve in Fig. 5 , where we plot both the apparent radial width of

he gap W ( λ, t ) vs the phase angle θ in the top panel, and the

orresponding inferred vertical displacement �z = (W 0 − W ) /β =
(W 0 − W ) tan B eff in the bottom panel. �z is simply the differ-

nce between the heights of the outer and inner gap edges at a

articular longitude and time. This fit yields a radial gap width,

 0 = 0 . 59 ± 0 . 07 km and a vertical amplitude A G = 4 . 35 ± 0 . 23 km.

he fitted value of the ascending node corresponds to a reso-

ance variable φV = 203 ± 2 ◦. Note that, with this simple model,

e cannot determine if the inner gap edge is less inclined than the

uter edge, or vice versa; we only know their differential ampli-

ude. The χ2 per degree-of-freedom for this fit is 0.56, which sug-

ests that we may have been overly conservative in estimating our
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Fig. 5. Apparent radial widths and inferred vertical displacements for the gap at 77,532 km plotted as a function of the phase parameter θ = λ + λT − � T − �T . Each occul- 

tation is represented by a ‘plus’ symbol with its corresponding uncertainty. The top panel shows the measured gap widths W = r 2 − r 1 , where negative values correspond to 

peaks rather than gaps (see text). The bottom panel shows the inferred vertical displacement �z between the inner and outer edges of the gap, together with our best-fitting 

models as described by Eq. (20) . The fit shown in red excludes the Voyager RSS point at θ = −38 . 8 ◦, which is plotted here in blue. The fitted amplitude, A G = 4 . 35 ± 0 . 23 km 

and the inferred radial width of the gap, W 0 = 0 . 59 ± 0 . 09 km. The fit in green includes the Voyager RSS point; it yields a reduced vertical amplitude of 3.71 ± 0.13 km but 

the same gap width. (Note that the Voyager RSS apparent gap width of 14 km is off-scale in the upper panel.). 
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measurement uncertainties. The true uncertainties in the fit pa-

rameters may thus be smaller than those shown in Fig. 5 by a fac-

tor of about 
√ 

0 . 56 � 0 . 75 . 

A closer inspection of this figure shows that the gap’s vertical

amplitude, A G is primarily constrained by the widest gaps and and

peaks. The key gaps are β Peg 170, which at W = 5 . 6 km shows

the widest gap in the Cassini data, and λ Vel 173 with W = 4 . 6 km.

The most important peak is β Peg 104, with W = 3 . 0 km. All of

these data points have relatively small uncertainties, and corre-

spond to values of θ near −60 ◦ or 120 °. (Note that a gap does

not necessarily correspond to a positive value of �z , or vice versa:

the two widest gaps ( β Peg 170 and λ Vel 173) correspond to

�z = +4 . 5 km and −4 . 3 km, respectively.) The model value of φV ,

on the other hand, is best-constrained by data points that fall near

the ascending or descending node at θ = −160 ◦ or +20 ◦. In our

data set this happens to include the two points with the smallest

value of B ∗: α CMa 168 and 169. These two occultations yielded a

relatively narrow gap and peak, with W = 2 . 3 km and −1 . 2 km, re-

spectively. Should either of these occultation cuts have fallen closer

to θ = −70 ◦ or +110 ◦, and also well away from the ring ansa, we

might have seen a gap as wide as 17 km. 

Our Cassini -only model fit in Fig. 5 also comes fairly close to ac-

comodating the Voyager RSS occultation; despite its very large ap-

parent gap width of 14 km, the inferred value of �z for this datum

is within ∼1 km of the model curve. In this case a very low value

of B ∗ = 5 . 6 ◦, combined with a fortuitous occultation track that

crossed the rings well away from the ansa resulted in an unusu-

ally large value of β = −4 . 51 , or B eff = −12 . 5 ◦. The implied vertical

displacement, �z = −(W − W ) /β = 3 . 0 km, whereas the Cassini -
0 
nly model predicts that �z = 3 . 7 km. Indeed, when we add the

oyager RSS data point to the fit, as shown by the green curve in

ig. 5 , the radial gap width is unchanged at 0.59 ± 0.07 km while

he ascending node shifts only slightly to 199 ± 2 °. However, the

ertical amplitude A G is reduced to 3.71 ± 0.13 km, reflecting the

ery small error bars on the Voyager measurement and the fact

hat this datum falls significantly below the Cassini -only model fit.

But the χ2 per degree-of-freedom for this fit is almost twice

hat that of the Cassini -only fit; requiring the model to fit the Voy-

ger point, whose vertical uncertainty is very small, forces sys-

ematic residuals on the Cassini data. This is particularly notice-

ble in the relatively large residuals for β Peg 170, 2 Cen 194 and

Peg 104, all of which fall at least 1 σ outside the green model

urve. This suggests that the gap’s vertical amplitude may actually

ave increased somewhat since the Voyager epoch. However, the

ombined fit is statistically acceptable and suggests that our sim-

le model is largely successful in accounting for both the observed

ap width variations in the Cassini data and the anomalously-large

idth seen in the Voyager RSS profile. 

We can gain more insight into why some occultations yield par-

icularly wide gaps, or broad peaks, by plotting the distribution of

ll the observations vs the two key geometric parameters, θ and

= ( tan B eff ) 
−1 , as shown in Fig. 6 . Here, open circles indicate ob-

ervations with measureable gaps, filled circles indicate observa-

ions with clear peaks, and crosses denote ambiguous or otherwise

nmeasurable profiles. Dot-dashed lines show contours of constant

ap width W , as predicted by the Cassini -only model parameters in

ig. 5 , for W = 1 , 2, 3, 4 and 5 km. Dotted lines show contours of

onstant peak width for the same absolute values of W . The solid
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Titan wave gap geometry
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Fig. 6. The distribution of VIMS occultation observations of the Titan nodal bend- 

ing wave, as a function of the geometric parameters θ = λ + λT − � T − �T and 

β = cos (λ − λ∗) / tan B ∗ . Each occultation is represented by a symbol: open circles 

denote profiles with gaps at 77,532 km; filled circles denote peaks in optical depth; 

crosses denote profiles that are ambiguous or could not be measured for any other 

reason. Dot-dashed lines indicate contours of constant gap width predicted by our 

Cassini-only model fit, Eq. (20) for W = 1 , 2, 3, 4 and 5 km, while dotted lines in- 

dicate contours of constant peak width for W = −1 , −2, −3, −4 and −5 km. The 

solid curve corresponds to an apparent gap width of W = 0 , where neither a gap 

nor a peak is expected. Note that most of the ambiguous or unmeasurable profiles 

lie close to this line. Selected data points are identified, including all profiles shown 

in Figs. 2 and 4 . The band of points with 0.3 < β < 0.5 are almost all γ Cru occs, 

for which the value of B eff was approximately constant. 

l  

W  

a  

w  

o  

g  

w  

a  

a  

r  

<  

w  

l

 

f  

d  

o  

o  

q  

h  

a  

m  

w  

a  

t

 

γ  

α  

0  

t  

o  

t

 

t  

l  

p  

t  

n  

d  

i  

v  

t  

p  

β  

a  

a  

a  

t  

s

o  

N

 

b

4

 

s  

l  

h  

w  

o  

i  

d  

p  

u  

d  

g  

w  

b  

t  

n  

a  

r  

u  

o  

a  

a  

(

 

a

r  

w  

r  

c  

a  

o  

b  

2  

c  

t  

T  

t  

r

ines indicate the critical locus of parameters θ and β for which

 = 0 , i.e., those geometries for which the two gap edges are ex-

ctly superimposed along the line of sight to the star. Note that

hen β is near zero ( i.e., when the rings are viewed nearly pole-

n, or when the line of sight to the star is near the ring ansa), the

ap is seen with its intrinsic width W = W 0 � 0 . 6 km. Likewise,

hen θ � φV or θ � φV + 180 ◦, the vertical displacement is small

nd the gap is again seen with its intrinsic width of ∼0.6 km. As

 result, the diagram can be conveniently divided into four quad-

ants, with the width > W 0 in the first and third quadrants, and

 W 0 in the second and fourth. Peaks, which appear as negative

idths in the data and in our model, should be found only in the

atter. Along the boundaries between quadrants, W = W 0 . 

As anticipated, the occultation profiles with the widest gaps all

all in the first and third quadrants, superimposed upon the dot-

ashed contours. For example, β Peg 170 falls near the middle

f the third quadrant, just beyond the W = 5 km contour, while

ther unusually wide gaps are expected for λ Vel 173 in the first

uadrant and W Hya 181 in the third, as observed. 7 On the other

and, all occultation profiles with definite peaks fall in the second

nd fourth quadrants, superimposed upon the dotted contours. The

ost prominent are β Peg 104, μ Cep 185 and R Cas 194, all of

hich fall in the fourth quadrant. As noted above, these same data

re the most important in determining the vertical amplitude of

he gap, A G . 

Furthermore, all of the unusually narrow measured gaps ( e.g.,

Cru 187i and R Cas 65) as well as all definite narrow peaks ( e.g.,

CMa 169 and W Hya 179) fall close to the solid lines where W =
 , i.e., where the inner and outer edges appear to coincide along

he line of sight to the star. We note that most of the unmeasured

r ambiguous profiles, denoted by crosses in Fig. 6 , also lie close

o the solid lines, implying very narrow gaps or peaks. 
7 All of the profiles identified in Fig. 6 are shown in Figs. 2 or 4 . 

 

I  

M  
In a few cases there would appear to be a disagreement be-

ween the observations and our simple model, but these can

argely be accounted for. The γ Cru 101, TX Cam 102 and α Aur 112

rofiles all clearly show a peak, as predicted, but the feature is ei-

her too broad to measure or the data are corrupted in some man-

er, preventing useful measurements. For R Hya 36 the data in-

eed show an extremely narrow gap, less than 0.5 km wide, but it

s only one sample wide and thus not measurable. A very low ele-

ation angle of B ∗ = 3 . 5 ◦ should have made the o Cet 135 occulta-

ion particularly sensitive to vertical distortions, but the star’s track

assed near the ring ansa, reducing the radial amplification factor

to just 1.96, and the value of θ = −132 . 7 ◦ is within 25 ° of the

scending node, where �z is small. As a result, the model predicts

 modest peak of width ∼3 km, while the data – which are rel-

tively poorly-sampled – show only a very indistinct, broad peak

hat could not be measured. The α Ori 117 occultation, with our

econd-lowest elevation angle of B ∗ = 11 . 7 ◦, also crossed within 5 °
f the ring ansa, leading to a predicted gap width very near zero.

either a gap nor a peak is seen in the profile. 

We therefore find no case where there is a clear inconsistency

etween the data and the model predictions. 

.2. Modeling individual gap edges 

While the models in Figs. 5 provide a satisfactory fit to the ob-

erved variations in the width of the gap near 87,532 km, they

eave unresolved the question of which gap edge is inclined. We

ave also assumed so far that the gap’s radial width is constant,

hich may not be correct, and that the nodes of the inner and

uter edges are aligned. We can resolve these issues by fitting the

nner and outer gap edges separately, and so determine their in-

ividual vertical amplitudes A V , phases φV and eccentricities e . A

otential downside to such a model is the additional systematic

ncertainty introduced by possible errors in the reconstructed ra-

ius scale of each occultation, which cancel out when only the

ap widths are fitted. A second concern, and the main reason that

e did not proceed immediately to such a fit, is the larger num-

er of free parameters it entails. Assigning separate vertical ampli-

udes and phases to each edge, and allowing for the possibility of

onzero eccentricities, we find that a total of 10 free parameters

re needed, vs three for each of the above fits. These are the mean

adii a , eccentricities e and pericenters ϖ for both edges plus val-

es of A V and φV for each edge. We can slightly reduce the range

f phase space to be studied by assuming that any eccentricities

re forced by the nearby Titan 1:0 ILR. This lets us set ˙ � = n T ,

s has been found for all other noncircular edges in this region

 Nicholson et al., 2014b ). 

Our model for the apparent radius of each edge is specified by

 combination of Eqs. (10) and (20) : 

(λ, t) � a [ 1 − e cos (λ − λT − φL ) ] − A V β sin (θ − φV ) , (21)

here again the phase parameter θ = λ + λT − � T − �T and the

adial amplification factor β = cos (λ − λ∗) / tan B ∗. A V is the verti-

al amplitude of the edge in question. The angles φL and φV are

ssumed to be constants for each edge; the former specifies the

rientation of the pericenter relative to Titan, and is expected to

e near 0 for orbits interior to the Titan 1:0 ILR ( Nicholson et al.,

014b ). (In principle, either or both of these resonance variables

ould be librating slowly, or even circulating through 360 °, but in

he interests of simplicity we will ignore this possibility here. The

itan ringlet seems not to be librating ( Nicholson et al., 2014b ), but

he outer edge of the B ring is known to be circulating with a pe-

iod of 5.4 yrs ( Nicholson et al., 2014a; Spitale and Porco, 2010 ).) 

We fit this model to the edge measurements using the

DL CURVEFIT routine (similar results were obtained with the

PFIT2DFUN routines), with the uncertainty of each data point
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Fig. 7. Apparent radii and inferred radial and vertical displacements for both edges of the gap at 77,532 km. Black points denote the radii of falling edges, r 1 and green 

denotes rising-edge radii, r 2 . The top panel shows the measured edge radii, as a function of the angle λ − λT , while the second panel shows the same radii after removing the 

contributions due to the fitted vertical displacement of each edge, together with the best-fitting elliptical models. The third panel shows the inferred vertical displacements 

for both gap edges, after removal of the radial variations due to eccentricity, plotted as a function of the phase parameter θ = λ + λT − � T − �T , together with our best- 

fitting vertical models. This fit excludes the Voyager RSS points, which are plotted in blue. The fitted vertical amplitudes are A V = 3 . 79 ± 0 . 10 km and 1.21 ± 0.09 km for 

the inner and outer edges, respectively, while the radial gap width is 0.53 ± 0.07 km. (Note that the Voyager RSS inner gap edge points are off-scale in the first, second and 

fourth panels.). 
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again set equal to the sampling interval of the relevant data set.

Our best-fitting models are shown in Fig. 7 , for the Cassini data

alone, and in Fig. 8 with the Voyager RSS data included. Each fig-

ure has four panels: the top panel shows the measured radii of

the falling and rising gap edges, r 1 and r 2 from Table 1 . (Recall

here that when r 2 < r 1 we have a peak, rather than a gap.) The

second panel shows the same radii, after removal of the contribu-

tions due to the vertical displacement of the edges, as a function

of the angle λ − λT ; it thus shows only the variations due to ec-

centricity, along with the appropriate model fits. The third panel

shows the inferred vertical displacement of the two edges, after

removal of the intrinsic radial variations due to the eccentricity,

along with the model fits. The fourth panel shows the overall ra-

dius residuals for the model, as a function of the phase angle θ .

(Note that we do not show both fits in the same figure here, as

the data points in the third panel shift slightly when the eccen-
ricity parameters change, and the residuals for the two fits differ

ignificantly.) 

The Cassini -only fit yields mean radii for the inner and outer

dges, a in = 77 , 531 . 70 ± 0 . 04 km and a out = 77 , 532 . 23 ± 0 . 05 km,

ith radial amplitudes, ae = 1 . 01 ± 0 . 06 km and 1.14 ± 0.07 km,

espectively. The mean radial width of the gap is thus �a = 0 . 53 ±
 . 07 km, very similar to the value of W 0 obtained from the simple

ap model above. As expected, both pericenters are closely aligned

ith Titan, with φL = 0 . 3 ◦ and 3.2 °, respectively. With such similar

ccentricities and aligned pericenters, it seems that we were justi-

ed above in assuming that the intrinsic radial width of the gap is

ssentially constant. 

However, the vertical amplitudes of the two edges differ sig-

ificantly, with that of the inner edge being much larger than

hat of the outer edge. Our best-fit values are A 

in 
V 

= 3 . 79 ± 0 . 10 km

nd A 

out = 1 . 21 ± 0 . 09 km. Moreover, the phases of the two

V 
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Fig. 8. Apparent radii and inferred radial and vertical displacements for both edges of the gap at 77,532 km. Layout is as in Fig. 7 , but this fit includes the Voyager RSS 

points, which are again plotted in blue. The fitted amplitudes are now A V = 3 . 05 ± 0 . 07 km and 1.23 ± 0.09 km for the inner and outer edges, respectively, while the radial 

gap width is slightly greater at 0.59 ± 0.07 km. (Note that the Voyager RSS inner gap edge is off-scale in the upper panel, at −8 km.). 
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dges are significantly mis-aligned, with φin 
V = 38 . 1 ± 1 . 4 ◦ and

out 
V 

= 145 . 7 ± 5 . 2 ◦. Taking into account the difference of ∼108 ° in

he nodes, the differential vertical amplitude between the inner

nd outer edge (evaluated using the cosine theorem: (�A V ) 
2 =

(A 

in 
V ) 

2 + (A 

out 
V 

) 2 − 2 A 

in 
V A 

out 
V 

cos (φout 
V 

− φin 
V ) ) is �A V � 4.3 km, in

ood agreement with the simple gap width model above. 

The χ2 values for these fits are 50.9 and 35.2, respectively, sub-

tantially higher than the 24 degrees of freedom in each fit. This

robably indicates that our error bars on the absolute edge posi-

ions are underestimated by about 25%, likely due to small system-

tic errors in the geometry of the relevant occultations. Not sur-

risingly, the same data points that were most important in con-

training the vertical gap amplitude in Fig. 5 act to establish the

ndividual edge amplitudes in the present fit, while the αCMa 168
nd 169 points lie very close to the longitudes where the inner and

uter edges have the same vertical displacement. 

However, our Cassini -only fits significantly overestimate the ap-

arent width of the gap in the Voyager RSS data: the predicted

idth is 17.7 km, and the radius residuals for the inner and outer

ap edges are 6.0 and 2.3 km, respectively. ( i.e., the measured gap

idth is 6 . 0 − 2 . 3 = 3 . 7 km narrower than the model value.) When

e include the Voyager RSS datum, the effects on the mean radii

nd eccentricities are negligible but, as in the case of the gap

idth fits in Fig. 5 , the overall vertical amplitude is reduced. In

his case, that of the outer edge is almost unchanged, but A 

in 
V is

educed from 3.79 km to 3.05 ± 0.07 km. The nodes of both edges

lso shift by ∼10 °, with their separation increasing to �φV � 129 °.
he differential am plitude �A V � 3.6 km, again in good agreement
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Table 3 

Summary of models for the gap in the Titan −1 :0 bending wave. 

W 0 or a (km) ae (km) φL 
a a sin i (km) φV 

b χ2 /dof 

Apparent width: 

Cassini data only 0.59 ± 0.09 — — 4.35 ± 0.23 203 ± 2 ° 14.2/26 

Incl. Voyager datum 0.59 ± 0.09 — — 3.71 ± 0.13 199 ± 2 ° 26.1/27 

Inner edge, r 1 : 

Cassini data only 77531.70 ± 0.04 1.01 ± 0.06 0 ± 3 ° 3.79 ± 0.10 38 ± 2 ° 50.9/24 

Incl. Voyager datum 77531.61 ± 0.04 1.06 ± 0.06 8 ± 3 ° 3.05 ± 0.07 32 ± 2 ° 149.2/25 

Outer edge, r 2 : 

Cassini data only 77532.23 ± 0.05 1.14 ± 0.07 3 ± 3 ° 1.21 ± 0.09 146 ± 5 ° 35.2/24 

Incl. Voyager datum 77532.20 ± 0.04 1.15 ± 0.06 7 ± 3 ° 1.23 ± 0.09 161 ± 4 ° 50.8/25 

a Pericenter measured relative to λT . 
b Node measured relative to �T + � T − λT . 
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with the simple gap width model in Fig. 5 . However, the χ2 values

for these fits are substantially higher than those for the Cassini -

only fits, especially for the inner edge. Inspection of Fig. 8 shows

that several of the Cassini data show quite large residuals, espe-

cially compared with those for the same points in Fig. 7 . Particu-

larly notable are the residuals for 2 Cen 194e, α CMa 168 and 169

and β Peg 104. This might suggest that something is missing from

the model (as noted above, one possibility is that the vertical am-

plitude of the gap edge perturbations has increased significantly

since 1980). Another distinct possibility is that there are uniden-

tified systematic errors in the geometry of the Voyager occultation

that are magnified by its extreme viewing geometry. 

For this reason, and because of its exceptionally wide gap, it

is worth looking a little more closely at the Voyager RSS data.

The model fit predicts vertical displacements of z in = −2 . 9 km for

the inner edge and z out = 0 . 4 km for the outer edge. Using the

amplification factor β = −4 . 51 , and allowing for the intrinsic ra-

dial gap width of 0.6 km, the predicted radial width of the gap is

 = W 0 − β(z out − z in ) = 15 . 6 km. Radial residuals with respect to

the combined edge model in Fig. 8 are 2.5 and 0.9 km for the in-

ner and outer gap edges, respectively, much improved over those

obtained for the Cassini -only fits. ( i.e., the measured gap width of

14 km is now only 2 . 5 − 0 . 9 = 1 . 6 km narrower than the model

value.) However, our assumed radial uncertainty of 400 m for the

Voyager RSS data in the C ring almost certainly underestimates the

systematic uncertainty in the absolute radii, which is of order 1 km

( Nicholson et al., 1990 ). We therefore consider the Cassini -only fits

for the gap edges in Fig. 7 to be more reliable than the combined

fits in Fig. 8 . (A systematic error in the Voyager radius scale has no

effect on the gap width , of course, or the combined fit in Fig. 5 .) 

The large predicted vertical displacement of the inner gap edge

also explains why, in Fig. 4 , the inner edge of the gap in the Voy-

ager RSS data has an apparent radius that is so much less than

that in any of the Cassini profiles. 

All of our model fits are summarized in Table 3 , using the

model parameters from Figs. 5 –8 . The original uncertainties in the

fit parameters shown in the figures have been retained here, but

could easily be rescaled by a factor of 
√ 

χ2 / dof to account for any

perceived under- or overestimates of the errors in the data. 

5. Discussion 

Our investigation of the unusual structure near the inner edge

of the Titan nodal bending wave has shown that this can be in-

terpreted as a sub-kilometer-wide gap with edges that are inclined

relative to one another with a maximum vertical displacement of

∼4 km. This vertical distortion slowly revolves around Saturn in a

retrograde direction, with a period close to that of Titan’s orbital

motion, consistent with forcing by the −1 : 0 inner vertical reso-

nance. Separate fits to the inner and outer edges of the gap in-

dicate that the vertical displacement is larger on the inner edge,
nd that there is a phase shift of ∼110 ° across the gap. The gap

dges are also slightly eccentric, due to forcing by the nearby Ti-

an 1:0 apsidal resonance. Fig. 9 provides a graphical illustration of

ur model for the gap and shows how it can appear from different

antage points either as a gap with variable width, or as a peak in

ptical depth when the two edges are viewed projected on top of

ach other. 

This simple cartoon also suggests a possible explanation for the

harp maxima in optical depth seen on either side of the more

rominent gaps in Figs. 2 and 3 , as well as for the dips seen im-

ediately on either side of the peaks. When the gap is seen at

ts widest, the stellar line of sight must penetrate the ring almost

adially, and roughly parallel to the sloping upturned and down-

urned edges of the gap. In such a geometry, the tangential path

ength through the rings is unusually high, leading to a maximum

n τ n , as observed. Conversely, when a prominent peak is observed,

.e., where the two edges overlap, the line of sight must penetrate

he ring again almost radially, but at a steeper incidence angle to

he edges of the gap, leading to minima in τ n adjacent to the peak

tself. 

Although our kinematic models provide quite a good descrip-

ion of this unique feature, and connect it to the Titan −1 : 0 res-

nance, the exact nature of the relationship between the gap and

he nodal bending wave in which it is embedded so far remains

nclear. In their initial study of this structure, Rosen and Lis-

auer (1988) successfully modeled the wave’s dispersion relation

ith the standard linear model of Shu (1984) and a spatially-

arying background surface mass density that decreased from σ0 �
 . 9 g cm 

−2 in the near-wave region to ∼0 . 4 g cm 

−2 in the far-wave

egion. The average value of σ0 � 0 . 65 g cm 

−2 corresponds to a

redicted vertical wave amplitude of ∼400 m, via Eq. (15) above.

his amplitude, however, was insufficient to account for the ‘W-

haped’ features observed in the innermost part of the Voyager

SS profile, which Rosen and Lissauer (1988) interpreted as being

ue to multiple crossings of the radio beam through the vertically-

istorted ring plane. Instead, they obtained a better match to the

SS optical depth profile of this region with a vertical wave ampli-

ude of ∼1.6 km and a radial wavelength of ∼20 km, corresponding

o an implausibly-large surface density of ∼4 . 5 g cm 

−2 (see their

ig. 2 ). 

Using similar fits of the linear dispersion relation to several of

ur highest-SNR occultation profiles, we find that the wavelength

n the near-wave region is given approximately by 2 π/k � 130 / (r −
 res ) , where all dimensional quantities are expressed in kilom s.

rom Eq. (14) , this corresponds to a mean surface mass density of

0 � 0 . 62 g cm 

−2 , very similar to that obtained by Rosen and Lis-

auer (1988) . (Our fits also yield a mean value of a res = 77 , 515 km,

hich is 10 km less than the predicted location of the −1 : 0 res-

nance.) On the unproven (and perhaps dangerous) assumption

hat the background mass density is constant across the region of

nterest, the above expression provides a convenient local estimate
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Fig. 9. A simplified illustration of our model for the Titan nodal bending wave and 

its associated gap, as seen from above Saturn’s pole and at successively lower el- 

evations. The vertical resonance is located at the inner edge of the disk, and the 

bending wave propagates outwards with a constant amplitude. The wave is inter- 

rupted by a narrow, circular gap, across which the wave phase changes by 180 °. At 

normal incidence, the apparent width of the gap is unaffected by the wave, but at 

lower elevations one edge can block the other, leading to the apparent disappear- 

ance of the gap at some longitudes. Note that this model does not properly capture 

the varying optical depth in the wave, as the graphic assumes a warped, opaque 

ring illuminated from the side, or the radial variation in wavelength of a real bend- 

ing wave. 

f  

o

 

i  

o  

h  

s  

n  

d  

Fig. 10. Estimated maximum slopes for the bending wave in three radial regions, 

each 10 km wide, plotted as a function of B eff . The top panel shows the measured 

range of apparent optical depths in each region, normalized by the average optical 

depth, while the middle panel shows the corresponding inferred maximum slopes, 

tan ( ψ max ), using Eq. (22) . In the bottom profile we plot ψ max itself. Data from only 

the highest-quality profiles are used here, in order to reduce unnecessary scatter. 

Note that, while the optical depth range decreases with increasing B eff , the inferred 

slopes are fairly constant, as expected. The maximum slope does not appreciably 

diminish with increasing radius, although the wavelength (and therefore the ampli- 

tude of the wave) does. 
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o  
or the wavelength in the near-wave region that we will make use

f below. 

With a vertical amplitude of 3.8 km, the inner edge of the gap

s by far the most highly-inclined feature in the C ring, and one

f only a handful of features anywhere in Saturn’s rings whose

eights above the mean ring plane exceed 1 km. Our results also

uggest that the Titan nodal bending wave may be well into the

onlinear regime. The standard linear theory of bending waves, as

escribed by Shu (1984) , uses an approximate expression for the
ravitational field of the warped ring that allows the relevant per-

urbation to be expressed as a linear function of the vertical dis-

lacements (see Eqs. (68–70) of Shu (1984) ). This approximation,

owever, is only valid if the maximum slope of the ring’s sur-

ace, dz / dr is always much less than unity, and this assumption is

trongly violated in the vicinity of the gap. The difference in the

ertical positions of the gap edges can be as much as nine times

heir radial separation, and so the maximum value of dz / dr across

he gap is ∼9; it is likely, therefore, that the standard model of

ending wave propagation breaks down in this region. 

A closer examination of nearby regions in the Titan −1 : 0 bend-

ng wave indicates that the maximum radial slopes are actu-

lly quite high throughout the observable wave. For any quasi-

inusoidal corrugation, we can estimate the maximum slope of the

ing, or equivalently the maximum slope angle ψ max , from the ra-

io of the maximum and minimum apparent normal optical depths

sing the expression ( Hedman, 2007a ): 

dz 

dr 

)
max 

= tan (ψ max ) = tan B eff 

(
τmax − τmin 

τmax + τmin 

)
. (22)

ig. 10 shows estimated values of the maximum slope for several

ifferent parts of the wave derived from the highest-SNR VIMS

ccultations, spanning both the near-wave and far-wave regions.
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While there is some scatter in these measurements, the peak

slopes in all three subregions of the wave are found to be around

50 °, with tan ψ max being of order unity. While not nearly as large

as that across the gap, these slopes are still high enough to violate

the assumptions underlying the standard linear theory of bending

waves. 

It therefore appears that much of the Titan −1 : 0 bending wave

could be effectively non-linear, with higher-order terms in the po-

tential contributing significantly to the vertical accelerations of the

ring material. Perhaps these extreme slopes could even be respon-

sible for creating the gap in the first place. If the slope were to be-

come much larger than unity, particles on nearby orbits could po-

tentially be displaced vertically by more than the collisional mean

free path. This could violate the standard assumption that the ring

can be treated as a continuum sheet of material, and allow the ring

to tear. 

Combining the above notions with our estimates of the vari-

able wavelength and maximum slope of the bending wave, we can

put together a phenomenological description of this region that

is more-or-less consistent with the observations, and that offers a

possible explanation for the gap’s existence. 

(1) From the WKB dispersion relation, Eq. (13) , recast as

Eq. (14) , we find that the first wavelength of the bending

wave is ∼√ 

2 × 130 � 16 km (see Eq. (18) of Nicholson et al.,

2014a ). The mean radius of the gap (77,532 km) is ∼7 km

from the expected resonance location and well within this

first wavelength. 

(2) Taking our estimate for the vertical amplitude of the inner

gap edge, A V = 3 . 8 km, as indicative of the bending wave

amplitude interior to the gap, we find a maximum slope in

this region of d z/d r = kA V � 1 . 3 , very similar to that found

for the near-wave region exterior to the gap in Fig. 10 . This

amplitude is also compatible with what Rosen and Lissauer

(1988) found necessary to fit the shapes of the W-shaped

features in the RSS profile. 

(3) Immediately exterior to the gap, our model fits suggest a

vertical amplitude A V = 1 . 2 km. Again using the relation

(d z/d r) max = kA V and an average wavelength at 77,545 km

of ∼6.5 km, we find that tan (ψ max ) = 1 . 2 , consistent with

the maximum slope observed in the 77 , 540 − 77 , 550 km

region in Fig. 10 . 

(4) Moving further outwards, we find from Fig. 10 that the max-

imum slope remains at tan ( ψ max ) � 1.3 in the 77 , 550 −
77 , 560 km region, where the mean wavelength is ∼4.3 km.

The corresponding vertical amplitude is only slightly smaller

at ∼0.9 km. 

(5) Outside ∼77, 565 km, the observed amplitude of the wave

decreases abruptly (cf. Fig. 2 ), but from Fig. 10 we see that

the maximum slope continues to saturate at ∼1.1. At 45 km

from the resonance, the observed wavelength is ∼2 km, im-

plying a mean amplitude of only ∼0.35 km. 

Overall, we have a picture where, at each radius, the bending

wave amplitude grows until it saturates at a maximum slope of

∼50 °, or d z/d r = kA V � 1 . 2 . The monotonic decrease in wavelength

with distance from the resonance then requires that the vertical

amplitude also decrease, from ∼4 km at 7 km from a res to ∼1 km

in the near-wave region and ∼0.5 km at a distance of 45 km, in

the far-wave region. We hypothesize that the slope first approaches

unity during the bending wave’s first wavelength, at ∼7 km from

the resonance. At this point, the rapidly-increasing amplitude re-

sults in the ring literally tearing itself apart vertically, as the lo-

cal slope exceeds ∼50 °. Immediately beyond this tear, the bending

wave re-establishes itself – perhaps by tunneling across the narrow

gap – but with a much reduced amplitude of ∼1 km and a phase

shift of 110 °. The wave then continues to propagate outwards with
 fairly constant vertical amplitude (as predicted by the linear the-

ry), until the slope again reaches the critical value. At this point,

he amplitude begins to decrease, but is still ∼0.9 km at 77,555 km,

0 km from the resonance. At 40 km from the resonance – perhaps

ecause of an abrupt decrease in the background surface density,

ith a corresponding decrease in the wavelength – the slope again

aturates and the amplitude is forced to drop to ∼0.35 km. 

In this context, we note that Gresh et al. (1986) concluded that

he strong Mimas 5:3 bending wave in the outer A ring must also

ecrease in amplitude as it propagates, in order to match its profile

n the Voyager RSS occultation data. 

A wrinkle on the above picture is that, once the gap forms, the

egion between it and the resonant radius may become a type of

esonant cavity, which could lead to a further enhancement of the

ave amplitude in this region. A standing wave established in this

egion might account for the persistent optical depth minimum at

77, 528 km that we noted at the end of Section 3 . A similar reso-

ant cavity has been invoked to account for the substantial free

ormal modes seen at the outer edge of the B ring ( Nicholson

t al., 2014a; Spitale and Porco, 2010 ), and we would expect its

idth here to be one-quarter to one-half of the initial wavelength

f the wave, or 4 − 8 km. 

Finally, recall from the discussion of Figs. 2 and 3 in Section 3

hat there is some evidence for an additional narrow gap/peak at a

adius of ∼77, 535 km. This may well represent a second location

here the slope becomes sufficiently steep for the ring to tear. In-

eed, variations in the apparent width of this feature indicate that

t can be explained by a model similar to that of the main gap, but

ith a much smaller vertical amplitude, perhaps less than 1 km. 

A proper theoretical investigation of this wave is beyond the

cope of this work, and probably beyond the existing linear the-

ry for bending waves, but we hope to pursue this subject further

n a future paper. In the future, we also hope to be able to incor-

orate other Cassini occultation datasets in our gap model, in par-

icular several of the radio occultations that probed the C ring at

pening angles of only a few degrees. Images taken by the Imag-

ng Science Subsystem (ISS) near the time of equinox, when the

un shone obliquely across the rings, may also be of considerable

alue in establishing the true vertical amplitude of the −1 : 0 bend-

ng wave. 

cknowledgments 

This work was supported by NASA, through a grant to PDN from

he Cassini Project. We acknowledge the efforts of the Cassini VIMS

ngineering and science teams in making the acquisition of these

ata possible, and the PDS Rings Node for providing the Voyager

SS profile in digital form. R.G French kindly provided an up-to-

ate list of spacecraft trajectory corrections based on his own un-

ublished analysis of the ring occultation data. Our discussion of

he residuals in our fits greatly benefitted from comments by an

nonymous reviewer. A preliminary version of this study was pre-

ented at the 2010 DPS meeting in Fajardo, PR. 

ppendix 

In Figs. 11 –16 we present optical depth profiles of the gap re-

ion for all of the occultations we have analyzed here, including

he Voyager RSS data extracted from the PDS Rings Node. In each

anel we also show the measured radii of the inner and outer gap

dges, as used in the model fits in Figs. 7 and 8 . The actual radii,

 1 and r 2 , as well as all relevant geometrical parameters, may be

ound in Table 1 . 
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Fig. 11. The complete set of occultation profiles analyzed in this work for the region of the gap seen in the Titan −1 :0 bending wave. The measured positions of the 

inner and outer gap edges are indicated by vertical dot-dashed lines. These radii provide the input to the least-squares fits shown in Figs. 5, 7 and 8 . Plus signs indicate 

individual occultation measurements, acquired at intervals of 20 to 80 ms. Short data gaps in some profiles ( e.g., R Cas 65) indicate pauses due to instrumental background 

measurements. The first profile is from the Voyager RSS occultation, while the remainder are from Cassini VIMS stellar occultations, as labeled above each panel. Except for 

the RSS profile, all plots are on a common radius scale. 
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Fig. 12. Continued from Fig. 11 . 
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Fig. 13. Continued from Fig. 11 . 
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Fig. 14. Continued from Fig. 11 . 
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Fig. 15. Continued from Fig. 11 . 
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Fig. 16. Continued from Fig. 11 . 
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