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Summary

Planetary rings provide a natural laboratory for investigating dynamical phenomena.
Thanks to their proximity to earth, the rings surrounding the giant planets can be
studied at high resolution and in great detail. Indeed, Earth-based observations and
spacecraft missions have documented a diverse array of structures in planetary rings
produced by both inter-particle interactions and various external perturbations. These
features provide numerous opportunities to examine the detailed dynamics of particle-
rich disks, and can potentially provide insights into other astrophysical disk systems like
galaxies and proto-planetary disks.

This chapter provides a heuristic introduction to the dynamics of the known plane-
tary rings. We begin by reviewing the basic architecture of the four known ring systems
surrounding the giant planets. Then we turn our attention to the types of dynamical phe-
nomena observed in the various rings. First, we consider how different forces can modify
the orbital properties of individual ring particles. Next, we investigate the patterns and
textures generated within a ring by the interactions among the ring particles. Finally,
we discuss how these two types of processes can interact to produce structures in dense
planetary rings.

1 Introduction to planetary ring systems

Ring systems surround all four of the giant planets in the outer solar system. While all
these rings consist of many small particles orbiting their respective planets, the known
rings exhibit a wide diversity of structures, and occupy a broad range of dynamical
environments. Furthermore, different rings exhibit patterns and features generated by
such diverse processes as inter-particle interactions, gravitational perturbations from
various satellites, and a number of non-gravitational forces. Hence, before we consider
the dynamical phenomena operating in various rings, it is useful to briefly review the
properties of the known planetary rings.

As shown in Figure 1, the rings of the giant planets vary dramatically in their
structure and their opacity. Opacity is a particularly useful parameter for describing
and categorizing rings because it is correlated with such fundamental ring parameters as
surface mass density, and because it can be directly measured by observing the amount
of light transmitted through or scattered by the rings. Ring opacity is typically quantified
using either a transmission coefficient T or an optical depth τ = − ln(T ). Such parameters
depend on the exact path the light takes through the rings, but they can be used to
estimate a viewer-independent parameter called the normal optical depth; the optical
depth of the ring observed when the light passes perpendicularly through the rings. The
normal optical depth of the known planetary rings ranges over more than eight orders
of magnitude.

The most extensive and complex ring system belongs to Saturn. Furthermore,
thanks to the vast amount of data returned by the Cassini spacecraft, Saturn’s ring
system is now the best-studied in the outer solar system. The most familiar of Saturns
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Figure 1: The ring systems of the giant planets, shown to scale. Each grey-scale level
corresponds to a decade in ring optical depth. The small white dots correspond to the
various moons, with the size of the dots being proportional to the logarithm of their true
size. None of these moons are shown to scale with the rings.
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rings are the so-called “Main Rings”, which include the A, B and C rings, as well as the
Cassini Division between the A and B rings. These are all broad rings with substantial
optical depths (τ ranging from around 0.1 to over 5) composed of millimeter-to-meter-
sized ice-rich particles. Their high opacities and reflectivities makes these rings the easiest
ones to see with Earth-based telescopes. Still, it is important to realize that none of these
rings are completely homogeneous. Instead, they possess structures on a wide range of
scales, and there are even several nearly empty gaps in the A ring, the C ring, and the
Cassini Division. Some of these patterns can be attributed to particle-particle interac-
tions or various gravitational perturbations from Saturn’s various moons, and therefore
provide illustrative examples of the dynamical phenomena that can operate in such dense
rings. However, the processes responsible for producing many other structures are still
not well understood. Detailed reviews of Saturn’s main rings are provided by Colwell et
al. (2009) and Cuzzi et al. (2009).

In addition to these main rings, Saturn also possesses a diverse suite of (mostly)
fainter rings, including the D E, F and G rings, some narrow ringlets occupying gaps
in the main rings, material in the orbits of various small moons, and the enormous but
tenuous disk of debris extending between the orbits of Phoebe and Iapetus. The normal
optical depth of these rings ranges from 0.1 for the core of the F ring, to about 10−3 for
parts of the D ring, to 10−6 for both the E and G rings, to as low as 10−8 for the extensive
Phoebe ring (Horanyi et al. 2009, Verbiscer et al. 2009). Unlike the dense main rings, the
visible appearance of these fainter rings is dominated by dust-sized particles less than 100
microns across. Such small particles are especially sensitive to non-gravitational forces,
and so the dynamics of these dusty rings are quite different from those of Saturn’s main
rings. Horanyi et al. (2009) provides a recent review of Saturn’s dusty rings.

After Saturn, Uranus possesses the most substantial ring system, which is domi-
nated by an array of dense, narrow rings. These rings are designated using either numbers
(the 4, 5 and 6 rings) or Greek letters (such as the α, β, γ, δ, ε, and η rings). Most of these
rings have optical depths between 0.1 and 1.0 and are between 1 and 10 km wide. The
exception is the ε ring, whose width ranges between 20 and 100 km, and whose optical
depth ranges between 0.5 and 2.5. These narrow, dense rings are surrounded by dusty
material that has numerous fine-scale structures, including some narrow dusty ringlets
like the λ ring. A sheet of dusty material, known as the ζ ring, extends inwards of the
dense rings, and two diffuse dusty rings, called the µ and ν rings, have been recently
discovered further from the planet (de Pater et al. 2006a, b). French et al. (1991) and Es-
posito et al. (1991) provide the most recent comprehensive discussions of Uranus’ rings,
and while the data are still rather limited, several interesting dynamical phenomena have
been observed in this system. For example, many of the narrow rings exhibit variations
in their widths and radial locations that are due to a combination of perturbations from
nearby moons and excited normal modes.

Most of Neptune’s dusty rings are rather tenuous, with optical depths around 10−3.
The exception is the Adams ring, which contains a series of longitudinally confined arcs
with optical depths as high as 0.1. These arcs are of special interest here because they
may be confined by a co-rotation resonance with Neptunes small moon Galatea. Porco
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et al. (1995) provide a detailed review of Neptune’s ring system.
Jupiter’s ring system is the most tenuous of all, and appears to be formed primarily

of fine debris knocked loose from Jupiters small moons (see Burns et al. 2004 for detailed
discussions of this system). The so-called Main ring extends interior to the small moons
Metis and Adrastea, which are likely to be important sources for the ring material. At the
inner edge of the Main ring is the Ring Halo, a vertically extended distribution of debris
that likely represents particles whose inclinations have been excited by their interactions
with Jupiter’s magnetic field. Exterior to the main ring are two extremely faint Gossamer
Rings, which appear to be composed of debris knocked off from Amalthea and Thebe.
Both these moons are on inclined orbits, and the vertical extent of these structures is
consistent with those inclinations.

The structure and dynamics of these planetary rings are due to a diverse array
of processes, including interactions among the particles within the rings and external
perturbations on the orbits of individual ring particles. Furthermore, many features in
the ring actually reflect interactions among multiple dynamical processes. For example,
the density waves in Saturn’s Main Rings are generated by resonant gravitational per-
turbations from Saturn’s moons, but their propagation through the rings is controlled
by collisions and gravitational interactions among the ring particles. Fortunately, there
are also features in planetary rings that more clearly document individual dynamical
phenomena. In particular, various patterns in the low optical depth rings allow us to
demonstrate how external forces can perturb the orbits of individual ring particles, while
the small-scale textures of the main rings provide insights into how ring particles interact
with each other.

2 Orbital perturbations on individual ring particles

Here we consider how the orbit of an individual ring particle can be perturbed by outside
forces. After reviewing the nomenclature for the orbital parameters that will be used in
this chapter, we present the generic perturbation equations for these parameters. We will
then use these equations to quantify how the ring particles should respond to steady and
time-variable (i.e. resonant) perturbations.

2.1 Orbital elements

In the following discussions of ring dynamics, we will use both physical coordinates of
ring features and orbital parameters of the component ring particles. For a planetary
ring, a cylindrical coordinate system is most natural, so we will designate the location
of ring features by their radius r, vertical offset z, and longitude λ. Note that λ is
measured relative to a fixed direction in inertial space, so orbiting particles cycle through
all possible values of λ once each orbit.

While cylindrical coordinates are a natural basis for describing ring features, the dy-
namics of these systems are best described in terms of the six classical orbital elements:
the semi-major axis a, the eccentricity e, the orbital inclination i, the longitude of as-
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Figure 2: The orbital element nomenclature used in this chapter.
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cending node Ω, the argument of pericenter ω and the particles’ true anomaly f (Figure
2). The inclination of the ring particles will be measured from the planet’s equatorial
plane, and Ω is measured from the same inertial direction used to define λ.

Most planetary rings are on very low inclination orbits in this coordinate system,
so the longitude of pericenter $ = Ω + ω is often a more useful parameter than either
Ω or ω. In terms of this parameter, the longitude of a ring particle can be written as
λ ' Ω+ω+f = $+f . Many planetary rings also consist of particles on low-eccentricity
orbits, so in the absence of other perturbations, these particles will move around the
planet at a rate n that is approximately equal to (GMP/a

3)1/2 where G is the universal
gravitational constant, MP is the planet’s mass and a is the orbital semi-major axis.

2.2 Perturbation equations

In addition to the central force from the planet’s gravity, ring particles feel various (small)

perturbing forces. In general, such a force can be written as: ~F = Frr̂+Fλλ̂+Fz ẑ, where
r̂ is a unit vector pointing in the radial direction, λ̂ is a unit vector pointing in the
azimuthal direction, and ẑ points normal to the orbit plane. Including such a perturbing
force in the appropriate equations of motion yields a series of perturbation equations,
which specify how the particles orbital elements should change over time in response
to this force. A heuristic derivation of these equations can be found in Burns (1976),
and we will not attempt to derive these equations here. Instead, we will simply present
the equations, illustrate how they can be simplified for ring particles on nearly circular,
low-inclination orbits, and briefly discuss why the resulting expressions are intuitively
sensible.

First, let us consider the perturbation equation for the particles semi-major axis:

da

dt
=

2an

(1− e2)1/2

[
Fr
FG

e sin f +
Fλ
FG

(1 + e cos f)
]
, (1)

where FG = GMPm/a
2 is the central force from the planet. The dominant term in this

expression is proportional to Fλ/FG. This makes sense, since a steady force applied along
the direction of motion will cause the particle to accelerate, gain energy, and move away
from the planet. The other terms involve e, and therefore will be small corrections for
most ring particles. However, these terms can still be important in situations where the
average azimuthal force applied to the particle over the course of one orbit is zero (e.g.
the direction of the force is fixed in inertial space). Thus, even in the limit of a nearly
circular orbit (e << 1), this equation can only be slightly simplified by approximating
(1− e2)1/2 as simply unity:

da

dt
= 2an

[
Fr
FG

e sin f +
Fλ
FG

(1 + e cos f)
]
. (2)

Next, consider the perturbation for the particles eccentricity. The general expression is:

de

dt
= n(1− e2)1/2

[
Fr
FG

sin f +
Fλ
FG

(cos f + cos ε)
]
, (3)
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where ε is the eccentric anomaly, a quantity that is approximately equal to the true
anomaly f for particles on nearly circular orbits considered here. Thus, for typical ring
particles we may approximate the above expression as:

de

dt
= n

[
Fr
FG

sin f + 2
Fλ
FG

cos f
]
, (4)

In order to verify that this expression is sensible, consider the following: A force that
accelerates a particle along the direction of motion near pericenter (i.e. Fλ > 0 when
f = 0) causes the eccentricity to grow, while a similar force applied near apocenter
(i.e. Fλ > 0 when f = 180◦) causes the eccentricity to shrink. Both of these results are
consistent with standard orbital dynamics.

The perturbation equation for the orbital inclination is:

di

dt
= n(1− e2)1/2

[
Fz
FG

cos(ω + f)

1 + e cos f

]
, (5)

or, in the limit of nearly circular, low-inclination prograde orbits:

di

dt
= n

[
Fz
FG

cos(λ− Ω)
]
, (6)

where we have used the approximate relationship λ ' f + ω + Ω, which is valid for low
inclinations. Again, we can verify this equation gives sensible results in various simple
situations. For example, a vertical force Fz > 0 applied when the particle is near its
ascending node (λ ' Ω) and thus already moving northwards, will cause the inclination
to grow, while the same force applied near the descending node (λ ' Ω+180◦) will cause
the inclination to shrink.

The perturbation equation for the longitude of ascending node is:

dΩ

dt
=
n(1− e2)1/2

sin i

[
Fz
FG

sin(ω + f)

1 + e cos f

]
, (7)

For nearly circular, low inclination, prograde orbits, this expression becomes:

dΩ

dt
=

n

sin i

[
Fz
FG

sin(λ− Ω)
]
, (8)

which is a plausible complement to the above perturbation equation for the inclination.
For example, a positive vertical force applied when the particle is near its maximum
vertical excursion (λ ' Ω + 90◦) will delay the particles’ return to the ring-plane and
thus move the node longitude forward around the planet.

Finally, we have the following expression for the argument of pericenter:

dω

dt
+ cos i

dΩ

dt
=
n(1− e2)1/2

e

[
− Fr
FG

cos f +
Fλ
FG

sin f
(2 + e cos f)

(1 + e cos f)

]
, (9)
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For orbits with small e and i, this equation can be transformed into a simpler perturba-
tion equation for the longitude of pericenter $ = ω + Ω:

d$

dt
=
n

e

[
− Fr
FG

cos f + 2
Fλ
FG

sin f
]
. (10)

This is a reasonable complement to the perturbation equation for the orbital eccentricity.
For example, an outward radial force applied near apocenter (f ' 180◦) will delay the
particles’ inward motion and thus cause the pericenter to shift forward in longitude.

2.3 Ring-particle responses to specific perturbations

The above equations specify how the ring-particles’ orbital parameters will evolve over
time in response to any given perturbation. We may now consider specific physical pro-
cesses, and determine how these phenomena will influence the distributions and motions
of ring material. Furthermore, we can compare these predictions with actual structures
observed in low-optical-depth rings, where inter-particle interactions can often be ig-
nored.

2.3.1 Drag forces

Drag forces are a useful starting point for these discussions because the dynamical im-
plications of drag are relatively straightforward. A generic drag force will oppose the
motion of the ring particles relative to some reference frame, and so one consequence of
drag forces is the damping of certain components of the particles velocities. For exam-
ple, consider a force that damps vertical motion, so Fz = −Dzvz, where Dz is a positive
constant and vz = ani cos(λ− Ω) is the vertical velocity of the orbiting ring particle. In
this case the relevant perturbation equations for the inclination and the ascending node
location are:

di

dt
= −ian

2Dz

FG
cos2(λ− Ω) = −iDz

m
cos2(λ− Ω) (11)

dΩ

dt
= −an

2Dz

FG
sin(λ− Ω) cos(λ− Ω) = −Dz

m
sin(λ− Ω) cos(λ− Ω) (12)

Averaging these expressions over a full orbit yields the following results:〈
di

dt

〉
= −iDz

2m
(13)

〈
dΩ

dt

〉
= 0 (14)

The ascending node therefore does not steadily evolve due to this perturbation, while the
inclination is exponentially damped. Similarly, a drag force that opposes radial motions
will damp orbital eccentricities. Both these results are physically sensible and demon-
strate the utility of the above perturbation equations.
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Besides damping inclinations and eccentricities, drag forces can also produce secular
evolution in the semi-major axes. Consider a force that opposes azimuthal motion relative
a reference frame rotating around the planet at an angular rate n0. To lowest order, such
a drag force is independent of the particles orbital eccentricity and inclination, and the
relevant component of the force can be written as Fλ = −FD(n − n0)/n0. In this limit,
the only orbital element with an average non-zero time derivative is the semi-major axis:〈

da

dt

〉
= −2a

FD
FG

n

n0

(n− n0). (15)

Hence, if n > n0, the semi-major axis will decay over time, while if n < n0, the semi-
major axis will grow with time. This again makes sense: if n > n0, then the drag force
will act to slow the orbital motion of the ring particles, causing them to spiral inwards
towards the planet, while if n < n0, the drag force will accelerate the ring particles and
cause them to spiral outwards.

Examples of both inward and outward radial transport due to drag forces can be
found in low optical-depth planetary rings associated with small moons. Such rings
consist of debris knocked off these small moons by micrometeoroid impacts that is then
dispersed by various transport processes, including drag forces. The best-known examples
are Jupiter’s two Gossamer Rings (Figure 3). Each of these rings has a finite vertical
thickness and a distinct “tuna-can” morphology that indicates the particles in these
rings have characteristic inclinations similar to that of their likely source moon (either
Amalthea or Thebe, Burns et al. 1999). More recently, a similar vertical structure has
been found in Saturns enormous Phoebe ring, implying that much of the material in this
ring has nearly the same orbital inclination as Saturns moon Phoebe (Verbiscer et al.
2009). For all of these rings, the ring material is mostly located interior to the relevant
moon’s semi-major axis, which can be explained as the result of a particular type of drag
force called Poynting-Robertson drag, which is a consequence of how these small particles
scatter sunlight (Burns, Lamy and Soter 1979). In a reference frame fixed to the Sun, a
particle preferentially emits or scatters radiation along its direction of motion, and thus
loses forward momentum. Such a drag force corresponds to a case where n0 << n, and
thus it always causes the particle to spiral inwards towards the planet.

Other drag forces, however, can cause outward migration. For example, ring particles
can exchange momentum with a population of charged subatomic particles trapped in the
planets magnetosphere, giving rise to a “plasma drag”. The subatomic charged particles
are strongly coupled to the planet’s magnetic field, and therefore can orbit the planet
at rates close to the planet’s rotation rate, which exceeds the keplerian orbital rate at
sufficiently large semi-major axes. In these situations, n0 > n, and the interactions with
the plasma will cause the ring particles to accelerate and thus spiral away from the
planet. One place where this process may occur is in Saturn’s G ring. This ring extends
outwards from the orbit of the small moon Aegaeon, and gets progressively fainter with
increasing distance from that moons orbit (see Figure 3). The simplest interpretation of
this pattern is that the ring consists of material knocked off from the moon (or other
nearby objects), which then drifts outwards due to its interactions with the surrounding
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Figure 3: Examples of structures within planetary rings produced by drag forces. Above:
Jupiter’s two Gossamer Rings appear to consist of material spiraling inwards from the
moons Amalthea and Thebe (NASA Planetary Photojournal image PIA01623). Below:
Saturn’s G ring has an asymmetric profile with a sharp inner edge and a diffuse outer
boundary (NASA Planetary Photojournal image PIA07643). Source bodies, including
the small moon Aegaeon, have been found near the inner edge of this ring, so much of
the material in this ring may consist of material spiraling outward under the influence
of plasma drag.
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plasma (Hedman et al. 2007). A similar process may also be at work in Uranus’ µ-ring,
which extends outwards from the orbit of Uranus’ small moon Mab (de Pater et al.
2006b).

2.3.2 Planetary oblateness

Another simple application of the perturbation equations involves particles in orbit
around an oblate planet. If a planet has a finite oblateness then the gravitational poten-
tial near the equator is given by:

U = −GMPm

r

[
1− J2

(
R

r

)2
(

3z2

2r2
− 1

2

)]
. (16)

So long as the oblateness-quantifying parameter J2 is small, the second term in this
expression can be interpreted in terms of a small correction to the planet’s apparent
mass plus an additional perturbing force. Near the planet’s equator the perturbing force
has the components:

Fr ' −3J2FG

(
R

a

)2

e cos f, (17)

Fz ' −3J2FG

(
R

a

)2 z

a
' −3J2FG

(
R

a

)2

sin i sin($ − Ω + f). (18)

Inserting these expressions into the perturbation equations for a, e and i and averaging
over a full orbit only yields small terms of order e and i. Thus the semi-major axis, eccen-
tricity and inclination of the ring particles are not strongly affected by this perturbation.
By contrast, the variations in the two angles $ and Ω are not so small. Indeed, if we
average these perturbations over a single orbit, we obtain the following expressions:〈

d$

dt

〉
=

3

2
nJ2

(
R

a

)2

, (19)

〈
dΩ

dt

〉
= −3

2
nJ2

(
R

a

)2

. (20)

Thus the planet’s oblateness causes the partcle’s orbital pericenter to precess and its
ascending node to regress around the planet at a rate of order nJ2. These precession
rates are consistent with those derived using the potential directly (see Murray and
Dermott 1999).

All the planets with rings have substantial J2 values, and indeed the orbits of moons
and ring particles have pericenters that precess and ascending nodes that regress at
detectable rates. These precessional motions have important implications for how the
ring particles respond to other perturbations.
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2.3.3 Inertially-fixed forces

While the perturbation equations do yield the correct precession rates due to planetary
oblateness and sensible radial drifts due to drag forces, the true power of the pertubation
equations is that they can be applied to any perturbing force, including ones that have
more complex effects on the dynamics of the ring particles. For example, say the ring
particle is being perturbed by an outside force that always points in the same direction
in inertial space:

Fz = +FI sinB (21)

Fr = +FI cosB cos(λ− λ0) (22)

Fλ = −FI cosB sin(λ− λ0) (23)

where B is an elevation angle above the ring-plane and λ0 is a longitude. Inserting these
values into the general perturbation equations in Section 2.2, and noting that f = λ−$
yields:

da

dt
= −2an

FI
FG

cosB[e sin($ − λ0) + sin(λ− λ0)] (24)

de

dt
= −n

2

FI
FG

cosB[3 sin($ − λ0) + sin(2λ−$ − λ0)] (25)

d$

dt
= − n

2e

FI
FG

cosB[3 cos($ − λ0)− cos(2λ−$ − λ0)] (26)

di

dt
= n

FI
FG

sinB cos(λ− Ω) (27)

dΩ

dt
=

n

sin i

FI
FG

sinB sin(λ− Ω) (28)

If we assume FI , λ0 and B are constants that do not vary over an orbital period,
then di/dt and dΩ/dt will average to zero over an orbit period, while the derivatives of
the semi-major axis, eccentricity and pericenter location average to:〈

da

dt

〉
= −2ane

FI
FG

cosB sin($ − λ0) (29)

〈
de

dt

〉
= −n 3FI

2FG
cosB sin($ − λ0) (30)〈

d$

dt

〉
= −n

e

3FI
2FG

cosB cos($ − λ0) (31)

Rather than examine this exact set of differential equations, it is more useful to consider
equations that also account for the so-called “free precession” in the particle’s orbital
pericenter due to planet’s finite oblateness. This is accomplished by simply adding the
term $̇0 = 1.5nJ2(R/a)2 to the equation for 〈d$/dt〉:〈

d$

dt

〉
= −n

e

3FI
2FG

cosB cos($ − λ0) + $̇0 (32)
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The advantage of including this constant term is that for any semi-major axis a there
is a steady-state solution to Equations 29, 30 and 32 where none of the orbital elements
change with time. This steady-state solution has e = ef = 3

2
n
$̇0

FI

FG
cosB and $ = λ0.

In essence, the perturbing force has broken the rotational symmetry of the system, and
the only orbit that can maintain a constant eccentricity has its pericenter aligned with
the perturbing force. Of course, this fixed solution is a special case, and more general
solutions to the above equations of motion can be found. These solutions are most easily
expressed using the variables h = e cos($− λ0) and k = e sin($− λ0). In terms of these
variables, the above equations of motion become:〈

da

dt

〉
= −4

3
a$̇0efk (33)

〈
dh

dt

〉
= −$̇0k (34)

〈
dk

dt

〉
= $̇0(h− ef ) (35)

Note that the semi-major axis variations are second order in e and therefore can be
neglected. The equations for h and k are just those of two coupled harmonic oscillators.
The general solutions to these equations of motion therefore trace out circles in [h, k]
space centered on the point k = 0 and h = ef . Thus the total eccentricity of the orbit
e = (h2 + k2) and pericenter location $ = tan−1(k/h) will vary periodically with a
frequency $̇0. Indeed, as illustrated in Figure 4, the eccentricity and pericenter position
can be modeled as the vector sum in [h, k] space of a constant, or “forced” component
ef and a “free” component el with a fixed magnitude but a variable orientation that
drifts around at the constant rate $̇0. The magnitude and orientation of the forced
eccentricity are determined by the magnitude and direction of the perturbing force,
while the magnitude of the free component is set by the initial conditions of the orbit.

Probably the best example of an approximately inertially fixed perturbing force is
solar radiation pressure. This is simply the force that arises from solar photons impacting
and exchanging momentum with ring particles, which yields a nearly constant anti-
sunwards force. According to the above calculations, such a force will yield steady-state
orbital solutions where the pericenter is anti-aligned with the Sun. Particles sensitive
to this perturbation can therefore give rise to ringlets that counter-intuitively appear
to be displaced towards the Sun (see Figure 4). This phenomenon has recently been
documented with a faint, low optical depth ringlet in the Cassini Division. This ringlet,
which is composed of small (<0.1 mm) particles that are particularly sensitive to non-
gravitational forces like solar radiation pressure, is typically found 10 km further from
Saturns center at longitudes near the sub-solar side of the planet than it is at longitudes
near Saturns shadow (Hedman et al. 2010a). These displacements are comparable to the
expected radial excursions in the particles’ orbits due to solar radiation pressure.
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Figure 4: Left: Evolution of a particle’s eccentricity and pericenter under the combined
influence of precession and a fixed inertial force. Right: Cartoon illustration of the asym-
metries in a dusty ringlet caused by solar radiation pressure. The forced eccentricities
due to solar radiation pressure cause the center of the ringlet to be displaced from the
center of Saturn towards the Sun.

2.3.4 Resonant perturbations

Ring structures generated by perturbation forces with fixed magnitudes and directions
like solar radiation pressure are relatively rare. More commonly, features in the rings are
generated by forces whose magnitudes and directions vary periodically over time, such as
the gravitational pull of a moon. At locations in the rings where the appropriate orbital
frequencies are a whole number ratio times the frequency of the periodic force, even small
perturbations can have significant effects on the orbital properties of the ring material.
These mean-motion resonances are very rich and complex non-linear phenomena, and
have been analyzed using a wide variety of sophisticated mathematical techniques (see
e.g. Murray and Dermott 1999 and the chapter in this book by Malhotra). However, the
basic dynamics of some of the most important resonances in planetary rings can also be
understood using the above perturbation equations.

For simplicity, let us first consider a moon of mass Mm on a circular orbit at semi-
major axis am that lies in the same plane as the rings. In this case, the gravitational pull
of the moon on the ring particle has the following components:

Fz = 0 (36)

Fr ' +Fm cos(λ− λm) (37)

Fλ ' −Fm sin(λ− λm) (38)

where Fm = GMmm
a2+a2m−2aam cos(λ−λm)

is the magnitude of the gravitational force of the moon

on the ring particle and λm is the longitude of the moon (Note the above expressions for
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the force direction are exact only if am >> a). Inserting these force components into the
perturbation equations for semi-major axis, eccentricity and pericenter longitude (Fz = 0
means that the equations for i and Ω are trivial), we obtain the following equations of
motion:

da

dt
= −2an

Fm
FG

[e sin($ − λm) + sin(λ− λm)] (39)

de

dt
= −n

2

Fm
FG

[3 sin($ − λm) + sin(2λ−$ − λm)] (40)

d$

dt
= − n

2e

Fm
FG

[3 cos($ − λm)− cos(2λ−$ − λm)] (41)

These equations are similar to those derived above for a fixed force. However, it is
important to realize that here Fm is an implicit function of cos(λ−λm), and furthermore
λm is not a constant, so care is required when averaging these expressions over an orbit.

The force term Fm can be expanded as power series in cos(λ − λm), so the right
hand sides of the above expressions can be written as:

da

dt
= −2an

Mm

MP

∑
j

(eWj(a/am) sin[j(λ− λm)− (λ−$)] +W ′j sin[j(λ− λm)]) (42)

de

dt
= −nMm

MP

∑
j

Xj(a/am) sin[j(λ− λm)− (λ−$)] (43)

d$

dt
= −n

e

Mm

MP

∑
j

Xj(a/am) cos[j(λ− λm)− (λ−$)] (44)

WhereWj,W ′j, and Xj are functions of the semi-major axis ratio a/am that we will leave
unspecified here for the sake of brevity. For a moon moving on a nearly circular orbit,
λm = nmt, where nm is the constant mean motion of the moon. Furthermore, so long as
the perturbations on the ring particle’s orbit are sufficiently small, we can assume that
λ ' nt and $ ' $̇0t. Hence, at most locations in the rings, all of the terms in the above
equations of motion will average to zero on sufficiently long time scales. Indeed, all of
the terms proportional to sin[j(λ− λm)] in the equation of motion for a will average to
zero unless the particle is in nearly the same orbit as the moon.

However, there is an entire set of semi-major axes aj where for one integer value of j
the quantity j(n− nm)− (n− $̇0) ' 0. Each of these locations corresponds to a specific
type of resonance known as a first-order Lindblad resonance. When a ring particle is
near one of these semi-major axes, one of the angles ϕLR,j = j(λ − λm) − (λ − $) is
nearly constant, while all of the other terms cycle through 360◦ on orbital timescales. In
this case, the time-averaged equations of motion become:〈

da

dt

〉
= −2ane

Mm

MP

Wj(a/am) sinϕLR,j (45)

〈
de

dt

〉
= −nMm

MP

Xj(a/am) sinϕLR,j (46)
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〈
d$

dt

〉
= −n

e

Mm

MP

Xj(a/am) cosϕLR,j (47)

These equations of motion are very similar to the time-averaged equations for a constant
force, with the pericenter longitude $ replaced by the angle ϕLR,j. As in that previous
case, the variations in the semi-major axis will be second order in e and can therefore
be ignored. Furthermore, it is again useful to include in the equation of motion for the
pericenter location the term arising from the planet’s finite oblateness $̇0 :〈

de

dt

〉
= −nMm

MP

Xj(a/am) sinϕLR,j (48)

〈
d$

dt

〉
= −n

e

Mm

MP

Xj(a/am) cosϕLR,j + $̇0 (49)

To complete the parallel with the fixed forced case discussed above, we can note that
dϕLR,j/dt = j(n− nm)− (n− d$/dt), so we can re-write the second equation as:〈

dϕLR,j
dt

〉
= −n

e

Mm

MP

Xj(a/am) cosϕLR,j + ϕ̇LR,j0 (50)

where ϕ̇LR,j0 = j(n−nm)−(n−$̇0). For particles with orbital semi-major axes sufficiently

close to aj this angular rate can be written as ϕ̇LR,j0 = −n δa
aj

[
3
2
(j − 1) + 21

4
J2

(
R
aj

)2
]

,

where δa = a − aj . Thus, as long as δa 6= 0, ϕ̇LR,j0 will be finite, and there will be a
steady-state solution to these equations of motion. This solution has a forced eccentricity:

ef =
n

|ϕ̇LR,j0|
Mm

MP

Xj(a/am) (51)

since |ϕ̇LR,j0| ∝ |δa|, this forced eccentricity diverges as the particles semi-major axis
approaches the resonant value aj.

Meanwhile, the steady-state value of the angle ϕLR,j is 0 if δa < 0 and is 180◦ if
δa > 0. This means that if the particle’s semi-major axis lies interior to the resonant
location aj, then the particle will been near pericenter when it has a conjunction with
the moon (i.e. when λ = λm), and if the particle’s semi-major axis lies exterior to the
resonant location, then the particle with be near apocenter with it has a conjunction with
the moon. Figure 5 illustrates these steady-state trajectories (also called streamlines) in
a reference-frame that co-rotates with the moon. In this reference frame, the streamlines
form a fixed pattern with j-fold symmetry. Thus even though the particles in this region
move at the local orbital rate n, the pattern moves around the planet at the mean motion
of the moon nm ' n(j − 1)/j.

If ring particles were spread throughout this region, then the changing distances
between the streamlines will correspond to changes in the apparent surface density of
the ring particles. Such patterns have now been observed in several faint rings (Hedman
et al. 2009a). In denser rings the situation becomes more complicated because particles
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Figure 5: Illustration of the streamlines in the vicinity of a Lindblad resonance with j = 8
(also known as the 8:7 inner Lindblad resonance). this diagram uses a reference frame
where both the planet and the moon (at right) are fixed, and the steady-state solutions to
the ring particle’s equations of motion form the closed patterns (not to scale). Note that
interior to the resonance location (marked with the dashed line), the particles are near
pericenter at conjunction with the moon, while exterior to the resonance, the particles
are near apocenter at conjunction. Also note that the pattern is 8-fold symmetric because
near this resonance λ−$ ' j(λ− λm) modulo a constant.
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can interact with each other through their mutual gravity and collisions, giving rise to
features like the density waves described in Section 4.2 below.

Lindblad resonances are just one type of resonance that can influence the structure
of planetary rings. Other types of resonances can occur if the moon is not on a perfectly
circular, co-planar orbit. For example, if the moon is on a slightly inclined orbit, then
the components of the perturbation forces become:

Fz = +Fm sin[im sin(λm − Ωm)] (52)

Fr = +Fm cos[im sin(λm − Ωm)] cos(λ− λm) (53)

Fλ = −Fm cos[im sin(λm − Ωm)] sin(λ− λm) (54)

where Fm is the same as before, im is the moon’s inclination and Ωm is the moon’s
longitude of ascending node. Assuming sin im << 1, then the equations for Fr and Fλ
are essentially the same as they would be for the un-inclined case, while the vertical
perturbation term becomes:

Fz = +Fmim sin(λm − Ωm) (55)

In this case, the perturbation equations for the inclination and node position become:

di

dt
= nim

Fm
FG

sin(λm − Ωm) cos(λ− Ω) (56)

dΩ

dt
= n

im
i

Fmim
FG

sin(λm − Ωm) sin(λ− Ω) (57)

Once again, we can expand Fm as a power series in cos(λ− λm). Discarding some terms
that will always average to zero if the particle’s semi-major axis lies interior to the moons,
we obtain the expressions:

di

dt
= nim

Mm

MP

∑
j

Yj(a/am) sin[(j − 1)λ− (j + 1)λm + Ω + Ωm] (58)

dΩ

dt
= −nim

i

Mmim
MP

∑
j

Yj(a/am) cos[(j − 1)λ− (j + 1)λm + Ω + Ωm] (59)

These equations have basically the same form as those for eccentricity and pericenter
derived above (Yj being another unspecified function of the semi-major axis ratio) .
Thus again there should be a series of resonant semi-major axes. If a particle has a semi-
major axis close to any one of these first-order vertical resonances, one of the angles
ϕV R,j = (j−1)λ−(j+1)λm+Ω+Ωm will change slowly with time, and thus the particle’s
orbit will acquire a forced inclination. The magnitude of the forced inclination diverges
as the particles’ semi-major axis approaches the resonant radius, and furthermore the
ascending node of the steady-state orbit shifts by 180◦ at the resonant radius.

Such vertical resonances are responsible for features like bending waves and perhaps
inclined ringlets in the dense rings (see below). Vertical resonances also play a role in
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generating the vertically extended halo in the inner part of Jupiters rings, although in
that case the resonance is with periodic variations in the planet’s magnetic field rather
than with a moon (Burns et al. 1985).

Finally, we can consider scenarios where the moon is on an eccentric orbit with
eccentricity em and pericenter longitude $m. In this case, the force components have the
same form as Equations 36-38 above, but the magnitude of the perturbing force Fm now
depends on the true anomaly of the moon fm = λm −$m:

Fm =
GMmm

a2 + a2
m[1− em cos(λm −$m)]2 − 2aam[1− em cos(λm −$m)] cos(λ− λm)

(60)

When this expression is expanded to lowest order in em one obtains:

Fm =
GMmm

a2 + a2
m − 2aam cos(λ− λm)

[
1 + em cos(λm −$m)

2a2
m − 2aam cos(λ− λm)

a2 + a2
m − 2aam cos(λ− λm)

]
(61)

The second term is a small correction to the equations of motion for the eccentricity and
pericenter longitude, but has a significant effect on the equation of motion for the semi-
major axis, because when this term is again expanded as a power series in cos(λ− λm),
it generates a series of terms in the equation of motion for a:

da

dt
= −2anem

Mm

MP

∑
j

Zj(a/am) sin[j(λ− λm) + (λm −$m)], (62)

where Zj is yet another function of the semi-major axis ratio. Again, there is a series of
semi-major axes aj where one of these terms will be nearly constant in time. At these
locations, known as first-order co-rotation eccentricity resonances, the semi-major
of the ring particle can evolve significantly over time. In particular, we can see that a
will evolve to drive the sine of the resonant angle ϕCR,j = [j(λ − λm) + (λm − $m)]
towards zero. However, if the semi-major axis changes, then the resonant angle will also
begin to change with time. Thus the only steady state solutions are those where a = aj
and ϕCR,j is either 0 or 180◦. Furthermore, if a < am, only cases where ϕCR,j = 180◦

are actually stable to small perturbations. To understand why this is the case, imagine
a particle was on an orbit slightly interior to aj and drifted past the longitude where
ϕCR,j = 180◦. In this case, the above perturbation would cause the particle’s semi-
major axis to increase, slowing its mean motion and causing it to drift back towards
the point where ϕCR,j = 180◦. This kind of resonance can therefore trap material into
longitudinally confined arcs of debris.

The clearest examples of material confined by co-rotation resonances are the faint
arcs of debris surrounding Saturn’s small moons Anthe, Methone and Aegaeon (see
Figure 6). The longitudinal extents and mean motions of all these arcs are consistent
with them all being material trapped in various co-rotation resonances with Mimas
(Hedman et al. 2007, 2009b). The arcs in Neptune’s Adams ring are also believed to
be confined some sort of co-rotation resonance with the moon Galatea (see Figure 6).
However, the mean motion of these arcs does not match that predicted for material
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Figure 6: Examples of arc material trapped in planetary rings. Left: Arcs of debris
surrounding Saturns moons Anthe and Methone, which are likely confined by resonances
with Saturn’s moon Mimas (NASA Planetary Photojournal image PIA11102). Right:
Arcs in Neptunes Adams Rings, which might be supported by more a more complex
resonance with Neptune’s moon Galatea (Image from the Voyager Spacecraft obtained
from the Planetary Data Service).

in the simple resonance described above. More complex resonances may be involved in
producing these arcs, and the mass densities and opacities for the Adams ring could also
be sufficiently high that the dynamics of this system are complicated by inter-particle
interactions (Porco 1991, Nicholson et al. 1995, Dumas et al. 1999, Sicardy et al. 1999,
Namouni and Porco 2002, de Pater et al. 2005).

3 Inter-particle interactions

While the most tenuous rings can be treated as a collection of independent ring particles,
in denser rings the collisions and gravitational interactions between individual ring par-
ticles cannot be ignored. The dynamics of numerous interacting particles are much more
complex than the isolated-particles and cannot be so easily described using analytical
expressions like those given above. Indeed, numerical simulations now provide some of
the most powerful tools for exploring the structure and dynamics of dense rings. Hence,
rather than attempt a comprehensive discussion of particle interactions within rings, we
will here focus on a few aspects of dense rings that illustrate how collisions and grav-
itational interactions among ring particles can influence the structure and dynamics of
ring material. For more detailed discussions of these and other dynamical phenomena in
dense rings, see the recent reviews by Schmidt et al. (2009) and Charnoz et al. (2009),
and the references therein.
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3.1 Basic parameters

The physical parameters that are most relevant to the dynamics of interacting ring
particles are their sizes (radii) s, their mass densities ρ and their (velocity-dependent)
coefficients of restitution ε. A real ring will consist of particles with a range of sizes,
densities and restitution coefficients, and furthermore these parameters may change with
time as collisions cause particles to stick together or break apart. While these processes
are important for understanding certain properties of dense rings, they also massively
complicate the dynamics. Hence it often useful to consider simpler situations where all
the particles have the same size, mass density and surface properties. In such cases,
s, ρ and ε are treated as independent parameters, with s and ρ being constants, and ε
being a specified function of impact velocity that is motivated by various experiments (a
common choice being ε = (v/0.0077 cm/s)−0.234, which is based on experiments described
in Bridges et al. 1984).

The dynamical state of a collisional ring also depends the number of particles in
the ring. In general the amount of material in a ring region is described by the size
distribution of ring particles d2(s), which specifies the average number of particles of a
given size per unit surface area. In the simple case where all the particles have identical
sizes, this distribution function reduces to the average number of ring particles per unit
surface area, here denoted D2. In practice, most researchers do not use D2 itself to
describe the total amount of material in the rings, but instead use either the average
surface mass density Σ or a quantity known as the dynamical optical depth τD. In the
case where all particles have the same size and mass density, both the surface mass
density and the dynamic optical depth are simple functions of D2:

Σ =
4π

3
ρs2D2, (63)

τD = πs2D2. (64)

Even if the particles have a range of sizes, these parameters can be easily derived as the
appropriate integrals over the size distribution.

It is important to realize that while Σ is the average surface mass density of the
ring, τD is not necessarily equal to the normal optical depth observed by any experiment.
The above expression assumes that each ring particle obscures an area equal to its cross
section, and thus neglects the possibility that a given line of sight can pass through two or
more ring particles. Hence, while τD is close to the ring’s actual observed normal optical
depth when τ << 1, the observed τ can deviate significantly from τD when the density
of the ring is fairly high. Thus τD is better understood as a conventional representation
of the particle number density, and not an estimate of the actual ring opacity.

Finally, the dynamics of collisional rings depends upon how far the ring is situated
from the planet center r.
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Figure 7: Variations in the structure of dense rings as a function of radius and dynamical
optical depth. Each panel shows two simulated views of a small patch of rings, one
from above and one from the side (in both plots radius increases to the right). These
simulations were computed for rings around Saturn, and the dynamical optical depths
of the simulations are given at the far left, while the assumed ring radii r are given along
the top (in this plot, rh = r/rH , where rH is the Roche Limit for these particles). Figure
adapted from Figure 14.7 in Schmidt et al. (2009) and kindly provided by H. Salo.
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3.2 Equilibrium particle distributions

So long as the ring is unperturbed by outside forces, the average distribution of particles
within the ring should depend just on a rather small number of parameters r, s, ρ, ε, and
D2 (or equivalently τD or Σ). However, even in cases where the particles are all identical,
the spatial distribution of ring material is not necessarily simple or homogeneous. Figure
7 shows the results of numerical simulations of small patches within the rings for different
values of r and τD. This diagram illustrates the various types of structures that can arise
just from the interactions among ring particle, which can be divided roughly into four
basic classes:

• Situations where the particles are distributed homogeneously, which occur when
the surface mass density is low and the ring material is located sufficiently close to
the planet (corresponding to the left side and bottom edge of Figure 7).

• Situations where the particles aggregate into large, isolated objects, which occur
whenever the ring material is sufficiently far from the planet (corresponding to the
right edge of Figure 7).

• Situations where the particles aggregate into long canted structures known as “self-
gravity wakes”, which occur at moderate to high surface mass densities and at
intermediate distances from the planet.

• Situations where the density of the particles develops periodic azimuthal variations
in surface mass densities, which occur at high surface mass densities (parts of the
top row in Figure 7).

The boundaries between these four regimes are not perfectly sharp, and the extent of
these regions depend on the assumed values of s, ρ and ε.

3.2.1 Homogeneous rings

The spatial distribution of ring material is fairly homogeneous in the limit where the
gravitational interactions among the ring particles can be neglected. In this case, the
dynamical state of the rings can be quantified in terms of the root-mean-square velocity
dispersion c, which quantifies the magnitude of the random motions within the ring.

Say a ring particle has the velocity components, vr, vλ and vz. These velocities can in
turn be decomposed into two parts: the average velocity of all the ring particles within
a given small patch of ring (denoted Vr, Vλ and Vz) and the random velocities of the
individual ring particles around this mean velocity (denoted here ur, uλ and uz). So long
as the ring as a whole does not have a finite eccentricity or inclination, Vλ ' nr, while Vr
and Vz are effectively zero. In terms of these parameters, the root-mean-square velocity

dispersion is given by the expression c =
√
〈u2

r〉+ 〈u2
λ〉+ 〈u2

z〉.
This velocity dispersion not only quantifies how fast the ring particles are moving

relative to each other, it also determines the vertical thickness of the ring H. Convention-
ally, a rings thickness is defined in terms of the root-mean-squared value of z for all the

24



particles in the ring: H2 = 12〈z2〉 . The factor of 12 in this definition for H ensures that
a vertically homogeneous distribution of ring particles has the correct thickness (Salo
2001). Since particles can only be displaced above or below the ring-plane because they
are on inclined orbits, there is a direct relationship between the mean-squared vertical
positions and mean-squared vertical velocities n2〈z2〉 = 〈u2

z〉. Thus, the thickness of the
ring H can be written as a simple function of the root mean squared vertical velocity
cz: H =

√
12(cz/n). This is also equivalent to H ∼ 2c/n if the distribution of random

velocities is approximately isotropic, but this is rarely the case in dense rings (Schmidt
et al. 2009 and references therein).

The equilibrium value of c depends upon how quickly random motions are generated
and dissipated by the interactions among the ring particles. Obviously, inelastic collisions
will tend to dissipate the random motions of ring particles at a rate which depends on
the collision frequency ωc, and the coefficient of restitution ε:

dc2

dt
∝ −ωcc2(1− ε2) (65)

For sufficiently low optical depth rings, the collision frequency ωc is nτ times a numerical
constant of order unity, so this dissipation rate is of order nτ(1− ε2).

While inelastic collisions dissipate random motions, collisions among particles with
different semi-major axes can actually generate them. To see how this can happen, imag-
ine two ring particles initially moving on perfectly circular orbits with slightly different
semi-major axes, with particle 1 having the semi-major axis a1 and particle 2 having the
semi-major axis a2 = a1 + δa > a1. Furthemore, say that δa is less than the particle di-
ameter 2s, so the particles can still collide with each other. Since particle 1 has a smaller
semi-major axis, it will be moving faster than particle 2 and so particle 1 will naturally
tend to collide with particle 2 from behind. The resulting exchange of momentum will
therefore tend to decelerate particle 1 and accelerate particle 2, which will cause the
semi-major axes of the two particles to diverge. At the same time, particle 1 will be
pushed inwards while particle 2 is pushed outwards, producing random motions of the
ring particles comparable to the initial difference in their orbital velocities δVλ ∼ ns. The
rate at which the random motions will increase by this process can therefore be roughly
estimated as:

dc2

dt
∝ ωcδV

2
λ ∼ τn(sn)2 (66)

If the particles are already on non-circular orbits, then further excitation of random
motions is possible. Say there are two particles with semi-major axes that differ by
δa, but which have eccentricities e ∼ δa/a, so they can collide when one particle is
near periapse and the other is near apoapse. At this location, the two particles will
be moving azimuthally at a relative speed δVλ ∼ eVλ. It we neglect dissipation in this
collision, then the total orbital energy and orbital angular momentum of the particles
must be conserved. However, the direction of particle motion will have changed, and this
can lead to changes in both the semi-major axes and the eccentricities of the particles’
orbits. In general, the initial trajectories of the particles after the collision are unlikely to
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be perfectly azimuthal. This requires that the particles are no longer at their pericenter
or apocenter, implying the particles semi-major axes have converged and/or that their
eccentricities have increased. Indeed, in order to conserve angular momentum and energy,
any excitation of radial motions must increase the eccentricity by an amount δe that is
of order the particles eccentricity before the collision. Since the velocity dispersion c is
proportional to the eccentricity of the particles’ orbits, each of these collisions increases
the random motions by a factor of order c. Hence this process excites random motions
at a rate given by:

dc2

dt
∝ ωcc

2 ∼ τnc2. (67)

Note this expression is only valid for low optical depths: if the optical depth exceeds unity,
then the particles cannot complete a full epicycle before a collision, and the efficiency of
this process is reduced.

For both of the above processes, random motions are being excited by Keplerian
shear, so the energy of random motions is being extracted from the background shear
flow of the ring. These processes can therefore be thought of as giving the ring an effective
kinematic shear viscosity νeff . Indeed both the above terms are often expressed in this
language:

dc2

dt
∝ +νeff

(
dVλ
dr

)2

∼ νeffn
2, (68)

where νeff ∼ τ(k1(c2/n) + k2(s2n)), and k1 and k2 are coefficients of order unity.
In any case, the dissipation rate will equal the excitation rate at equilibrium, so the

equilibrium value of c in a low-optical depth ring is given by the condition: k3ωcc
2(1 −

ε2) = k1ωcc
2 + k2ωc(ns)

2 which corresponds to:

c2 =
k2(ns)2

k3(1− ε2)− k1

. (69)

This expression is only sensible if the denominator is positive (i.e. the coefficient of
restitution is sufficiently small). Otherwise, the ring cannot reach a stable equilibrium
state. If an equilibrium state exists, then c will be order ns, and the ring will only be a
few particle diameters thick.

Note that in this simplistic analysis, c does not depend on optical depth, so we
might not expect parameters like the vertical thickness of the ring to vary much with τ .
However, as τ approaches 1, the effective viscosity due to particles colliding at different
epicyclic phases will decrease, which tends to reduce the equilibrium velocity dispersions
(Schmidt et al. 2009). However, at this point the gravitational interactions of the ring
particles cannot be ignored, so we consider these processes next.

3.2.2 Aggregation outside the Roche limit

The gravitational interactions among the ring particles have the most dramatic affect on
the structure of the ring at large distances from the planet. In Figure 7, the particles in
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Figure 8: The ring systems of the giant planets plotted as a function of the Roche critical
density, assuming γ = 1.6 (see text).
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the simulations with the largest values of r aggregate into moonlets rather than remain
dispersed as a ring. These aggregates form beyond a critical distance from the planet’s
center known as the Roche limit, where the difference in orbital velocities between two
particles that are in contact with each other δVλ ∼ ns roughly equals their mutual escape
speed Vesc ∼ s

√
Gρ. Outside of the Roche limit δVλ < Vesc, so particles that inelastically

collide with each other can emerge from the collision with insufficient velocity to escape
each other’s gravity, hence the two particles remain bound together and orbit the planet
as a unit. As time goes on, more and more particles can aggregate together until all of
the available ring material has collected into a single body.

The location of the Roche limit rR can be estimated by setting δVλ ∼ Vesc and
solving for the radius r:

rR = χR

(
ρP
ρ

)1/3

(70)

where χ is a number of order unity, RP is the planets radius, ρP is the planet’s mean
density, and ρ is the mass density of the ring particles. Note that this distance only
depends on the particles’ mass density, not on their size. Hence for any radial location
in the ring r, we can define a Roche critical density ρcrit, such that particles with mass
densities higher than ρcrit will aggregate into moons, while material with lower mass
densities will remain as dispersed rings. Re-arranging the above expression for the Roche
Limit yields the following expression for the Roche critical density

ρcrit =
3

γ

MP

r3
(71)

where γ is a constant of order unity that depends on the nature of the material (i.e. solid
or liquid) and the object’s shape.

Figure 8 shows the various ring systems plotted as a function of ρcrit. For both
Uranus and Saturn (the two planets with extensive dense ring systems) there is a rather
sharp transition between the region near the planet occupied by the dense rings and
the zone further from the planet occupied by many small moons. In the Saturn system,
this transition occurs where the Roche critical density is around 0.5 g/cm3, which is
comparable to the densities of many of Saturns small moons, and is consistent with
many of these objects being loose aggregates of ice-rich particles (Porco et al. 2007,
Charnoz et al. 2007). These moons may even have emerged from the spreading rings
(Charnoz et al. 2010). Intriguingly, the same transition in the Uranus system occurs
where the Roche critical density is between 1.0 and 1.5 g/cm3, which could indicate
that Uranus’ rings and small moons may be made of denser material than Saturn’s
(Tiscareno et al. 2012). By contrast, Jupiter and Neptune do not show such a clear
separation between rings and moons. Instead, most of the rings are found in regions also
occupied by moons. This makes the rings of Neptune and Jupiter more like the dusty,
faint components of Uranus’ and Saturn’s ring systems. The distribution of these more
tenuous rings is not so strongly controlled by the Roche Limit because they are formed
from material launched at finite speeds from various objects by micrometeoroid impacts
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etc., and various transport processes like drag forces keep the small particles in these
rings from re-aggregating.

3.2.3 Self-gravity wakes

Interior to the Roche limit, the Keplerian shear across the disk prevents the ring particles
from collecting into small moons. However, the mutual gravitational attraction among
the ring particles still has important effects on the ring’s fine-scale texture. In partic-
ular, many of the simulations in Figure 7 exhibit elongated agglomerations of particles
known as “self-gravity wakes”. These structures are transient, constantly forming and
disintegrating as particles attempt to clump together under their own gravity but are
then pulled apart by Keplerian shear. Nevertheless, the overall pattern is stable: the long
axes of the aggregates are always tilted about 20◦ from the azimuthal direction, and the
average perpendicular distance between two adjacent aggregates is typically of order one
to a few hundred meters, depending on the assumed surface mass density (see Schmidt
et al. 2009 and references therein).

The characteristic orientation of these structures is typical of many disturbances in
planetary rings, As discussed in detail in Section 4.1 below, gravitational perturbations
from nearby massive objects give rise to coordinated ring-particle motions that in turn
lead to density variations in the ring material. In particular, at a radial distance δa from
the perturbing mass, the first density maximum occurs roughly at a distance between
3πδa/4 and 3πδa/2 downstream from the mass. This density maximum, or “wake”, is
therefore canted between tan−1(4/3π) ∼ 24◦ and tan−1(2/3π) ∼ 12◦ from the azimuthal
direction, comparable to the orientation observed in the simulated structures. These
features can therefore be interpreted as many superimposed wakes surrounding each
ring particle. The gravitational interactions among these wakes reinforce these structures
and their exact orientation depends on the ring’s surface mass density and particle size
distribution (Salo et al. 2004).

The characteristic scale of these structures is consistent with those expected for
certain instabilities within particle-rich self-gravitating disks first investigated by Julian
and Toomre (1966) in the context of galactic disks. Specifically, the average perpendic-
ular distance between adjacent density maxima is comparable to the Toomre critical
wavelength

λT = 4π2GΣ/n2, (72)

which is the largest unstable wavelength in the shearing disk. Density variations on scales
larger than this are destroyed by the shear across the disk, while smaller-scale textures
are smoothed out by the random motions of the particles (see also Schmidt et al. 2009).

In the known planetary rings, these oriented particle aggregates are of order one
hundred meters wide and are therefore too small to be directly imaged by spacecraft.
However, they have numerous effects on the average opacity and reflectivity of the rings
that can be detected. In particular, the brightness and optical depth of Saturn’s A and
inner B rings have been observed to vary dramatically with longitude relative to the
observer in ways that can be most easily explained as the result of these wakes being
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viewed at different angles at different locations within the rings (see Colwell et al. 2009
and references therein). These asymmetries therefore can therefore provide useful insights
into the particle-level structure of the rings.

3.2.4 Overstable structures and opaque rings

In the highest-density simulations in Figure 7, one can see density variations that are
perfectly aligned with the local azimuthal direction. These structures appear to represent
a phenomenon known as an “overstability” in the ring material. Unlike an instability,
where material collects in more dense regions and so any small density variation grows
with time, an overstability occurs when ring particles are being pushed out of overdense
regions and into underdense regions too rapidly. In this case, any small density fluctuation
yields oscillations of material moving in an out of more dense regions, and the amplitude
of these oscillations grows with time (Schmidt et al. 2009). The detailed dynamics of
these structures are still not fully understood. For example, it is not yet clear what
ultimately determines the wavelength of these patterns.

At several locations within the inner A and inner B rings, where the normal optical
depth is close to unity, there is evidence for highly periodic structures with a characteris-
tic wavelength of order a few hundred meters (Thomson et al. 2007, Colwell et al. 2007).
The wavelengths of these structures are close to those seen in simulated overstable fea-
tures, but further analysis is needed to fully understand the nature and dynamics of these
particular features and to demonstrate that they in fact represent overstable structures.

The overstable regime is not the ultimate limit of dense rings. The B ring has
been found to be nearly opaque, with normal optical depths exceeding 5. Such opaque
rings lie beyond the range of current numerical simulations (Robbins et al. 2010), so the
configuration of the particles in these regions remains a mystery. It is even possible that
in these regions the ring particles are in constant contact, acting more like a liquid or a
solid than like a particulate gas (Tremaine 2003).

4 External perturbations on dense rings

When dense rings are subject to external perturbations, such as gravitational forces from
nearby or distant moons, the ring particles respond not only to the perturbing force, but
also to the other ring particles in their vicinity. The interactions among particles can
cause the coordinated motions to dissipate or allow disturbances to propagate through
the ring. The resulting structures are therefore sensitive to both the nature of the pertur-
bation and the physical properties of the rings. Again, a full description of these complex
systems is well beyond the scope of this brief introduction, so we will instead simply de-
scribe some of the most obvious and well-studied phenomena that occur when dense
rings are perturbed by gravitational interactions with nearby and distant satellites. For
more details, see such works as Goldreich and Tremaine 1982, Shu 1984 and Murray and
Dermott 1999.
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Figure 9: Structures in Saturn’s A ring produced by nearby massive objects. Top:
Overview of the outer A ring, showing the gaps surrounding the moons Pan (right)
and Daphnis (left). Bottom left: Close-up of the disturbed ring material in the vicinity
of Daphnis. Bottom right: A view of the moonlet wakes in the vicinity of both Pan and
Dephnis. (NASA Planetary photojournal images PIA08926, PIA08319 and PIA14608

4.1 Local perturbations

The response of dense rings to nearby perturbers can be observed most clearly in the
vicinity of two small moons called Pan and Daphnis that are actually embedded in
Saturn’s A ring (Figure 9). Both these moons orbit within nearly empty gaps in the A
ring, and the material on either side of these gaps is clearly perturbed by the moons:
the edges of the gaps appear wavy and there are periodic density variations known as
“moonlet wakes” extending into the ring material.

The response of the ring material is most easily calculated and understood using a
coordinate system centered on the moon, which we will here assume to be on a circular
orbit with a semi-major axis am. The moon’s mass Mm will also be assumed to be much
less than the planet’s mass MP (i.e. Mm/MP << 1), and the ring particles’ orbits are
assumed to be co-planar with the moons. In this case, the particles’ trajectories can be
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Figure 10: Trajectories of ring particles in the vicinity of a massive object. Radial and
azimuthal distances are measured in units of the objects Hill radius rH = a(Mm/3MP )1/3.
Note particles approach the moon from the lower left and the upper right on nearly
circular orbits. Figure adapted from Tiscareno et al. (2008).
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Figure 11: A propeller object in Saturn’s A ring (highlighted by the red arrow). This
object is a localized disturbance in the ring caused by an object that is larger than typical
ring particles, but too small to open up a complete gap. (NASA Planetary Photojounral
image PIA12791)
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computed using the approximate equations of motion known as Hill’s equations:

ẍ− 2nẏ =

(
3− Mm

Mp

a3
m

(x2 + y2)3/2

)
n2x (73)

ÿ − 2nẋ = −
(
Mm

MP

a3
m

(x2 + y2)3/2

)
n2y (74)

where x and y are Cartesian coordinates aligned with the radial and azimuthal directions,
respectively. Figure 10 illustrates the computed trajectories for particles that approach
the moon on initially circular orbits with a range of semi-major axes am+δa. This image
shows that the moon’s perturbations have different effects on the particles trajectories
depending on the magnitude of |δa| relative to a characteristic scale set by the mass of
the moon known as the Hill radius rH = a(Mm/3MP )1/3 (see also Murray and Dermott
1999).

Particles with semi-major axes within about two Hill radii of the moon’s orbit ap-
proach the moon extremely slowly, and the moon’s gravity tugs the particle mostly in
the azimuthal direction, which actually prevents the material from ever getting too close
to the moon. For example, consider a particle that is initially slightly closer to the planet
than the moon, and therefore is moving slightly faster than the moon. As the particle
approaches the moon from behind, it will feel a forward tug that accelerates it and causes
its semi-major axis to increase. Eventually, the semi-major axis of the particle will ex-
ceed the semi-major axis of the moon, and the particle will start to drift backwards away
from the moon. In principle, the moon can even catch up with this particle some time
later, at which case the backwards tug of the moon will slow the particle’s orbital motion
and cause its orbit to decay inward again. The particle can therefore alternately drift
back and forth around the moon’s orbit, producing something called “horseshoe motion”
because the particle’s trajectory looks like a horseshoe in a reference frame where both
the moon and planet are fixed. A faint ringlet that lies near the orbit of Pan may consist
of material executing these sorts of horseshoe motions.

Particles more than a few Hill radii from the moon’s semi-major axis show very
different behaviors. These particles can actually drift past the moon, and the moon’s
gravitational perturbation can be well approximated as an impulsive event where the
particle is briefly pulled towards the moon’s orbit during conjunction. Such a perturba-
tion gives each particle a finite eccentricity e, which causes the particle to alternately
approach and recede from the moon’s orbit as they proceed away from the moon, giving
rise to the wavy trajectories seen in Figure 10 (see also Murray and Dermott 1999).
Since the particles drift past the moon at a speed Vrel = −(3/2)nδa, and the local orbit
period is 2π/n, these wave-like trajectories have a characteristic wavelength of 3π|δa|.
This matches the observed wavelengths of the wavy edges seen on either side of Daphnis
in Figure 9 (see Weiss et al. 2009 and references therein).

All the particles in these regions start out with aligned pericenters, but since the
wavelength depends on the semi-major axis separation |δa|, the radial motions eventually
get out of step, leading to variations in the typical distances between the streamlines
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and thus variations in the local surface density known as moonlet wakes. Such density
variations can in fact be observed along the edges of gaps carved by the moons Pan
and Daphnis in Saturns A ring (see Figure 9). Further downstream, the trajectories
of particles actually cross, and this should in principle lead to dissipation of coherent
patterns and to the ring particles again having circular orbits on average. However,
while this does appear to be the case for the wakes around Daphnis, the wake patterns
generated by Pan do not dissipate quickly, and in fact it appears that the wakes persist
more that 360◦ downstream of Pan (Tiscareno et al. 2007 and references therein).

In addition to inducing eccentricities, these encounters also produce important changes
in the particles’ semi-major axes. In order for the moon to change a particle’s semi-major
axis, the moon must exert a net azimuthal force as the particle drifts by the moon (see
Section 2 above). If the particle’s orbit remained perfectly circular as it passed by the
moon, the azimuthal component of the force before and after the encounter would cancel
each other out, and no change in semi-major axis would occur. However, if the particle is
on a circular orbit before it encounters the moon and is on an eccentric one afterwards,
then the particle is slightly closer to the moon after the encounter than it was before
the encounter, and the net azimuthal force is not exactly zero. The net azimuthal force
always pulls the particle back towards the moon after the encounter, which causes the
particles’ semi-major axes to move away from the moon’s orbit. For example, if the par-
ticle’s orbit is interior to that of the moon, the net force acts to slow the particles orbital
motion, causing it to fall inwards, away from the moons orbit. This process, known as
gravitational shepherding, allows the gravitational tugs from the moons to counteract
the natural tendency of the ring material to spread, and thus maintains the gaps in their
vicinity. Similar processes may play a role in confining material in narrow ringlets, such
as Uranus’ ε ring, which is surrounded by the small moons Cordelia and Ophelia (see
Borderies et al. 1989, Dermott 1984, Murray and Dermott 1999 and references therein).

Recently, high-resolution images of Saturn’s rings obtained by the Cassini spacecraft
has revealed the existence of localized disturbances known as “propellers”, consisting of
two streaks extending in opposite directions from a central core (see Figure 11). The two
arms are slightly displaced in radius, consistent with the regions of maximal disturbance
around a massive object shown in Figure 10. These features are therefore interpreted as
the signatures of objects large enough to disturb ring material in their vicinity, but too
small to open a gap (Tiscareno et al. 2006, 2008, Sremečević et al. 2007). Some of these
objects can be tracked over periods of years, and exhibit non-keplerian motions that may
reflect interactions between the massive object and the disk of ring particles (Tiscareno
et al. 2010).

4.2 Resonant perturbations

In addition to the structures produced by massive objects embedded within the rings,
Saturn’s A ring also possesses numerous structures generated by resonances with more
distant moons. Resonant perturbations on dense rings are responsible for such diverse
features as spiral bending waves, spiral density waves, and resonantly confined ring edges.
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Figure 12: Density waves in Saturn’s A ring, as observed by Cassini. Radius increases to
the upper right, and each quasi-periodic variation in brightness corresponds to the loca-
tion of a particular Lindblad resonance with one of Saturn’s moons. (NASA Planetary
Photojournal image PIA06095)

Figure 13: Cartoon representation of a j = 2 density wave. Each line shows the streamline
trajectory of particles at different semi-major axes. Note the patterns are much more
tightly wound in a real density wave than shown here.
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Figure 14: Close-up image of Saturn’s A ring taken by the Cassini spacecraft, showing
a density wave (left) and a bending wave (right). Radius increases to the upper right.
(NASA Planetary Photojournal image PIA06093),

The theory behind these various features is somewhat involved and is already discussed
in great detail in the existing literature (see Goldreich and Tremaine 1982 and Shu 1984),
so here we will only give a very brief and qualitative overview of the basic physics involved
in the formation of these features.

Figure 12 is an image of three spiral density waves in Saturn’s A ring, where the
observed brightness variations reflect modulations in the ring’s surface density. Each one
of the features occurs at a first-order Lindblad resonance with one of Saturn’s moons.
As discussed above, first-order Lindblad resonances induce forced eccentricities in ring
particles, giving rise to patterns that have a symmetry determined by the resonance
and that remain fixed with respect to the perturbing moon (see Figure 5). However,
the forced eccentricities induced by the resonance are only periodic in the azimuthal
direction, and do not create periodic radial structures like those seen in Figure 12. The
observed patterns are therefore not generated directly by the resonance, but are instead
a tightly wound spiral pattern analogous to that shown in Figure 13.

The spiral pattern of these features arises from the mutual gravitational interactions
among the various particles in the ring. Like the pattern shown in Figure 5, the pattern
shown in Figure 13 does not rotate around the planet at the local orbital rate n, but
instead rotates at a pattern speed nP equivalent to the mean motion of the relevant
perturbing moon. Each ring particle therefore moves through this pattern, and feels a
periodic perturbing force as it moves past regions of different densities. These periodic
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perturbations induce forced eccentricities with organized pericenters similar to those of
other particles in their vicinity, creating a self-reinforcing pattern of streamlines and
density variations that moves around the planet at a single rate.

The basic characteristics of these spiral density waves are encoded in the following
dispersion relation, which is derived in Shu 1984:

(jnP − jn)2 − (n− $̇0)2 = −2πGΣ|kr| (75)

where nP is the pattern speed, j is the number of arms in the spiral pattern, $̇0 is the
free precession rate due to the planets finite oblatenes (given by Equation 19 above), Σ
is the ring’s average (unperturbed) surface mass density and kr is the radial wavenumber
of the wave (i.e. 2π over the radial wavelength). Note that at the exact resonance, the
left-hand side of this equation is precisely zero, and so the pattern has kr = 0 and
the density variations are purely azimuthal. Interior to the resonance, the left hand
side of this equation becomes positive so no real value of kr is allowed, but outside the
resonance the left hand side becomes increasingly negative, so the wave can have real
radial wavelength that becomes progressively shorter with distance from the resonance.
This is consistent with the patterns seen in Figure 12 and 13, which become tighter
with increasing radius. Furthermore, since the rate at which the wavenumber increases
with distance from the resonance depends on the surface mass density of the ring, these
features have been extremely useful tools for estimating the local surface mass density
of the rings (see Colwell et al. 2009 and references therein).

As the spiral pattern becomes more tightly wound further from the resonance, the
streamlines will crowd closer and closer together and the density variations will become
larger and larger. Indeed, the patterns shown in Figure 12 are most intense some distance
downstream from the resonance, where the radial wavenumber of the spiral pattern
is finite. However, even further from the resonance, the pattern fades and eventually
disappears. This is because the random motions of the particles in the ring eventually
dissipate the coherent motions associated with the wave. Indeed, the radial extents of
these waves can constrain the velocity dispersions and local effective viscosities of these
rings (again, see Colwell et al. 2009).

In addition to density waves generated by Lindblad resonances, there are also bend-
ing waves generated by vertical resonances. These features again can appear as periodic
brightness variations in images (see Figure 14), but they actually represent oscillations in
the rings vertical position, which lead to differences in the amount of material along the
line of sight. These vertical warps are again organized into tightly wound spiral patterns,
which are governed by the dispersion relation (Shu 1984):

(jnP − jn)2 − (n− Ω̇0)2 = +2πGΣ|kr| (76)

where Ω̇0 in the free nodal precession rate given by equation 20 above. Note the opposite
sign on the right-hand side compared with the previous equation, which implies that
these patterns can only have real finite wavenumbers interior to the resonance. Indeed,
the bending wave in Figure 14 propagates in the opposite direction as the density wave.
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Finally, we may briefly note that resonances with distant moons are also responsible
for the sharp outer edges of both Saturns A and B rings. Much like the gap edges
produced by nearby moons discussed above, the resonant torques from a moon at a
strong resonance can counteract the natural tendency of the ring to spread (Bordereis et
al. 1982, 1989, Hahn et al. 2009). The importance of such resonances in controlling these
edges is clearly demonstrated by the observed variations in the positions of these edges,
which have components with azimuthal wavenumbers and pattern speeds consistent with
those that would be generated by the eccentricities forced by the appropriate resonance.
However, there are other radial variations on these edges as well, indicating that the
dynamics of these sharp edges are more complex than some had expected (Spitale and
Porco 2009, 2010, Hedman et al. 2010b).

5 Conclusions

Planetary rings are exceptionally rich and dynamic particle systems, exhibiting structures
on a wide range of scales involving a great diversity of processes such as collisions,
gravitational forces and non-gravitational perturbations. Since these same basic processes
operate in many other astrophysical systems, including spiral galaxies and protoplanetary
disks, the insights gained from detailed studies of planetary rings have the potential to
illuminate the dynamics of many other astronomical phenomena.
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Glossary

Bending wave or spiral bending wave: A periodic modulation in the vertical position
of a dense ring that is generated by a vertical resonance.

Co-rotation eccentricity resonance: A mean-motion resonance in which the reso-
nant argument includes the pericenter location of the perturbing moon. These sorts of
resonances can confine material at particular co-rotating longitudes.

Density wave or spiral density wave: A periodic pattern of density variations in a
dense ring that is generated by a Lindblad resonance.

Dynamical optical depth: A standard measure of the average number of particles per
unit surface area in the rings. While this number is directly related to the rings’ surface
mass density, it does not necessarily equal the rings’ observed optical depth.
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Table 1: Symbols used in this chapter
B elevation angle above rings
D2 average surface number density of ring particles
FD azimuthal drag force
FG central gravitational force from planet, GMPm/a

2

FI inertially fixed force
Fm gravitational force from a moon
Fr radial component of perturbing force
Fz vertical component of perturbing force
Fλ azimuthal component of perturbing force
G gravitational constant
H ring vertical thickness
J2 planetary oblateness parameter
MP planet mass
Mm moon mass
R planet radius
T ring transmission coefficient
U gravitational potential
Vr average radial velocity of ring particles
Vz average vertical velocity of ring particles
Vλ average azimuthal velocity of ring particles
a orbital semi-major axis
am moon’s orbital semi-major axis
c root-man-square velocity dispersion
cz vertical rms velocity dispersion
e orbital eccentricity
ef forced eccentricity
el free eccentricity
em moon’s eccentricity
f true anomaly
i orbital inclination
im moon’s inclination
h e cos($ − λ0)
k e sin($ − λ0)
kr radial wavenumber
m ring particle mass
n orbital mean motion
nP pattern speed

r radial distance from planet’s spin axis
rH Hill radius
rR Roche limit
s ring particle radius
ur random radial velocity of ring particles
uz random vertical velocity of ring particles
uλ random azimuthal velocity of ring particles
vr radial velocity of ring particles
vz vertical velocity of ring particles
vλ azimuthal velocity of ring particles
x cartesian approximation of radial coordinate
y cartesian approximation of azimuthal coordinate
z vertical displacement above ring-plane
ε eccentric anomaly (equation 3 only)
ε coefficient of restitution
λ inertial longitude
λ0 reference longitude
λT Toomre critical wavelength
νeff effective kinematic shear viscosity
ρ ring particle mass density
ρcrit Roche critical density
ρP planet mass density
Σ ring surface mass density
τ ring optical depth
τD dynamical optical depth
ϕCR resonant argument of a corotation resonance
ϕLR resonant argument of a Lindblad resonance
ϕV R resonant argument of a vertical resonance
ω argument of pericenter
ωc collision frequency
$ longitude of pericenter
$m moon’s longitude of pericenter
$̇0 free apsidal precession rate
Ω longitude of ascending node

Ωm moon’s longitude of ascending node

Ω̇0 free nodal regression rate
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Gravitational shepherding: The process whereby the gravitational torques from a
nearby moon prevent ring material from viscously spreading.

Hill radius: A natural distance scale that arises in the circular restricted three body
problem that contains a planet, a moon on a circular orbit, and a massless test particle.
The moon’s Hill radius determines its gravitational sphere of influence.

Horseshoe motion: A type of orbital motion that can occur in the three body problem,
where a small particle alternately drifts forwards and backwards in longitude relative to
the moon.

Lindblad resonance: A mean-motion resonance in which the resonant argument in-
cludes the pericenter location of the ring particle. These sorts of resonances tend to
induce finite eccentricities in the ring-particles’ orbits.

Moonlet wakes: Density variations in a ring produced by the gravitational perturba-
tions from a nearby moon.

Normal optical depth: The optical depth that would be measured if the light passed
perpendicularly through the rings.

Optical depth: Standard measure of ring opacity computed from the observed trans-
mission coefficient T using the expression τ = − ln(T ).

Overstability: A phenomenon whereby the amplitude of a small oscillation grows over
time. May occur in some parts of Saturn’s dense rings.

Propellor: A localized disturbance in the ring produced by an embedded object that
is larger than the typical ring particle but too small to open up a complete gap in the
rings.

Roche limit: A critical distance from the center of a planet where an object can just
barely maintain its integrity against tidal forces. This distance depends on the mass
density of the object. Dense rings are most likely to be found inside this critical distance.

Roche critical density: The minimum density at a given distance from the planet
which would allow an object to maintain its integrity against tidal disruption.

Self-gravity wakes: Transient, elongated agglomerations of ring particles that arise
due to the combination of ring-particles’ mutual gravitational attraction and keplerian
shear.

Toomre critical wavelength: The largest unstable wavelength in a shearing disk.
Determines the wavelength of self-gravity wakes.

Transmission coefficient: The fraction of light that passes through a ring without
being scattered or absorbed.

Vertical resonance: A mean-motion resonance in which the resonant argument includes
the ascending node longitude of the ring particle. These sorts of resonances tend to induce
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finite inclinations in the ring-particles’ orbits.
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