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a b s t r a c t 

We present observations at optical wavelengths with the Cassini Spacecraft’s Imaging Science System of 

the Phoebe ring, a vast debris disk around Saturn that seems to be collisionally generated by its irreg- 

ular satellites. The analysis reveals a radial profile from 80–260 Saturn radii ( R S ) that changes behavior 

interior to ≈110 R S . We attribute this to either the moon Iapetus... sweeping up small particles, or to orbital 

instabilities that cause the ring to flare up vertically. Our study yields an integrated I / F at 0.635 μm 

along Saturn’s shadow in the Phoebe ring’s midplane from 80–250 R S of 2 . 7 +0 . 9 
−0 . 3 

× 10 −9 . We develop an 

analytical model for the size-dependent secular dynamics of retrograde Phoebe ring grains, and compare 

this model to the observations. This analysis implies that 1) the “Phoebe” ring is partially sourced by 

debris from irregular satellites beyond Phoebe’s orbit and 2) the scattered light signal is dominated by 

small grains ( � 20 μm in size). If we assume that the Phoebe ring is generated through steady-state mi- 

crometeoroid bombardment, this implies a power-law size distribution with index > 4, which is unusually 

steep among Solar System rings. This suggests either a steep size distribution of ejecta when material is 

initially released, or a subsequent process that preferentially breaks up large grains. 

© 2016 Elsevier Inc. All rights reserved. 
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. Introduction 

Using the Spitzer infrared space telescope, Verbiscer et al.

2009) discovered a vast dust ring around Saturn, far beyond the

right main rings. This debris disk was dubbed the Phoebe ring af-

er the largest of Saturn’s distant irregular satellites, which seems

o be the dominant source for the material. Approximately three

ozen known irregular satellites (see Jewitt and Haghighipour,

0 07; Nicholson et al., 20 08 , for reviews) form a swarm of mu-

ually inclined, overlapping orbits—a relic of their capture process

 ́Cuk and Burns, 2004; Ćuk and Gladman, 2006; Nesvorný et al.,

0 03; 20 07; Pollack et al., 1979 ). This led to a violent collisional

istory among these bodies continuing since early times ( Bottke

t al., 2010 ). Smaller collisions must be ongoing, both with circum-
∗ Corresponding author at: Department of Physical & Environmental Sciences, 
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lanetary objects too small to detect observationally, and with in-

erplanetary meteoroids (cf., Cuzzi and Estrada, 1998 ). 

While the disk is diffuse, the debris from these dark ir-

egular satellites ( Grav et al., 2015 ) can have important conse-

uences. Iapetus, the outermost of the large, tidally locked, reg-

lar satellites has a leading side approximately ten times darker

han its trailing side. Many years before its discovery, Soter

1974) (see also Bell et al. 1985; Buratti and Mosher 1995; Cruik-

hank et al. 1983 ) hypothesized that inward transfer of such

ebris through Poynting–Robertson drag might explain Iapetus’

tark hemispheric dichotomy. Burns et al. (1996) , and more re-

ently Tosi et al. (2010) and Tamayo et al. (2011) , showed that

ndeed, Iapetus should intercept most of the inspiraling ma-

erial as it plows through the cloud, and that the longitudi-

al distribution of dark material on Iapetus can be well ex-

lained by dust infall under the action of radiation pressure. Ad-

itionally, Denk et al. (2010) ; Spencer and Denk (2010) showed

hat runaway ice sublimation and redeposition could accentuate

nitially subtle albedo differences to match the observed stark

ontrast. 

http://dx.doi.org/10.1016/j.icarus.2016.04.009
http://www.ScienceDirect.com
http://www.elsevier.com/locate/icarus
http://crossmark.crossref.org/dialog/?doi=10.1016/j.icarus.2016.04.009&domain=pdf
mailto:dtamayo@cita.utoronto.ca
http://dx.doi.org/10.1016/j.icarus.2016.04.009
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reflectance. 

2 Image names W 1758855456 _ 1 , W 1758855824 _ 1 , W 1758856192 _ 1 , 

W 1758856560 _ 1 , W 1758856928 _ 1 , W 1758857296 _ 1 , W 1758857664 _ 1 , 

W 1758858032 _ 1 , W 1758858400 _ 1 , W 1758858768 _ 1 , W 1758859136 _ 1 , 

W 1758859504 _ 1 , W 1758859872 _ 1 , W 1758860240 _ 1 , W 1758860608 _ 1 , 

W 1758860976 _ 1 , W 1758861344 _ 1 , W 1758861712 _ 1 , W 1758862080 _ 1 , 

W 1758862448 _ 1 , W 1758862816 _ 1 , W 1758863184 _ 1 , W 1758863552 _ 1 , 

W 1758863920 _ 1 , W 1758864288 _ 1 , W 1758878396 _ 1 , W 1758878764 _ 1 , 

W 1758879132 _ 1 , W 1758879500 _ 1 , W 1758879868 _ 1 , W 1758880236 _ 1 , 

W 1758880604 _ 1 , W 1758880972 _ 1 , W 1758881340 _ 1 , W 1758881708 _ 1 , 

W 1758882076 _ 1 , W 17588824 4 4 _ 1 , W 1758882812 _ 1 , W 1758883180 _ 1 , 

W 1758883548 _ 1 , W 1758883916 _ 1 , W 1758884284 _ 1 , W 1758884652 _ 1 , 

W 1758885020 _ 1 , W 1758885388 _ 1 , W 1758885756 _ 1 , W 1758886124 _ 1 , 

W 1758886492 _ 1 , W 1758886860 _ 1 , W 1758887228 _ 1 . 
3 Image names W 1758887712 1 , W 1758888080 _ 1 , W 1758888448 _ 1 , 

W 1758888816 _ 1 , W 1758889184 _ 1 , W 1758889552 _ 1 , W 1758889920 _ 1 , 

W 1758890288 _ 1 , W 1758890656 _ 1 , W 1758891024 _ 1 , W 1758891392 _ 1 , 

W 1758891760 _ 1 , W 1758892128 _ 1 , W 1758892496 _ 1 , W 1758892864 _ 1 , 

W 1758893232 _ 1 , W 1758893600 _ 1 , W 1758893968 _ 1 , W 1758894336 _ 1 , 

W 1758894704 _ 1 , W 1758895072 _ 1 , W 1758895440 _ 1 , W 1758895808 _ 1 , 

W 1758896176 _ 1 , W 1758896544 _ 1 , W 1758910652 _ 1 , W 1758911020 _ 1 , W 
Furthermore, this process of collisional grinding among the

irregular satellites should be ubiquitous among the solar (and

perhaps extrasolar) system’s giant planets ( Bottke et al., 2010;

Kennedy and Wyatt, 2011 ), and this debris should also fall onto

the respective outermost regular satellites. Indeed, the uranian reg-

ular satellites exhibit hemispherical color dichotomies ( Buratti and

Mosher, 1991 ), and Tamayo et al. (2013a ) showed that this could

similarly be explained through dust infall, though the dynamics

are additionally complicated by Uranus’ extreme obliquity ( Tamayo

et al., 2013b ). Bottke et al. (2013) argue the same process has oc-

curred in the jovian system. As the only known debris disk sourced

by irregular satellites, the Phoebe ring therefore presents a unique

opportunity to learn about generic processes around giant planets,

both in our Solar System and beyond. 

Tamayo et al. (2014) , hereafter THB14, detected the Phoebe

ring’s scattered light at optical wavelengths, using the Cassini

spacecraft in orbit around Saturn. THB14 combined these optical

measurements with the thermal emission data of Verbiscer et al.

(2009) , finding that Phoebe ring grains have low albedos similar

to the dark irregular satellites ( Grav et al., 2015 ). More recently,

Hamilton et al. (2015) combined detailed numerical models of dust

grains’ size-dependent spatial distributions with new data from the

Wide-Field Infrared Survey Explorer (WISE) to extract the particle-

size distribution in the disk. They found that the Phoebe ring ex-

tends out to at least 270 Saturn radii 1 ( R S ) and has a steep particle

size distribution. However, the Phoebe ring is so faint (normal op-

tical depth ∼ 10 −8 ) that scattered light from the planet dominates

the signal inside ≈100 Saturn radii ( R S ). This is too far out to detect

an inner edge swept out by Iapetus, which orbits at ≈59 R S . 

In this paper we present results from a new Cassini data

set with a substantially higher signal-to-noise ratio than that of

THB14. This renders the faint Phoebe ring signature clearly visible

in our images, and we are able to additionally extract the Phoebe

ring’s radial structure. We begin by presenting our data analysis,

and by describing our data reduction methods in Section 2 , and

our results in Section 3 . In Section 4 , we then semi-analytically

investigate the expected 3-D structure of the Phoebe ring, which

should exhibit interesting dynamics closer to Iapetus, where the

Sun stops being the dominant perturbation (as it is for grains at

large Saturnocentric distances), and Saturn’s oblateness becomes

important. In Section 5 we compare our model to the data and

we summarize our results in Section 6 . 

2. Methods 

2.1. Data reduction 

The main observational challenge is that the scattered light sig-

nal from Phoebe ring grains is exceedingly weak ( I / F ∼ 10 −9 ). Ad-

ditionally, from Cassini’s nearby vantage point, the Phoebe ring’s

thickness spans several tens of degrees; the Phoebe ring therefore

appears as a uniform background across the 3.5’ × 3.5’ field of

view of Cassini’s Imaging Science System (ISS) Wide-Angle Camera,

WAC ( Porco et al., 2004 ). We now briefly summarize the technique

that THB14 developed to overcome these obstacles. 

The key is to detect the deficit of scattered light from unillu-

minated Phoebe ring grains lying in Saturn’s shadow. Not only is

the shadow narrow enough to be captured within a single WAC

field of view, its apparent position relative to the background stars

shifts as the spacecraft moves in its orbit. THB14 examined sev-

eral exposures of the same star field as Saturn’s shadow moved

through the images. By subtracting images from one another, the
1 For this work we adopt R S = 60,330 km, the convention used for calculating 

Saturn’s gravitational moments. 

1

W

W

W

W

onstant background could be attenuated while retaining the mov-

ng shadow’s signal. 

The signal-to-noise ratio can be substantially improved by po-

itioning the spacecraft closer to the long axis of Saturn’s shadow,

hich lengthens the column of Phoebe ring material along lines of

ight that intersect the shadow (see Fig. 1 in THB14). On day 269

f 2013 (September 26 th ), in Rev 197 (Cassini’s 198 th orbit about

aturn), we executed such an observation with Cassini only ≈6 Sat-

rn radii ( R S ) from the shadow’s axis (compared to ≈22 R S in the

bservations of THB14). We also maximized the shadow’s move-

ent across the field of view by taking images at the beginning

nd end of our observation window. 

The geometry is summarized in Fig. 1 . Over the span of the ob-

ervation, the spacecraft (red point) does not move appreciably on

he scale of the figure, but enough for the shadow to move across

 large fraction of the camera’s 3.5 ′ × 3.5 ′ field of view (see Fig. 2

nd accompanying details below). The bottom panel additionally

hows the radial ranges spanned by each observation (material be-

ond these limits contributed to fewer than 10% of pixels in each

ointing). The shadow is wider in the top panel due to shadow-

ng by the rings. We also note that the depicted model for the

hoebe ring is simplified—it has been cut off at the orbital distance

f Iapetus, which should intercept most of the material ( Tamayo

t al., 2011 ), and it is drawn as symmetric about Saturn’s orbital

lane. In reality, the Phoebe ring should begin warping toward Sat-

rn’s equatorial plane in the innermost regions of the disk (see

ection 4 ). 

The corresponding observations for the outer section of the

hoebe ring (rev197o) are shown in Fig. 2 . 

These observations (rev197o) comprise 50 220-s WAC expo-

ures 2 (using the clear filter CL1), centered on a point in the

hoebe ring 160 R S from the planet, at right ascension (RA) =
23 . 7 ◦, declination (Dec) = −13 . 5 ◦. In addition to the observations

hown in Fig. 2 we obtained 47 exposures, 3 centered on a loca-

ion 110 R S from Saturn, at RA = 225.0 °, Dec = −14 . 6 ◦. We denote

his data set further ‘inward’ rev197i. The total observation win-

ow spanned 18 hours and 45 minutes, and time was evenly split

etween rev197o and rev197i. We collected all images in 2 × 2

ummation mode due to data-volume constraints, and calibrated

hem with the standard Cassini ISS Calibration (CISSCAL) routines

 Porco et al., 2004; West et al., 2010 ) to apply flat-field corrections

nd convert the raw data to values of I / F , a standard measure of
758911388 _ 1 , W 1758911756 _ 1 , W 1758912124 _ 1 , W 1758912492 _ 1 , 

 1758912860 _ 1 , W 1758913228 _ 1 , W 1758913596 _ 1 , W 1758913964 _ 1 , 

 1758914332 _ 1 , W 1758914700 _ 1 , W 1758915068 _ 1 , W 1758915436 _ 1 , 

 1758915804 _ 1 , W 1758916172 _ 1 , W 1758916540 _ 1 , W 1758916908 _ 1 , 

 1758917276 _ 1 , W 1758917644 _ 1 , W 1758918012 _ 1 , W 1758918380 _ 1 . 
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Fig. 1. Sunlight enters from the left, and Saturn casts a shadow (black rectangle) extending to the right. The spacecraft is plotted as a red circle, along with lines of sight 

to the center of the field of view for our inner (rev197i) and outer (rev197o) observations (described below in more detail). The top panel represents a cross-section along 

Saturn’s orbital plane, through which Saturn’s shadow passes, and which corresponds to the Phoebe ring’s midplane. The bottom panel shows a vertical cross-section along 

the plane defined by the planet’s shadow and its orbit pole, as well as color-coded double arrows denoting the radial extent spanned by each observation. All distances are 

to scale, except for Saturn and its rings, which have been expanded by a factor of 10 to highlight their misalignment. In both panels, the shadows show the actual size of 

Saturn and its rings. The black dashed line in the top panel shows the intersection between Saturn’s orbital and equatorial planes. (For interpretation of the references to 

color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 2. Top left and top middle panels show averages of the first 25 and second 25 images in the rev197o pointing (with grayscale ranging from I / F = [0,10 −6 ] ). The 

corresponding panels below show the modeled dip in brightness along Saturn’s shadow (range = [ −1 . 4 × 10 −9 , 0] , i.e., three orders of magnitude smaller than above). 

Subtracting the two average images (top right panel), attenuates the background signal while retaining the shadow signature (modeled in the bottom right panel). To obtain 

the top right panel, we also filtered out noisy pixels, rebinned and smoothed the data. The I / F range in the rightmost panels is [ −1 . 4 × 10 −9 , 1 . 4 × 10 −9 ] , and the bright and 

dark spots in the bottom left of the top right panel are the differenced signature of the irregular satellite Siarnaq, which happened to be in the field of view. The field of 

view spans distances of ∼ 90 R S (bottom of each image) – 300 R S (top) from Saturn. Our models in the bottom three frames assume a uniform ring and are described in detail 

in Section 2.2 . 
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Following the techniques described in THB14, we first removed

aulty pixels from the analysis, as well as ones with an I / F greater

han a cutoff of 8 × 10 −8 . Additionally, we found that removing

articular images from the analysis improved our fits, due to off-

ets in the background levels between images at the level of our

ignal. To quantitively decide what images should be thrown out,

e first calculated each image’s mean brightness across the pixels

hat were not in shadow, as well as the standard error on each ex-

osure’s average I / F . We then compared each image’s mean value

o the median across all exposures. If the deviation was greater

han ten standard errors from the median, we discarded the image.

Finally, we employed the iterative procedure described in

HB14 for removing cosmic rays and otherwise discrepant pixels,
nd applied a second iteration of image cuts as described above. In

he end, our protocol retained 58% of all pixels for analysis in both

ata sets (with 7 of the 50 images removed altogether in rev197o,

nd 5 out of 47 in rev197i). This effectively removed the stars from

he images and ensured a smooth background, allowing us to ex-

ract the faint Phoebe ring signal (this filtering process was used

o obtain the right panels in Fig. 2 ). 

.2. Data modeling 

To quantitatively analyze the signal shown in Fig. 2 , we again

dopted the procedure of THB14. This involved computing a

imple shadow model (including a penumbra) for an oblate Saturn
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Fig. 3. Left panel shows the real differenced data, corresponding to the top right panel of Fig. 2 . The middle panel shows the prediction assuming the best-fit homogeneous 

model for the Phoebe ring, and the right panel shows the result of subtracting the middle panel from the left one. The residuals suggest that there is substantial variation 

in the dust-grain number density as a function of distance from Saturn. The gray-scale range is the same as given in Fig. 2 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Observed vs. predicted I / F values (black). By fitting a line to these points 

(dashed), we can use the slope to correct A ( Eq. (2) ). This stretches/compresses the 

predicted I / F differences to match the expected slope of unity (blue points). How- 

ever, while this model matches the overall slope, the fit deviates from a straight 

line at large predicted I / F differences due to a poor choice of the radial power-law 

index ( Eq. (2) ). This model used n = −0 . 5 . (For interpretation of the references to 

color in this figure legend, the reader is referred to the web version of this article.) 
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hosting completely opaque A and B rings. The shadow was cor-

rectly oriented and projected for the time of observation with the

Navigation and Ancillary Information Facility (NAIF) SPICE toolkit

( Acton, 1996 ) in each of the Cassini images. We then calculated

lines of sight for each pixel in the Cassini images through the

shadow model, integrating each pixel’s total pathlength through

the shadow (see Fig. 1 in THB14). 

To attenuate the constant background and extract the Phoebe

ring signal, we generate a mean image of the ∼ 50 exposures,

and subtract this average from each of the images. We then per-

form the same process on the set of modeled pathlength “images.”

Given their limited signal-to-noise-ratio data, THB14 assumed that

there was a simple linear relationship between a pixel’s I / F de-

crease and its corresponding line of sight’s pathlength through the

shadow. This corresponds to a homogeneous Phoebe ring with con-

stant dust-grain number density. 

Fig. 3 shows our best-fit model when we similarly assume

the Phoebe ring to be spatially homogeneous. While a constant-

number-density Phoebe ring satisfactorily fit the noisier data of

THB14, we see that our improved data deviate strongly from this

model. In addition, the pattern in the residuals in Fig. 3 indicates

that the Phoebe ring is fainter at increasing distance from the

planet. For this investigation, we therefore relax the homogene-

ity assumption and probe the Phoebe ring’s radial structure (we

assume there is no azimuthal variation across the shadow as the

shadow’s width represents less than 1% of the ring’s circumfer-

ence). We note that one might expect such radial variation given

the ring’s expected radial extent ∼ 60 − 270 R S ( Hamilton et al.,

2015 )—if there were comparable amounts of material at different

radii from Saturn, then the number density of particles would fall

with distance as grains get spread over annuli of increasing vol-

ume. 

To model a radially varying Phoebe ring, we break it up into

annuli that are each 10 R S wide. We then assume that the I / F from

the Phoebe ring in a given pixel is the sum of linear contributions

proportional to the pathlengths through each of these annuli, 

I / F = 

∑ 

i 

m i p i , (1)

where the sum runs over all the annuli, p i is the pathlength of the

pixel’s line of sight through the i th ring, and m i is the brightness

per unit pathlength through the i th annulus. We connect the m i to

the physical size and spatial distributions of Phoebe ring grains in

Section 4.3 , but begin by obtaining empirical fits to the data using

Eq. (1) , assuming that the m i follow a power law with amplitude A

and power-law index n , 

m i = Ar n i , (2)

where r i is the distance from Saturn to the middle of the i th an-

nulus. 
As above, we generate differenced observed and predicted im-

ges. To quantitatively fit the data, we then bin all pixels by their

redicted I / F values, calculate the mean predicted and observed I / F

alues in each bin, and estimate observed bin errors as the stan-

ard error σi /N 

1 / 2 
i 

, where σ i and N i are the standard deviation and

umber of pixels in bin i , respectively. We then perform a least-

quares fit to the line observed I / F = predicted I / F (solid black line

n Fig. 4 ). 

Because the model ( Eq. (1) ) is linear in the amplitude A , we

on’t fit for it separately. Instead, we guess an approximate am-

litude for A and first fit a straight line to the data (letting the

lope vary, black line in Fig. 4 ). We then divide our initial A value

y the best-fit slope, and recalculate predicted I / F values to obtain

 line of unity slope (blue line, Fig. 4 ). Of course, a wrong value

f n will still yield a bad fit (see the deviations at the ends of the

ines), since the overall shape will deviate from a straight line even

f the overall slope is approximately correct. This procedure to ob-

ain the amplitude removes one of the fitted parameters, reducing

he computational cost (for each model we predict and bin ∼ 10 7 

ixel values). We tested that using this procedure and only fitting

or n consistently recovers the same models as when one fits for

oth parameters simultaneously. 

. Results 

.1. Single power-law 

We began by fitting models of the form Eq. (2) for values of

 ranging from −5 to 3 with a step size of 0.125. For the outer
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Fig. 5. Visualization of the three parameter broken power-law model, along with 

the semimajor axes of Iapetus and Phoebe, and the radial range captured in the 

data (right of dashed blue line). (For interpretation of the references to color in this 

figure legend, the reader is referred to the web version of this article.) 
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4

 

ointing (rev197o), we found a best-fit power-law index n =
1 . 125 , which yielded a reduced χ2 of 1.18 with 111 degrees of

reedom. For the inner pointing data (rev197i), we instead found

 minimum χ2 at n = −0 . 875 , corresponding to a reduced χ2 of

.78 with 79 degrees of freedom. 4 Although this model substan-

ially improved upon the assumption of a homogeneous Phoebe

ing (reduced χ2 of 27.1 with 106 degrees of freedom), the lower

lope and high reduced χ2 of the inner pointing indicate a single

ower law does not satisfactorily fit the data. Upon further inves-

igation, we found that the single power-law assumption tends to

verpredict the I / F at small distances from Saturn ( ≈100 R S ). The

ompromise reached by the power-law fit thus tends to produce

imilar (though subdued) residuals to those for the homogeneous

hoebe ring model shown in Fig. 3 . 

.2. Broken power-law 

In order to address our excess I / F prediction closer to Saturn,

e then considered a broken power-law model, 

 i (r i < R k ) = Ar n Inner 

i 
, (3) 

 i (r i > R k ) = Ar n Outer 

i 
, (4) 

here R k is the radial location of the ‘knee’, where the power-law

ndex shifts (see Fig. 5 ). Fitting the amplitude A as discussed above,

e now have three parameters, n Inner , n Outer and R k . 

We began by coarsely sampling a large section of parameter

pace. Based on this initial investigation, we then settled on a finer

rid of 2244 models, sampling n Inner from -3 to 5 in steps of 0.5,

 Outer from −5 to 0 in steps of 0.25 and R k from 70 R S to 180 R S 
n steps of 10 R S . We found multiple local minima and dozens of

odels which offered compelling fits to the data (the global min-

mum reduced χ2 value was 0.993 and 1.665 for the outer and

nner pointings, respectively). 

To check whether the best-fitting models indeed resembled

ach other, we graphed the various models and overplotted χ2 

ontours ( Fig. 6 ). All models with reduced χ2 within 25% of the
4 We find that the inner pointing consistently yields worse fits than the outer 

ne. This may be due to complicated ring structure induced by the shifting equilib- 

ium Laplace plane for small particles ( Rosengren and Scheeres, 2014; Tamayo et al., 

013b ), or by close encounters with Iapetus. These processes are not captured by 

ur simple empirical model, but we pursue them in Section 4 . 

s  

w  

b

t

est-fit model ( χ2 = 0 . 99 and 1.67 for the outer and inner point-

ng, respectively) lie within the darkest level surfaces, and addi-

ional contours are plotted at 1.5 and 1.75 times the minimum re-

uced χ2 . 

The rapid increase in reduced χ2 across the contours of

ig. 6 show that the data indeed constrains the Phoebe ring’s ra-

ial profile. As one would expect, the outer pointing (left panel)

etter constrains the radial profile at large distances, while the in-

er pointing (right panel) yields a narrower χ2 distribution close

o Saturn. Additionally, the darkest contours from the two panels

n Fig. 6 show good agreement between the inner and outer point-

ng data. 

The models ( Fig. 6 ) suggest that the Phoebe ring’s radial pro-

le exhibits a steeper power-law decay at large radii that levels off

loser in. 

.3. Alternate parametrizations of the data 

The range in models that fit the data well ( Fig. 6 ) is a conse-

uence of the experimental setup. In order to maximize the col-

mn of shadowed material along the line of sight, we performed

he observations when Cassini was almost in Saturn’s umbra (for

hese data, Cassini lay ≈5 R S from the shadow axis, observing ma-

erial ∼ 100 R S away). Therefore, each pixel measures an integrated

 / F deficit accumulated over a broad range of distances from Sat-

rn. This fundamentally limits the amount of radial information

hat can be extracted from the data. 

Alternatively, we can constrain the integrated I / F from the

hoebe ring looking (approximately radially) outward along the

isk’s midplane (in which the shadow lies). This can be approxi-

ated as the area under model curves plotted in Fig. 6 . As shown

n the cumulative integrals of Fig. 7 , we are better able to con-

train this accumulated I / F than the individual contributions from

eparate radial slices. To show the range in models like in Fig. 6 ,

e plot the same reduced χ2 contours. In order to make these cu-

ulative plots, we must choose an inner radius to begin the inte-

ral. We chose the boundary radius where fewer than 10% of pixels

ere influenced by Phoebe ring material lying inside this distance.

his corresponded to 80 R S and 100 R S in rev197i and rev197o, re-

pectively (shown as the leftmost vertical red lines in the left and

iddle panels of Fig. 6 ). 

We can obtain a simple estimate for the integrated I / F along

he Phoebe ring’s midplane by taking the mean integrated value

cross the models in the darkest contours of Fig. 7 . While it is

ifficult to calculate rigorous error bars for our measurements

see Appendix A ), we choose to estimate the errors by taking the

oundaries of the second contour shown in Fig. 6 , which encom-

asses models that had a reduced χ2 less than 1.5 times the best-

t model’s value. This should be a conservative estimate given the

arge number of degrees of freedom (see Appendix A ) and the

act that the reduced χ2 contours rise steeply beyond this contour

compare the second to third contours in Figs. 6 and 7 ). We find 

5 

hat the Phoebe ring’s integrated I / F from 80 to 250 R S along the

isk’s midplane is 2 . 7 +0 . 9 
−0 . 3 

× 10 −9 . 

To connect these empirical fits to physical ring parameters, we

ow consider a dynamical model for Phoebe ring grains. 

. A dynamical model for the Phoebe ring 

The observational data indicate that the Phoebe ring’s den-

ity does not decline with distance from the planet in a uniform

ay. Instead, something happens interior to 110 R S that causes its

rightness profile to become significantly flatter. 
5 We took the values from the inner pointing data in the range [80, 100] R S , and 

hose from the outer pointing over [100, 250] R S , adding the errors in quadrature. 
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Fig. 6. The best-fitting radial profiles for the Phoebe ring. In each panel, the data mostly constrain the radial range between the two red lines (fewer than 10% of pixels are 

influenced by Phoebe ring material lying outside this region). The best-fit model’s reduced χ 2 was 0.99 and 1.67 for the outer and inner pointings, respectively. Contours 

bound the models with reduced χ2 less than 1.25, 1.5 and 1.75 times the value for the best-fit model. The right panel overlays the best contour for each of the two data 

sets. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 7. At each x -value, we integrate the models from Fig. 6 from 80 R S (rev197i) or 100 R S (rev197o) to the radius in question. The contours show the spread in integrated I / F 

values for models that had reduced χ2 values in a given range (same contours as Fig. 6 ). The left gray panel corresponds to the outer pointing data, the right cyan panel 

corresponds to the inner pointing data. The inner endpoints to the integrations were chosen as the first radial slice that influenced at least 10% of pixels in the dataset. The 

red line indicates the radius beyond which fewer than 10% of pixels are affected by Phoebe ring material. (For interpretation of the references to color in this figure legend, 

the reader is referred to the web version of this article.) 
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One possibility is that this feature is due to Iapetus sweeping

up material, as is theoretically expected ( Tamayo et al., 2011;

Tosi et al., 2010 ). While the observed flattening of the Phoebe

ring’s radial profile occurs at roughly twice the orbital distance

of Iapetus, the m oon may be intercepting grains on orbits that

are rendered highly eccentric by radiation pressure. An alternate

possibility are instabilit ies in the equilibrium Laplace surface,

which governs Phoebe ring grains’ vertical orbital evolution.

Rosengren and Scheeres (2014) found that for certain grain sizes,

local Laplace equilibria can become unstable as grains evolve

inward, forcing them to suddenly oscillate around a newfound,

distant equilibrium. A ring composed of single-sized dust grains

in this range would therefore puff up at a characteristic distance

from Saturn, while a distribution of particle sizes in this range

would grow vertically more gradually. This effect would thus also

tend to decrease the density of dust particles in Saturn’s shadow,

and thus the observed brightnesses. 
In order to assess the above possibilities, and interpret our

bservational results, one must construct a dynamical model for

hoebe ring grains. We begin by assessing the 3-dimensional ge-

metry involved. 

The shadow cast by Saturn lies in the planet’s orbital plane. This

s the equilibrium orbital plane for particles far from Saturn, and

hus the symmetry plane for the Phoebe ring at large distances,

aking our observations possible. But as dust grain orbits decay

nward, they will follow the local equilibrium plane, which grad-

ally shifts toward Saturn’s equatorial plane (see Section 4.1 ). An

nfinitely thin Phoebe ring would therefore follow a warped sur-

ace like that shown in Fig. 8 . The real Phoebe ring has a thickness

bout the equilibrium surface that is set by the orbital inclination

hat particles inherit from Phoebe (the thickness increases linearly

ith distance from Saturn, to a value of ≈40 R S at Phoebe’s distance

f 215 R S , Verbiscer et al. 2009 ). Because closer to the planet the

ing lifts out of the plane probed by Saturn’s shadow (the planet’s
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Fig. 8. On the left is an oblique view from above of the warped equilibrium surface that an infinitely thin Phoebe ring would follow. On the right is an edge-on view. 

The horizontal plane in the edge-on view corresponds to Saturn’s orbital plane, which is the plane in which Saturn casts its shadow. If Phoebe-ring material were spread 

evenly from Phoebe to the central planet, our method would observe an inner edge to the ring due to material tilting off the plane that is probed by Saturn’s shadow. 

The only exception would be if the Sun happened to be aligned with the line along which Saturn’s orbit plane intersects its equatorial plane (vantage point shown in right 

panel)—along this line, material would extend inward to the planet; however, in our data, the Sun lies at about 49 ° from this line of nodes. All distances are in Saturn radii. 
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rbital plane), observing an inner edge to the Phoebe ring using

ur technique does not necessarily point to Iapetus sweeping up

aterial. Of course, in this case Iapetus might (and should) never-

heless be carving out an inner edge to the Phoebe ring; this would

ust occur in a region inaccessible to our observation technique. 6 

In order to address this issue, we now consider the dynamics of

article orbits as they decay inwards toward Saturn. We will use

hese results below to generate a Monte Carlo simulation of the

hoebe ring’s 3-D structure. In particular, we study the evolution

f dust-grain orbits under the simultaneous influence of radiation

ressure, tidal solar gravity, and Saturn’s oblateness. Note that we

re ignoring the gravity of Iapetus, which could alter the dynam-

cs at semimajor axes where the orbital periods of the particle and

apetus form a near-integer ratio. In addition, we approximate Sat-

rn’s orbit as circular. 

There are many possible trajectories depending on grains’

nitial conditions, their physical radius, and the position of the

un at the time of their launch. To try and circumvent the

omputational cost associated with this large phase space, we

evelop an analytical model for the dynamics, which we then

ample from at random times to build up the 3-D structure of

he Phoebe ring. To make analytic progress, we assume that the

volutions of the eccentricity and the inclination are decoupled.

n particular, we calculate the inclination evolution assuming a

ircular orbit, and evaluate the eccentricity evolution assuming a

lanar orbit. This amounts to ignoring second-order eccentricity

erms in the equations of motion for the inclination evolution

nd vice-versa. These assumptions are only rigorously correct for

ircular orbits around a planet with zero obliquity (so that all

erturbations act in the same plane); however, they are reasonable

pproximations as long as the planet’s obliquity is not too large

Saturn’s obliquity ≈26.7 °) and the orbital eccentricities are mod-

rate. We will compare our analytic results to direct integrations

elow. 

.1. Inclination evolution 

Because, under the perturbations stated above, the inclination

volution is slow compared to both the particle’s orbital timescale
6 Iapetus orbits in a plane intermediate between Saturn’s equatorial and or- 

ital planes, but would nevertheless sweep up the material as the dust grains’ 

nd m oons mutually precess into configurations where collisions are possible (see 

amayo et al., 2011 ). 

l  

o  

r  

s  

(  
round Saturn and Saturn’s orbital period about the Sun, one can

rofitably average over these fast oscillations. When considering

nly the effects of the quadrupole potentials from the planet’s

blateness and the Sun’s gravity, one then obtains the classical re-

ult that, for a given circumplanetary orbit’s semimajor axis, an

quilibrium plane exists between the planet’s equatorial and or-

ital planes. Particle orbits in this so-called Laplace plane remain

n the plane (in this sense it is an equilibrium plane), whereas

nclined orbits will precess around the Laplace plane normal at

pproximately constant inclination. The local Laplace plane rep-

esents a compromise between the oblateness perturbations that

ominate close to the host planet and are symmetric about its

quatorial plane, and the solar perturbations that dominate far out

nd are symmetric about the planet’s orbital plane. Thus, the lo-

al Laplace plane nearly coincides with the planet’s orbital plane

or distant particle orbits (e.g., those of the irregular satellites),

hile progressively smaller orbits have their respective Laplace

lanes transition toward the planet’s equatorial plane (see Fig. 8 ).

he shift between these configurations occurs at approximately the

aplace radius r L , where the torques from the two perturbations

oughly balance ( Goldreich, 1966 ), or 

 L 
5 ≈ 2 J 2 R p 

2 a p 
3 (1 − e 2 p ) 

3 / 2 M p 

M �

, (5)

here J 2 is the quadrupole coefficient from an axisymmetric ex-

ansion of the planet’s gravitational potential, R p , M p , a p and e p 
re the planet’s radius, mass, orbital semimajor axis and eccentric-

ty, respectively, and M � is the Sun’s mass. Considering the contri-

ution of the inner satellites to Saturn’s effective J 2 , r L at Saturn is

55 R S ( Tremaine et al., 2009 ); Iapetus, at 59 R S , has a mean orbital

lane set by the local Laplace plane’s inclination to Saturn’s orbital

lane of ≈11.5 °. 
The inclusion of radiation pressure (which is symmetric

bout the planet’s orbital plane, like solar tides) shifts the bal-

nce between the planet’s oblateness and solar gravity. Because

adiation-pressure-induced precession of retrograde orbits opposes 

olar gravity precession, this is equivalent to a weakened effective

olar gravity. Thus, for retrograde orbits, the transition of the equi-

ibrium plane from the planet’s orbital to equatorial planes occurs

utside the classical Laplace radius given by Eq. (5) . Conversely,

adiation pressure enhances the solar-gravity-induced preces-

ion of prograde orbits, so the transition radius moves inward

 Tamayo et al., 2013b ). Additionally, because radiation pressure is
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5 S  

7 H is not strictly a Hamiltonian since the equations of motion are not canonical. 
particle-size dependent, the local Laplace planes for grains of

different sizes will vary. 

Recently, Rosengren and Scheeres (2014) performed a rigorous

analysis of Laplace plane equilibria modified by radiation pressure.

In Section 4.3 we use their Eq. (32) to calculate the equilibrium

Laplace plane orientation for a given particle orbit’s semimajor

axis and particle radius. For initial orbital orientations outside the

corresponding equilibrium plane, we assume uniform precession

about the Laplace plane at constant inclination. 

4.2. Eccentricity evolution 

We now consider the evolution of the orbital eccentricity, as-

suming a planar orbit around a planet with zero obliquity (we will

compare our results to direct integrations with a tilted Saturn be-

low). As opposed to the orbital inclination, the orbital eccentric-

ity of small grains will undergo large-amplitude oscillations over a

single Saturn year ( Burns et al., 1979 ). Moreover, such retrograde

particle orbits that begin on near-circular orbits will reach their

maximum eccentricities when their pericenter is aligned with Sat-

urn’s shadow (where we make our observations). It is therefore

important not to average over Saturn’s orbit about the Sun (period

≈30 yrs) in this application (but we still average over the much

faster particle orbit around Saturn, which has a period of ∼ 1 year).

Hamilton and Krivov (1996) have studied this problem for prograde

orbits. We now take their prograde solutions and apply symmetry

arguments to derive the equations of motion for retrograde orbits. 

In a frame centered on Saturn, the equations of motion for a

prograde orbit can be written as 

1 

n �

d� 

dt 
= A 

√ 

1 − e 2 [1 + 5 cos 2(� − λ�) ] 

+ C 

√ 

1 − e 2 

e 
cos (� − λ�) + 

W 

( 
√ 

1 − e 2 ) 2 
, 

1 

n �

de 

dt 
= 5 Ae 

√ 

1 − e 2 sin 2(� − λ�) 

+ C 
√ 

1 − e 2 sin (� − λ�) , (6)

where e is the particle’s orbital eccentricity, ϖ is the longitude of

the grain orbit’s pericenter, λ� is the longitude of the Sun as it

“orbits” around Saturn in the saturnocentric frame, n � is the Sun’s

angular rate, and A, C and W are dimensionless constants capturing

the strength of the sun’s tidal gravity, radiation pressure, and the

planet’s oblateness, respectively: 

A ≡ 3 

4 

n �

n 

, C ≡ 3 

2 

n 

n �

σ, W ≡ 3 

2 

J 2 

(
R p 

a 

)2 
n 

n �

, (7)

where n is the particle’s mean motion, a is the particle orbit’s

semimajor axis, and σ is the ratio of the radiation pressure force

to the gravitational force of the planet on the body at a distance a

(see Eq. (3) of Hamilton and Krivov, 1996 ). 

A retrograde orbit is prograde in a frame where time runs back-

ward, so we can immediately write down the equations of motion

from Eq. (6) in this flipped frame. To be explicit, we can write dt

as dt − to emphasize that it represents time in the flipped frame,

and we can then obtain the equations of motion for a retrograde

orbit in a frame where time runs forward by re-expressing the

equations of motion in terms of the original variable t (through

the simple relation dt − = −dt). Note that in applications with

non-zero inclination one must be careful to also write i −, � 

−,

etc., when applying the prograde equations of motion and then

re-express these in terms of i , ϖ, etc. This is because when flip-

ping the time, i → 180 − i, the ascending node changes by 180 °,
and � = � + ω → � − ω. 
Additionally, one might be tempted to write λ� = n �t in

q. (6) , and have it flip sign upon these transformations; however,

n the flipped frame the Sun moves backwards at a rate −n �t, so

ne would write the equations in the flipped frame with terms

nvolving, � + n �t −, which would revert to � − n �t when re-

xpressed in the original frame. Physically, the relevant terms in

he differential equations only depend on the instantaneous posi-

ion of the Sun, λ�, not the direction in which it is moving, which

s why we chose to express the right-hand sides of Eq. (6) in terms

f λ�. 

The above steps yield retrograde equations of motion with

he signs on the right-hand sides of Eq. (6) negated. Following

amilton and Krivov (1996) , we now move to a frame where the

 axis rotates with the Sun at a rate n �t so that the potential is

tationary, as this will yield a conserved quantity. Note that this

ould not be strictly true for a planet on an eccentric orbit (as

he Sun would no longer “move” at a constant rate), or if the

bliquity were nonzero (as the oblateness potential would become

ime-dependent). Denoting the longitude of pericenter relative to

he Sun’s position φ� = � − λ�, and plugging in for d ϖ/ dt from

q. (6) , we have the equations of motion for a retrograde orbit, 

1 

n �

dφ�

dt 
= 

1 

n �

d� 

dt 
− 1 = −A 

√ 

1 − e 2 [1 + 5 cos 2(φ�) ] 

−C 

√ 

1 − e 2 

e 
cos (φ�) − W 

( 
√ 

1 − e 2 ) 2 
− 1 , 

1 

n �

de 

dt 
= −5 Ae 

√ 

1 − e 2 sin 2(φ�) − C 
√ 

1 − e 2 sin (φ�) . (8)

Following Hamilton and Krivov (1996) , we can write these

quations of motion using 

1 

n �

de 

dt 
= −

√ 

1 − e 2 

e 

∂H 

∂ φ�

, 
1 

n �

dφ�

dt 
= 

√ 

1 − e 2 

e 

∂H 

∂e 
(9)

nd a conserved “Hamiltonian”7 

 = 

√ 

1 − e 2 − 1 

2 

Ae 2 [1 + 5 cos (2 φ�)] − Ce cos φ� − W 

3(1 − e 2 ) 3 / 2 
;

(10)

f. Eq. (9) in Hamilton and Krivov (1996) . Trajectories in this one

egree-of-freedom problem thus move on level curves of constant

. 

Fig. 9 compares these results to two direct integrations that

nclude Saturn’s obliquity and its orbital eccentricity. The nu-

erical integrations were performed with the well-established

ust integrator ( Hamilton, 1993; Hamilton and Krüger, 2008;

ontof-Hutter and Hamilton, 2012a; 2012b ). In both test cases,

he particles were launched such that their orbits’ pericenters

oincided with the direction toward the Sun at t = 0 , and both

imulations were run for 100 years (i.e., more than three Saturn

rbits, and ∼ 70 0 0 particle orbits (left panels) and ∼ 40 0 particle

rbits (right panels). The top panels show the evolution of e and

� in polar plots, where the radial distance gives the eccentricity,

nd the angle from the positive x axis gives φ�. The top left panel

hows a 2 μm grain on a retrograde orbit with a = 10 R S and initial

ccentricity 0.3, in Saturn’s equatorial plane (which is effectively

oincident with the local Laplace plane at this semimajor axis).

espite the large eccentricities (reaching values greater than 0.5),

he agreement is excellent. The bottom left panel shows the corre-

ponding evolution of the analytical H ( Eq. (10 )) in the numerical

imulations, which we verify is conserved to well within 1%. 

The right panels are for a 20 μm particle in an orbit with a =
0 R , initial orbital eccentricity 0.156 (the value for Phoebe), and
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Fig. 9. Top panels compare our analytical level curves (blue, calculated with Eq. (10) , and thus assuming a zero-obliquity planet in a circular orbit) to direct integrations 

(red) with Saturn’s present eccentricity and obliquity. See text for the parameters of the two integrations. The bottom two panels show that the analytical H ( Eq. (10) ) is 

conserved to within 1% in the numerical simulations. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this 

article.) 
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nitial orbital inclination to Saturn’s orbital plane of 165 °, roughly

alf way between the orbital and equatorial planes. These values

ere chosen as representative of the grains we wish to simulate,

t points where our neglect of the coupling between eccentricity

nd inclination could be problematic; Phoebe’s eccentricity (which

rains that are launched at slow speeds should inherit) is currently

.156, and grains smaller than ∼ 3 μm would be quickly eliminated

y radiation pressure upon being liberated from Phoebe ( Tamayo

t al., 2011; Verbiscer et al., 2009 ). Again, the agreement is excel-

ent, so we conclude that our analytic model should provide valu-

ble insight into the orbits of most grains in the Phoebe ring size

istribution. One should keep in mind, however, that the orbits of

he smallest particles that survive immediate elimination by radi-

tion pressure may exhibit important deviations from our results,

articularly near and beyond the Laplace plane transition, where

aturn’s oblateness no longer dominates. 

.3. Monte Carlo simulations 

With an approximate analytical model in hand, we can ef-

ciently generate a Monte Carlo simulation of the Phoebe ring

here we randomly sample particle positions in their orbital evo-

ution, and see how many particles lie in Saturn’s shadow at var-

ous radial distances from the planet. But to compare these simu-

ations with our observations, we must first connect our model to

he photometry. 

For low-optical-depth clouds like the Phoebe ring, the I / F scat-

ered by ring particles is related to the line-of-sight optical depth

, the phase function P ( α), where α is the phase angle, and the

ingle-scattering albedo ϖ0 (at 0.635 μm, where our observing

and is centered, Porco et al. 2004 ) through ( Burns et al., 2001 )

I 

F 
= 

1 

4 

τ� 0 P (α) . (11)

riting d τ = nσd l, where n is the number density of particles, σ
s their geometrical cross-section, and dl is a differential length el-

ment along the line of sight, we define 

 (r) ≡ d( I / F ) 

dl 
= 

n (r) σ� 0 P (α) 

4 

, (12) 
he local quantity m ( r ) thus quantifies how much I / F is gained per

ifferential pathlength through the Phoebe ring, and is the func-

ion we wish to extract from the observations. Since we only make

easurements along Saturn’s shadow, which subtends a small az-

muthal angle, we take m to only be a function of the distance

rom the planet, r . For a given model of m ( r ), one obtains the ex-

ected change in I / F in one of our pixels by integrating m ( r ) along

he path through the shadow. 

Since not only the cross-section, but also the number density

through the orbital dynamics discussed above) will be particle-

ize dependent, we generalize Eq. (12) to consider a range of parti-

le sizes, obtaining the differential contribution to m ( r ) from grains

ith radii between s and s + ds, 

m (r, s ) = 

πs 2 � 0 P (α) n (r, s ) ds 

4 

, (13)

here n ( r, s ), the differential number density for particles between

ize s and s + ds lying between r and r + dr from Saturn. Because

he observation’s wavelength (0.635 μm) is much shorter than

ven the smallest long-lived dust grains (3 μm), we assumed above

 geometric cross-section for the dust grains (this would not be

rue in observations of thermal emission at mid-infrared wave-

engths; cf. Hamilton et al. 2015 ). The total m ( r ) is then simply

iven by the integral of Eq. (13) over s . 

We now estimate n ( r, s ) using the results of our semi-analytical

nvestigation of the grains’ orbital dynamics from Section 4 . For

implicity, we approximate the shadow of Saturn and its rings as

 rectangular prism with cross-section dimensions of 2 R S × 2 R S .

y using radial bins of equal volume (spaced by 10 R S ), we ensure

hat the sought number density n ( r, s ) is equal to the number of

articles we find in each bin to within a normalization constant

which must be fit to the data anyway). Since the dimensions of

he Phoebe ring are much larger than those of the shadow, our

imple choice for the shadow shape does not affect the result. We

an therefore relate dm ( r, s ) to N ( r, s ), the number of particles in

 Monte Carlo simulation lying in a radial bin centered at r , with

izes between s and s + ds . Writing differentials with 
 to empha-

ize the finite size of our bins, we have from Eq. (13) , 

m (r, s ) ∝ s 2 N(r, s )
s, (14)
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8 sampled every micron from 5 to 20 μm, and at 22, 24, 26, 28, 30, 35, 40, 45, 

50, 60, 70, 80, 90, 100, 200, 300, 400, 500, 1000, 2000, 3000, 4000, 5000 and 

10,0 0 0 μm. 
9 we note that the implied mass loss rates, even if continued for the age of the 

Solar System, are too small to significantly erode Phoebe. 
where we have assumed that ϖ0 and P ( α) are the same for all par-

ticles (in our observations, the phase angle α varies from ≈3.4 ° to

≈1.7 ° when looking at sections of the Phoebe ring centered at 100

R S and 200 R S , respectively). 

The strengths of the various relevant perturbations vary with

the particle orbits’ semimajor axes, which decay according to 

a = a 0 e 
−t/τP−R , (15)

where a 0 is the original semimajor axis, and τP−R is the Poynting–

Robertson decay timescale ( Burns et al., 1979 ). Assuming particles

share Phoebe’s density of 1.6 g/cm 

3 , 

τP−R ≈
(

s 

7 μm 

)
Myr , (16)

where s is the particle radius. According to Eq. (15) , approxi-

mately ln(215/60) ≈1.28 Poynting–Robertson decay timescales are

required for particles to approximately reach Iapetus’ semimajor

axis ( a ≈ 60 R S ) from Phoebe ( a ≈ 215 R S ). Because the semima-

jor axis evolution is the same for all particle sizes if one rescales

time through t ′ = t/τP−R ( Eq. (15) ), we chose to consider semima-

jor axes sampled at one hundred equally spaced t ′ intervals for all

particle sizes: 


t ′ = 


t 

τP−R 

= 

ln (215 / 60) 

100 

, (17)

where τP−R scales linearly with s ( Eq. (16) ). 

At each of these hundred semimajor axes, we first evaluate the

motion of the particle’s orbital angular momentum vector in a

frame that uses the local Laplace plane as the reference plane (see

Section 4.1 ). To a good approximation, the orbital angular momen-

tum vector precesses around the Laplace plane pole at a constant

angle given by the free inclination, which is an adiabatic invariant

of the motion as the semimajor axis slowly decays ( Ward, 1981 ).

At all semimajor axes, we therefore randomly and uniformly sam-

ple the orbit’s longitude of ascending node on the Laplace plane

�Lap , and for the free inclination assign Phoebe’s current orbital

inclination to Saturn’s orbital plane of 175.243 ° ( http://ssd.jpl.nasa.

gov/?sat _ elem ), which very nearly corresponds to the local Laplace

plane at Phoebe’s orbital radius. To transform to a common refer-

ence frame for all semimajor axes (the frames coinciding with the

local Laplace planes are tilted relative to one another as a varies),

we calculated the inclination of the local Laplace plane to Saturn’s

orbit normal at each a ( Rosengren and Scheeres, 2014 ), and applied

the appropriate rotation matrices. 

With a, i and � (where orbital elements without subscripts are

referenced to Saturn’s orbital plane) in hand, we proceed to se-

lect the eccentricity e and argument of pericenter ω. The appropri-

ate level curve that the eccentricity vector follows ( Eq. (10) ) is set

by the initial conditions. Since the escape velocity from Phoebe is

small compared to its orbital velocity, and most ejecta is launched

at velocities comparable to the escape speed (e.g., Farinella et al.,

1993 ), dust grains will essentially inherit Phoebe’s orbital elements

at the time of impact. We therefore set the initial eccentricity to

Phoebe’s current value (which changes little) and, for computa-

tional ease, considered eight equally spaced initial values of φ�

( Section 4.2 ). 

As mentioned above, an orbit’s angular momentum vector pre-

cesses with a constant free inclination about an equilibrium (the

local Laplace plane’s pole). Analogously, (to a good approximation)

each orbit’s pericenter precesses with a constant free eccentricity

about another equilibrium (the forced eccentricity), i.e., in the po-

lar plots in the top panels of Fig. 9 , different initial conditions

would move on level curves that to first order are concentric cir-

cles about the equilibrium forced eccentricity; the radius of the cir-

cle is then the constant free eccentricity. As in the inclination case

with the shifting Laplace plane, the forced eccentricity changes
s orbits decay and the relative perturbation strengths vary, and

imilarly, the free eccentricity is an adiabatic invariant as long as

he semimajor-axis decay rate is slow compared to the precession

imescale (which is always the case here). 

For a given initial condition, we therefore first calculated the

pproximately conserved free eccentricity. Then, at each semima-

or axis, we calculated the appropriate forced eccentricity numeri-

ally (by finding the point at which level curves collapsed to zero

adius), and randomly sampled e and φ� from a uniform distribu-

ion along the perimeter of the level curve. Then, we obtained ω
sing the relationships φ� ≡ � − λ� and � = � − ω. Finally, we

btained the last orbital element by selecting the mean anomaly

 from a uniform distribution. 

With this procedure, for each of eight equally-spaced values of

he initial condition for φ�, and for each of the hundred semima-

or axis values, we obtained the orbital elements of particles, and

alculated cartesian positions in a system where z points along Sat-

rn’s orbit normal, x points from Saturn to the Sun (at the time

f observation we are trying to model), and y completes a right-

anded triad. In order to extract the number of particles along Sat-

rn’s shadow, we selected the particles whose positions lay inside

he model shadow’s rectangular prism, binned by their radial po-

ition along −x in slices of length 10 R S from 0 − 250 R S . 

The probability of a particle’s position falling inside the shadow

ecreases rapidly with distance from Saturn. In order to obtain re-

iable statistics, we therefore sampled more particles in distant or-

its than in tight ones. In particular, we calculated the positions of

2,500 particles for the innermost semimajor axis at a = 60 R S , and

oosted the number of sampled particles at each semimajor axis

y a factor of ( a /60 R S ) 
3 . For a fair comparison, when counting par-

icles in each radial bin, we divided the number of particles from

ach semimajor axis by the same factor of ( a /60 R S ) 
3 . 

Following this procedure, we obtained N ( r i , s j , a k ), i.e., the num-

er of particles with semimajor axis a k and size s j that fell in the

in with radial distance r i , for each of forty different particle sizes, 8 

or each of the 100 sampled semimajor axes. The y -scale on our

lots is set by the number of particles for which we choose to cal-

ulate positions. The normalization of our histograms is thus ar-

itrary, but we obtain an accurate scaling with distance for each

article size. 

The radial distribution of material as a function of particle size,

 ( r i , s j ), is then simply given by summing the contributions from

ach of the semimajor axes; however, knowledge of the relative

mounts of material at each semimajor axis requires a model for

he injection of particles into the Saturn system (which the data

an then support or reject). 

We consider here a steady-state model, where Phoebe is bom-

arded by micrometeoroids at a constant rate, generating d ̇ N (s )

articles with radii between s and s + ds per second. 9 In our dis-

retized model, within a time 
t , Phoebe’s semimajor axis will

eceive N(a = 215 R S , s ) = d ̇ N (s ) × 
t particles. After another 
t ,

hese particles will have moved to the next semimajor axis in (re-

all that our semimajor axis values were chosen to each be sep-

rated by the same 
t ), and Phoebe’s semimajor axis will have

eceived a fresh set of particles. After another 
t , the chain is

ushed one link further, until a steady state is reached. Thus, each

emimajor axis (i.e., not necessarily each radius) should have the

ame number of particles. We can then simply build the radial dis-

ribution of particles of a given size N ( r i , s j ) by taking the Monte

arlo simulations for grains of radius s j , and for each radial bin

http://ssd.jpl.nasa.gov/?sat_elem
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Fig. 10. Number of shadowed particles in the Monte Carlo simulation as a func- 

tion of orbital radius, for different grain sizes. This case does not consider Iape- 

tus sweeping up material (at the vertical red line)—the inner edge around 65 R S 
is instead due to the Laplace plane shifting and material tilting off Saturn’s orbital 

plane, so that the planet’s shadow does not pierce it. As described in the text, par- 

ticle numbers have been normalized to make up for the fact that we simulated 

more particles at large distances from Saturn (in order to have a similar chance of 

finding them in the shadow as grains on tighter orbits). (For interpretation of the 

references to color in this figure legend, the reader is referred to the web version 

of this article.) 
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Fig. 11. Number of shadowed particles in the Monte Carlo simulation as a function 

of orbital radius, for different grain sizes. Any orbits that have pericenters interior 

to Iapetus’ semimajor axis are removed from their respective bins. 
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dding up equal contributions of particles from each of the hun-

red sampled semimajor axes, 

(r i , s j ) ∝ 

∑ 

k 

N(r i , s j , a k ) . (18)

lugging this result into Eq. (14) , we have 

m (r i , s j ) ∝ 

∑ 

k 

N(r i , s j , a k ) s 
2 
j 
s j . (19)

.4. Simulation results 

Fig. 10 shows, for different particle sizes, the profile of the

umber of shadowed particles in the Monte Carlo simulation as a

unction of radius, N ( r, s ) ( Eq. (14) ). As one would expect, smaller

articles (see the 5 and 8 μm distributions) reach farther inward,

wing to their higher orbital eccentricities induced by radiation

ressure. By contrast, and of key importance to our later results,

arge particles ( � 20 μm) are relatively unaffected by radiation

ressure and converge to a common radial profile. 

We note that this case does not consider Iapetus sweeping up

aterial. The inner edge around 65 R S for large particles is instead

ue to our observation’s geometry. At this distance, material tilts

ff Saturn’s orbital plane, so that the shadow no longer passes

hrough the Phoebe ring. 

Intermediate particles (see the 12 and 15 μm distributions)

ave peculiar distributions sculpted by complicated dynamics. As

hown by Rosengren and Scheeres (2014) , the Laplace surface for

articles with these intermediate area-to-mass ratios “breaks” near

he Laplace radius ( Eq. (5) ), and their orbits are forced to suddenly

recess about a more distant equilibrium with a large free inclina-

ion. At such bifurcations, the distributions get substantially puffed

p vertically, lowering the number density in the shadow. This can

reate local maxima in the distributions of these intermediate-size

rains. 

The remaining question is whether Iapetus could cut off the

ing at larger radii than 65 R . As a limiting case, we imagine that
S 
apetus sweeps up all the material on orbits with pericenters in-

ide Iapetus’ semimajor axis (59 R S ). This is a good assumption for

ll but the smallest grains, s � 10 μ m ( Tamayo et al., 2011 ). The

esult is shown in Fig. 11 . 

We see that Iapetus only qualitatively affects the radial dis-

ributions of small particles ( � 20 μm). Starting at approximately

5 R S , the orbits of larger grains are tilted off the orbital plane

hat is pierced by Saturn’s shadow, so they disappear from our

bservations before we can observe Iapetus sweeping them up. By

ontrast, the more complicated dynamics of small grains ( � 20 μm)

auses some material to remain in the shadow closer to Saturn,

aking it possible for our observational setup to see the effect

f Iapetus intercepting these diminutive particles. Additionally,

mall grains develop large orbital eccentricities through radiation

ressure, and are therefore able to reach Iapetus at pericenter

rom larger Saturnocentric distances. Of course, in reality, Iapetus

ill sweep up material of all sizes; in fact, larger particles are

ore likely to be intercepted since they decay inward more slowly

hrough Poynting–Robertson drag ( Tamayo et al., 2011 ). We now

ompare these distributions to the observations. 

. Comparing theoretical models to the data 

To connect our theoretical radial distributions for various parti-

le sizes ( Figs. 10 and 11 ) with the observed photometry, one must

ombine the 
m ( r i , s j ) into a single m ( r i ) ( Eq. (19) ). In addition

o any intrinsic particle size distribution, because smaller particles

volve inward faster than large grains ( Eq. (17) ), we must consider

hat a given semimajor axis will receive more small grains than

arge ones in a given time interval. To this end, we take the input

ate of particles per unit time at Phoebe’s semimajor axis (which is

he same for all our a values in a steady state) to follow a power-

aw distribution with index −q, 

˙ 
 (s j , a k ) ∝ s −q 

j 

s j . (20)

hen, since each of our hundred sampled semimajor axes are sep-

rated by the same (size-dependent) 
t ( Eq. (17) ), we can obtain

he number of particles of size s j of semimajor axis a k N ( s j , a k ) in

ur discretized model through 

(s j , a k ) ∝ 
t × s −q 
j 


s j ∝ s −(q −1) 
j 


s j , (21)

here the additional factor of s comes from the factor of τP−R 

 Eq. (15) ) in 
t from Eq. (17) . Therefore, in combining particle sizes
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Fig. 12. Predicted I / F per R S as a function of radial distance from Saturn. The red 

line shows the predicted radial profile without accounting for Iapetus sweeping 

up material. The blue line removes any material whose orbit crosses Iapetus (at 

59 R S ). In gray and cyan are the observed distributions plotted in the right panel 

of Fig. 6 . The predicted profiles have been normalized to agree with the observa- 

tions at 140 R S . (For interpretation of the references to color in this figure legend, 

the reader is referred to the web version of this article.) 
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10 Hamilton et al. (2015) recently reached a similar conclusion from infrared ob- 

servations with WISE. 
(assuming a steady state), one should weight the contribution from

each grain radius by a factor w j = s 
−(q −1) 
j 


s j . Since w j is indepen-

dent of a , we can obtain m ( r i ) directly from Eq. (19) , 

m (r i ) ∝ 

s max ∑ 

j= s min 


m (r i , s j ) w j ∝ 

s max ∑ 

j= s min 

∑ 

k 

N(r i , s j , a k ) s 
3 −q 
s j . (22)

In summary, Eq. (22) relates the number of particles in each bin

of our Monte Carlo simulations to the m ( r i ) that we use to con-

vert our modeled pathlengths through each radial slice of the

shadow into the expected brightness deficit in a particular pixel

(see Fig. 2 ). 

Fig. 12 shows our theoretical radial profiles for typical size dis-

tributions of Solar System rings (power law indices ≤ 4). In partic-

ular, we fill the space between the curves for a distribution with

q = 1 and q = 4 , using a minimum and maximum particle size of

5 μm and 1 cm, respectively. The agreement for power laws ≤ 4 is

due to the factor of s 3 −q in Eq. (22) , which highlights large particles

that all have similar dynamics (only for indices steeper than q = 4

would small particles with different dynamical behaviors begin to

dominate). 

Additionally, we see that, for these size distributions, our mod-

els are insensitive to Iapetus sweeping up material. This is because

for q ≤ 4, the dominant large grains are too large to be significantly

affected by radiation pressure, and therefore do not have sufficient

orbital eccentricity to reach Iapetus (at 59 R S ) from the larger dis-

tances spanned by our observations. 

While our observations do not reach inward to the distance

from Saturn where large particles are removed from the shadow

( ≈75 R S , see Fig. 10 ), our observed radial profiles (gray and cyan)

seem to plateau and possibly dip starting at 100 R S . 

5.1. Phoebe ring grains are small 

Taking a step back, we first note that the blue and red curves

in Fig. 12 simply follow the radial distribution to which dust grains

of increasing size converge as radiation pressure plays a decreas-

ingly important role (compare with the 20, 100 and 10 0 0 μm

curves in Fig. 10 , in the range beyond 80 R S from Saturn). In this

regime of large grains, radiation pressure represents a small pertur-

bation. This renders the approximations in our semi-analytic model
 Section 4 ) excellent, which should yield accurate predicted radial

rofiles. The fact that the observed radial profile instead plateaus

t ∼ 100 R S therefore implies that particles � 20 μm cannot domi-

ate the scattered light flux from the Phoebe ring. 10 

It is less clear why small grains dominate the scattered light

ux. If we assume as above that Phoebe ring grains are produced

n a steady state, this suggests a steep power law size distribu-

ion with index q > 4, which would be unusual among rings in

he Solar System ( Burns et al., 2001 ). However, the Phoebe ring

as a substantially lower normal optical depth than known plan-

tary rings. This implies that dust grains should not collide with

ne another, even over the ∼ Myr timescales required for material

o decay inward through Poynting–Robertson drag. The steep in-

erred particle size distributions could therefore reflect the initial

ize distribution of ejecta. One way to observationally test whether

he Phoebe ring indeed has such an unusually steep size distribu-

ion would be to measure its brightness in different optical filters;

uch a ring should appear blue. 

Alternatively, release of all the Phoebe ring material in a sin-

le large collision would likely admit shallower size distributions

see the preceding section), though one would have to additionally

odel and fit for the time of the event. Another possibility is that

ther processes could be preferentially destroying large grains. The

-R decay timescales are much longer (at least 1 Myr, see Eq. (16) )

han the lifetimes of dust particles in typical planetary rings deep

n the host’s magnetosphere ( Burns et al., 2001 ), so one might ex-

ect different effects to dominate in this unusual regime. In partic-

lar, micrometeoroids should preferentially break up larger grains

 Burns et al., 2001 ). Finally, the solar wind could be affecting grains

s they evolve inward outside Saturn’s magnetosphere. 

The above conclusions suggest one should fit the Phoebe ring’s

adial profile with small grains/steep power laws. The problem is

hat our approximations from Section 4 are much poorer for these

iminutive grains. Not only do these particles acquire substantial

rbital eccentricities, the Laplace equilibria for intermediate par-

icles ≈ 10 − 15 μm become unstable as they evolve inward, leav-

ng orbits with large free inclinations to their newfound centers

 Rosengren and Scheeres, 2014 ). 

This presents another promising extension of this work, since

e see hints in our models that such phenomena could explain

he observed “plateau.” For example, as shown in Fig. 13 , a ring

omposed entirely of 13 and 14 μm grains gives a reasonable qual-

tative match to the data. One can also see that Iapetus strongly

culpts the distribution inside ≈100 R S . Given the remarkably rich

ynamics, one would have to carry out a suite of numerical in-

egrations to accurately compare this model to the observations.

dditionally, to separate these complicated dynamical effects from

apetus sweeping up material, one would likely have to accurately

odel collisions with the satellite. We defer this numerical effort

o future work, but note the importance of pushing observations

nward to ∼ 75 R S . 

.2. Contributions to the Phoebe ring from other irregular satellites 

As can also be seen in Fig. 12 , our theoretical models predict

ess scattered light at Phoebe’s apocenter and beyond ( > 250 R S )

han shown by the data. The physical reason is that for retrograde

rbits, radiation pressure induces a forced eccentricity ( Section 4.2 )

hat is directed away from the Sun along φ� = π (see Fig. 9 ). This

eans that when particle orbits reach the maximum eccentric-

ty in their secular cycle, their pericenters point away from the

un, i.e. along the shadow axis. Our observations therefore always
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Fig. 13. Number of shadowed particles in the Monte Carlo simulation, assuming an 

equal number of 13 and 14 μm grains, and a constant I / F offset of 8 × 10 −12 from 

other irregular satellites. 
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n  
ample the most eccentric particles at pericenter—this skews the

adial distributions toward smaller distances from Saturn, leaving

ittle material beyond Phoebe’s apocenter. 11 

As Hamilton et al. (2015) also argue from infrared WISE data,

his suggests that other irregular satellites also contribute to the

Phoebe” ring. The more distant irregular satellites Ymir, Suttungr, 

hrymr and Greip are promising candidates, given their similar or-

ital inclinations to Phoebe (since this determines the derived ver-

ical disk thickness). There are likely also additional bodies too

mall to detect with current technology. The contributions from

ther irregular satellites merit further study, since our empirical

odel fit a single power law at large distances. 

. Conclusion 

By measuring the deficit in scattered light from Phoebe ring

rains in Saturn’s shadow, we were able to reconstruct a radial

rofile of material in this vast debris disk ( Fig. 6 ). We also obtained

n integrated I / F at 0.635 μm along Saturn’s shadow from 80–250

 S of 2 . 7 +0 . 9 
−0 . 3 

× 10 −9 . To date, only this technique has yielded mea-

urements of the Phoebe ring at optical wavelengths. Additionally,

he method’s inherent attenuation of scattered light from Saturn

akes it possible to probe material closer to Saturn than has been

easible with infrared observatories in orbit around Earth. 

Combining such a measurement of scattered light at optical

avelengths with ones of thermal emission at infrared wave-

engths, like those of Verbiscer et al. (2009) and Hamilton et al.

2015) , allow one to estimate the particle albedos. This was done

y THB14, who found grain albedos consistent with dark ejecta

rom Phoebe. However, while the data presented in this paper are

ubstantially better than those analyzed by THB14, there remain

arge uncertainties in the particles’ infrared emissivities and phase

unctions (though see Hedman and Stark 2015 for recent progress).

e therefore defer an improved analysis until more observations

t undertaken at new wavelengths. 

We find that the scattered light signal rises as one moves in-

ard from Phoebe to Saturn (as expected), but then “plateaus”
11 Were Phoebe ring grains to instead orbit in a prograde direction, the behavior 

ould be opposite and particles would fill the shadow to much larger distances 

 Hamilton, 1996 ). 

l  

i  

R

 

t  
t ≈100 R S ( Fig. 13 ). We developed a semi-analytic treatment for

he size-dependent dust dynamics of Phoebe ring grains, and used

his to generate a Monte Carlo model of the material in Phoebe

ing’s shadow. Our models, which should be accurate for grains

 20 μm in size, deviate from the ring’s observed radial profile in-

ide ≈100 R S . We conclude that the Phoebe ring’s scattered light

ignal must be dominated by small dust grains ( � 20 μm). Assum-

ng the Phoebe ring is generated through a steady-state process of

icrometeoroid bombardment, this implies that a particle size dis-

ribution with an index > 4, which is unusually steep among Solar

ystem rings. This agrees with a recent analysis of the ring’s in-

rared thermal emission with WISE ( Hamilton et al., 2015 ). Again

n agreement with Hamilton et al. (2015) , we find that additional

rregular satellites beyond Phoebe must contribute material to the

Phoebe ring,” in order to explain the observed fluxes at and be-

ond Phoebe’s apocenter. 

The lack of large particles in the Phoebe ring may have im-

ortant implications. Because the optical depth is so low, parti-

les smaller than ∼ 100 μm should not suffer mutual collisions

 Tamayo et al., 2011 ). The steep size distribution may therefore

race the original size distribution of ejecta from micrometeoroid

ombardment. Alternatively, the small particles may suggest that

nother process, perhaps micrometeorite bombardment, preferen-

ially breaks apart large grains as they more slowly decay inward

ver several Myr. 

It is unclear whether the “plateau” feature we observe is due to

apetus sweeping up material, the complicated dynamics of small

ust grains, or both. The approximations in our analytical model

reak down for these diminutive particles, so an in-depth numeri-

al study will be required to accurately untangle these effects. Nev-

rtheless, it is theoretically expected that Iapetus should efficiently

weep up particles � 10 μm ( Tamayo et al., 2011 ), so it will be a

aluable task to push future data analysis and modeling effort s to

bservationally test how well Iapetus carves out the inner edge to

he Phoebe ring. 
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ppendix A. Testing the pipeline 

We have tested our procedures by running synthetic images

hrough our pipeline. Using our modeled pathlengths for the outer

ointing in Rev 197, and assuming the broken power-law model

or the Phoebe ring of Section 3.2 , we constructed images with the

xpected dimming for shadowed pixels. Superimposing Gaussian

oise with mean I / F 5 × 10 −8 , and standard deviation 10 −8 (the

alues we found in the same data set after filtering bad pixels),

e ran these fake images through the pipeline to try and retrieve

he input radial model. 

In particular, we generated synthetic images from a model with

 Inner = 0 , n Outer = −2 , and R k = 130 R S ( Eq. (3) ). We then calcu-

ated reduced χ2 values using our pipeline for a grid of power law

ndices centered on the input values (with the break fixed at 130

 S ). The result is shown in Fig. A.14 . 

Several features stand out in this plot. Perhaps most striking is

hat the input model does not yield the lowest χ2 . Additionally,

http://dx.doi.org/10.13039/501100003579
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Fig. A1. Distribution of reduced χ2 values for a grid of models, applied to a syn- 

thetic dataset overlaid with Gaussian noise that was generated using the model pa- 

rameters at the center of the grid. See text for discussion. 
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the χ2 is systematically below unity for the best models, and does

not vary smoothly across the grid. We address these points in re-

verse order. 

The reduced χ2 does not vary smoothly primarily because of

our selection of the best-fit normalization. In reality, this slice for

a break location at 130 R S is three-dimensional (specifying the nor-

malization and two power-law indices). If one pictures Fig. A.14 as

extending into the page along the normalization direction, the

plotted colors correspond to the minimum chi squared value from

the “column” of normalizations “below” each grid point. Because in

general the minimum χ2 values lie at different “depths,” the vari-

ation is not smooth across the grid. A similar effect can be seen in

Fig. 9 of Nicholson et al. (2014) . 

We attribute the systematically low reduced χ2 values to an

overestimation of our number of degrees of freedom, which can

often be a problem for non-linear models (e.g., Andrae et al., 2010 ).

Due to the large number of pixels in each of our datasets ( ∼10 7 ),

we choose to do a simple and thus necessarily rough statistical

analysis. We generated 300 fake images using the same broken

power-law model given above, each with a different Gaussian noise

realization (with parameters as above). We then ran each synthetic

data set through our pipeline, fitting to the same input model used

to generate the fake images. To additionally test our procedure’s

ability to extract the correct normalization, we initially guess a

normalization that is two times too large. 

Our procedure systematically retrieves the correct normaliza-

tion to within 0.06% (mean), with a standard deviation of 0.3%.

A naïve counting of the number of bins entering our χ2 evalua-

tion suggests 259 degrees of freedom. We find that a histogram

of our χ2 values is instead best fit by a χ2 distribution with 209

degres of freedom. A Komolgorov-Smirnov test gives a p Value of

0.43 that our histogram is drawn from such a χ2 distribution (with

≈80% the number of degrees of freedom one would naïvely esti-

mate). While we might thus adjust the degrees of freedom in our

analysis by 80% to evaluate the probabilities entering our marginal-

izations, we nevertheless choose to normalize all reduced χ2 val-

ues to the minimum value. We find that if we raise the reduced

χ2 values by 20%, our marginalized estimates are extremely sensi-

tive to the few parameter combinations lying at the bottom of the

deepest valleys of χ2 space. Normalizing to the minimum value

more equitably samples the best fits to the data and seems like a
ore balanced representation of the models, given that our under-

ying statistical analysis is approximate. We partially compensate

or this by making conservative estimates of the errors on the pa-

ameters we extract, bracketing the wide range in parameter space

hat yields reasonable fits. 

Finally, we consider that the input model does not yield the

owest χ2 . This reflects the fact that in order to obtain enough

ignal, our geometry is such that we look nearly radially out-

ard down the axis of the shadow. This fundamentally limits the

mount of radial information that we can extract from our data.

hus, the models along the band of low χ2 values are all good

odels that approximately conserve the integrated amount of ma-

erial in a column along the line of sight. Superposed on this band

f good models is the statistical variation one would expect for a
2 distribution, which, as argued above, is jumpy because we are

robing to different “depths” along the normalization direction in

arameter space. It is thus not surprising that one of the equally

ood models near the input model would statistically have a lower
2 . If we try the same analysis with a different noise realization,

e find the same band of low χ2 values, with the same dispersion,

ut a different grid point along the band becomes the “best fit.”

As a final consideration, we investigate whether the low χ2 val-

es might imply we are overfitting the data. To test this, we per-

orm our normal procedure, but only on the even images, obtain-

ng a best-fit model (including a value for the normalization). We

hen calculate a reduced χ2 value for that model (this time with

he normalization fixed), using the odd images. If we were fitting

oise in the even images, the χ2 would suffer in the odd images,

ut we find that the reduced χ2 values are statistically indistin-

uishable between the even and odd images, and both look like

ig. A.14 . 
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