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ABSTRACT

The Cassini Division in Saturn’s rings contains a series of eight named gaps, three of which contain dense ringlets.
Observations of stellar occultations by the Visual and Infrared Mapping Spectrometer onboard the Cassini spacecraft
have yielded ∼40 accurate and precise measurements of the radial position of the edges of all of these gaps and
ringlets. These data reveal suggestive patterns in the shapes of many of the gap edges: the outer edges of the
five gaps without ringlets are circular to within 1 km, while the inner edges of six of the gaps are eccentric, with
apsidal precession rates consistent with those expected for eccentric orbits near each edge. Intriguingly, the pattern
speeds of these eccentric inner gap edges, together with that of the eccentric Huygens Ringlet, form a series with a
characteristic spacing of 0.◦06 day−1. The two gaps with non-eccentric inner edges lie near first-order inner Lindblad
resonances (ILRs) with moons. One such edge is close to the 5:4 ILR with Prometheus, and the radial excursions of
this edge do appear to have an m = 5 component aligned with that moon. The other resonantly confined edge is the
outer edge of the B ring, which lies near the 2:1 Mimas ILR. Detailed investigation of the B-ring-edge data confirm
the presence of an m = 2 perturbation on the B-ring edge, but also show that during the course of the Cassini
Mission, this pattern has drifted backward relative to Mimas. Comparisons with earlier occultation measurements
going back to Voyager suggest the possibility that the m = 2 pattern is actually librating relative to Mimas with a
libration frequency L ∼ 0.◦06 day−1 (or possibly 0.◦12 day−1). In addition to the m = 2 pattern, the B-ring edge
also has an m = 1 component that rotates around the planet at a rate close to the expected apsidal precession rate
(�̇B ∼ 5.◦06 day−1). Thus, the pattern speeds of the eccentric edges in the Cassini Division can be generated from
various combinations of the pattern speeds of structures observed on the edge of the B ring: Ωp = �̇B − jL for
j = 1, 2, 3, . . . , 7.We therefore suggest that most of the gaps in the Cassini Division are produced by resonances
involving perturbations from the massive edge of the B ring. We find that a combination of gravitational perturbations
generated by the radial excursions in the B-ring edge and the gravitational perturbations from the Mimas 2:1 ILR
yields terms in the equations of motion that should act to constrain the pericenter location of particle orbits in the
vicinity of each of the eccentric inner gap edges in the Cassini Division. This alignment of pericenters could be
responsible for forming the Cassini-Division Gaps and thus explain why these gaps are located where they are.
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1. INTRODUCTION

The Cassini Division is a roughly 4500 km wide region in
Saturn’s main rings situated between the A and B rings. Far
from being a completely empty gap between these two rings,
this zone is actually a complex region containing an array of gaps
and ringlets. The physical processes responsible for creating and
maintaining most of the observed features in this region remain
obscure.

In particular, there is still no definitive explanation for most of
the numerous gaps present throughout the inner part of Cassini
Division. As shown in Figure 1, there are eight gaps in the
inner part of the Cassini Division, all of which are now named
after various researchers who worked on Saturn’s rings (Colwell
et al. 2009). The innermost gap is called the Huygens Gap and
it marks the inner boundary of the Cassini Division. The inner
edge of the Huygens Gap, which is also the outer edge of the
massive B ring, has long been known to be associated with a 2:1
mean-motion resonance with Saturn’s moon Mimas (Porco et al.
1984). This gap contains two optically thick ringlets: the inner

one, called the “Huygens Ringlet,” is known to be eccentric,
while the outer, or “Strange” ringlet seems to have a significant
inclination (Turtle et al. 1991; Spitale & Porco 2006; Spitale
et al. 2008).

While the Mimas 2:1 resonance likely plays an important
role in creating the Huygens Gap, the origins of the other seven
gaps, as well as the dense ringlets in the Huygens, Herschel,
and Laplace Gaps, are much less clear. Some have argued that
each gap in the Cassini Division contains a tiny moon (Lissauer
et al. 1981), just as the Encke and Keeler Gaps in the A ring are
maintained by the small moons, Pan and Daphnis. While some
wavelike features in the Cassini Division have been interpreted
as evidence for the existence of such moons (Marouf & Tyler
1986), direct detections of the moons themselves have not yet
been reported. It is also not clear why such moons would be
concentrated in this particular part of the ring system, well inside
Saturn’s Roche limit for icy bodies.

Using the extensive occultation data obtained by the Vi-
sual and Infrared Mapping Spectrometer (VIMS) onboard the
Cassini spacecraft, we have conducted an investigation of the
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Figure 1. Overview of the basic architecture of the inner part of the Cassini Division. This optical depth profile is derived from the Rev 8 ingress occultation of o Ceti
by the rings observed by the VIMS instrument on board Cassini. The various gaps discussed in this study are labeled.

gaps in the Cassini Division. The high-resolution and accurate
geometrical information possible with these data has enabled us
to determine the shapes of most of the edges of these gaps and
ringlets. Based on this information, we will propose alternative
explanations for these gaps that do not require the existence of
a small moon within each and every gap.

Section 2 of this paper describes the VIMS observations used
in this analysis, and how they were processed to obtain position
estimates for the various edges. Section 3 presents the results
of our analysis and the derived constraints on the shapes of
various edges in the Cassini Division, including the B-ring edge.
The B-ring edge turns out to be quite complex, so Section 4
briefly compares some of this edge’s observed features to the
predictions from simple dynamical models. Section 5 presents
a dynamical model that could explain the location of the inner
edges of the various gaps in the Cassini Division as the result of
a series of resonances involving perturbations from the massive
B-ring edge. This model is only a first step toward understanding
the architecture of the Cassini Division, so Section 6 discusses
potential future work that could confirm and extend this model.
The final section summarizes our conclusions.

2. OBSERVATIONS AND DATA REDUCTION

VIMS is most often used to produce spatially resolved spectra
of planetary targets between 0.3 and 5.1 μm. However, VIMS
is a flexible instrument that can operate in a variety of modes,
including an occultation mode (Brown et al. 2004). In this mode,
the imaging capabilities are disabled, the short-wavelength VIS
channel of the instrument is turned off, and the IR channel
obtains a series of 0.8–5.1 μm spectra from a single pixel
targeted at a star. Typical sampling intervals were 20–80 ms.
The data used in this analysis are uncalibrated, but a mean
instrumental thermal background has been subtracted from
all the spectra for each occultation. A precise time stamp is
appended to every spectrum to facilitate reconstruction of the
occultation geometry.

2.1. Observations

Up through the end of 2008, VIMS has observed over 50
occultations, which have yielded a total of 48 potentially useful
cuts through the Cassini Division. Table 1 lists the occultation
cuts used in this analysis, along with the occultation times and
inertial longitudes of the observations, the maximum number
of data number (DN) detected, the radial sampling scale, and
the shift required to bring circular features into alignment (see
below).

2.2. Geometrical Navigation

Table 2 gives the assumed positions of the stars used in this
analysis in the International Celestial Reference Frame. For
each occultation, the position of the star is adjusted to account
for both the proper motion of the star and the parallax at Saturn.
The available SPICE kernels provided by the Cassini navigation
team were then used to predict the apparent position (radius
and inertial longitude) of the star in Saturn’s ring plane as a
function of time in a planetocentric reference frame, taking into
account stellar aberration. In nearly all cases, this estimate of
the occultation geometry was confirmed to be accurate to within
a few kilometers using the known radii of nearly circular gap
edges in the Cassini Division and the outer A Ring (Features 1,
3, 4, 13, 16, and 20 of French et al. 1993). The exceptions were
the low-inclination stars o Ceti and δ Virginis, for which features
could be tens of kilometers away from their nominal positions.
In these cases, the fiducial position of Saturn’s pole was adjusted
slightly (by at most 0.◦015) to bring these cuts into alignment
with the other occultations. The residual scatter in the estimated
locations of circular features is consistent with uncertainties in
the star positions, observation timing, and spacecraft trajectory
(see below).

2.3. Light Curve Generation

While each occultation produces several time series of bright-
ness measurements at multiple wavelengths, only the average
brightness around a wavelength of 3 μm is used for this analysis.
This is because in general, the signal measured by the VIMS
instrument was a combination of transmitted starlight and re-
flected sunlight. The reflected signal from the rings is strongly
attenuated at wavelengths close to the strong 2.9 μm water-ice
absorption band, so using the spectral channels in this range
minimizes the ring background.

To save on data volume, in many of these occultations the
normal spectral resolution of the instrument was reduced by a
factor of 8. A total of 32 spectral channels were returned with
an average resolution Δλ � 0.13 μm. For the few occultations
taken at full spectral resolution, the data from the appropriate
spectral channels were co-added in software after the fact to
make their spectral resolution and signal to noise consistent with
the other occultations. For most of the occultations, the summed
spectral channel corresponding to the wavelength range between
2.87 and 2.98 μm was used in this analysis. However, a small
number of occultations (Rev 13 α Scorpii, Rev 30 R Leonis, Rev
41 α Auriga, Rev 41 R Hydra, and Rev 65 R Cassiopaea), had
either sufficiently low signal-to-noise ratios or sufficiently high
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Table 1
Occultation Cuts used in this Analysis

Rev Star Ingress/ UTC Inertial max DN Radial Radial Notes
egress at Jeffreys Gap Longitude at 3 μm Sampling (km) Offset (km)

08 oCet i 2005-144T05:58 1◦ 995 0.30 +0.06 A
08 oCet e 2005-144T07:07 −28◦ 999 0.30 −0.68 A
13 αSco i 2005-232T11:46 −70◦ 860 0.37 +0.77 B,I
13 αSco e 2005-232T13:44 −3◦ 770 0.38 −0.98 I
26 αOri i 2005-204T16:47 −3◦ 967 0.21 −0.32
28 αTau i 2006-252T10:54 34◦ 144 0.52 +0.15 F
29 δVir i 2006-268T22:37 204◦ 125 1.44 −1.35 Xr,A,C
29 δVir e 2006-268T22:44 97◦ 128 1.43 +2.74 Xr,A,C
29 αSco i 2006-269T07:41 −166◦ 712 0.10 +0.24
30 RLeo i 2006-285T02:11 −39◦ 75 0.44 +0.59 Xd,C,I
30 RLeo e 2006-285T02:39 −85◦ 74 0.44 −0.08 Xd,C,I
31 CWLeo i 2006-301T01:26 −23◦ 167 3.07 +1.21 Xr,B
31 CWLeo e 2006-301T02:10 −103◦ 188 3.07 −0.91 Xr,B
34 αAur i 2006-336T12:54 27◦ 414 0.92 +0.21 F
36 RHya i 2007-001T17:07 −165◦ 333 0.35 +0.43 B
41 αAur i 2007-082T17:30 8◦ 212 0.31 −0.45 B,I
41 RHya i 2007-088T07:24 −156◦ 112 0.09 +0.18 B,D,I
63 RLeo i 2008-094T13:11 96◦ 368 0.23 +0.93
63 RLeo e 2008-094T13:58 126◦ 371 0.23 +0.01 G
65 RCas i 2008-112T00:43 30◦ 77 0.30 +0.27 Xd,C,I
70 CWLeo i 2008-155T14:22 82◦ 395 0.76 −2.11
70 CWLeo e 2008-155T16:15 137◦ 363 0.75 −4.15
71 γ Cru i 2008-160T09:04 −173◦ 422 0.28 +0.46
72 γ Cru i 2008-167T12:21 −174◦ 639 0.28 +0.83
73 γ Cru i 2008-174T15:30 −174◦ 635 0.28 +0.46
75 RLeo i 2008-191T04:43 80◦ 279 0.36 +1.07
75 RLeo e 2008-191T06:27 138◦ 279 0.36 −0.63
77 RLeo i 2008-205T06:58 84◦ 295 0.31 +0.10
77 RLeo e 2008-205T08:27 133◦ 296 0.31 +0.18
78 γ Cru i 2008-209T20:07 −175◦ 304 0.14 +0.52 B
78 βGru i 2008-210T09:35 −96◦ 254 0.34 −0.26
80 RSCnc i 2008-226T02:03 57◦ 310 0.56 −0.61 H
80 RSCnc e 2008-226T07:29 155◦ 305 0.56 +0.00
81 γ Cru i 2008-231T06:57 −177◦ 579 0.27 +0.12
82 γ Cru 1 2008-238T15:32 −177◦ 721 0.27 −0.04
85 RSCnc i 2008-262T22:29 59◦ 306 0.54 −0.30
85 RSCnc e 2008-263T03:48 153◦ 312 0.54 +0.31
86 γ Cru i 2008-268T03:12 −178◦ 1020 0.41 −0.33
87 RSCnc i 2008-277T16:16 59◦ 326 0.53 −0.12
87 RSCnc e 2008-277T21:30 152◦ 325 0.53 +0.01
89 γ Cru i 2008-290T04:23 −178◦ 704 0.27 −0.13 B
92 RSCnc i 2008-315T01:56 85◦ 225 0.21 +0.67 B
93 γ Cru i 2008-320T16:31 −157◦ 484 0.18 +0.09 B,E
94 γ Cru i 2008-328T01:23 −168◦ 267 0.13 +0.30 B,E
94 εMus i 2008-328T08:20 −102◦ 188 0.19 +0.53 B
94 εMus e 2008-328T13:02 −44◦ 188 0.19 +0.02 B
96 γ Cru i 2008-343T11:45 −172◦ 236 0.14 +0.18 B
97 γ Cru i 2008-351T11:03 −172◦ 794 0.42 +0.44

Notes. Times, longitudes, and maximum DN are evaluated inside the Cassini Division. Processing notes: excluded from Cassini-Division analysis due
to coarse radial sampling; Xd: excluded from Cassini-Division analysis due to low signal levels; A: low inclination occs, Saturn pole position adjusted
to achieve approximate match with circular features; B: data smoothed by three prior to edge-finding; C: data resampled and smoothed by five prior
to edge-finding; D: data smoothed by 10 prior to finding Bessel Gap Inner Edge; E: data smoothed by 12 prior to finding Laplace Gap Inner Edge;
F: Jeffreys Gap Inner Edge falls in data gap; G: Laplace Ringlet Inner Edge falls in data gap; H: Kuiper Gap Inner Edge falls in data gap; I: spectral
channels covering the range from 2.73 to 3.11 μm used.

cosmic-ray fluxes that a single profile was too noisy to obtain
reliable edge detections. In these cases, three brightness profiles
were averaged together, covering the wavelength range of 2.73–
3.11 μm. This simple averaging reduced the instrumental noise
and cosmic-ray background to acceptable levels.

While using data near 2.9 μm minimizes the background
from the illuminated rings, it does not completely eliminate

this signal from all occultations. This residual ring background
can be eliminated by comparing data at different wavelengths
(Nicholson & Hedman 2009), but such refinements are not
necessary here because the goal of this analysis is simply to
determine the locations of sharp edges. The time variations in
the ring background are limited by the spatial resolution of
the instrument, while the time variations in the stellar signal
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Table 2
Assumed Star Positions in the International Celestial Reference Frame at the Hipparcos Epoch

Star Right Ascension Declination Proper Motion Proper Motion Parallaxa

(hr:min:sec) (hr:min:sec) R.A. (mas yr−1) Decl. (mas yr−1) (mas)

oCet 02:19:20.7866 −02:58:37.418 +10.33 −239.48 7.79
αSco 16:29:24.4675 −26:25:55.006 −10.16 −23.21 5.40
αOri 05:55:10.2892 +7:24:25.331 +27.33 +10.86 7.63
αTau 04:35:55.2005 +16:30:35.142 +62.78 −189.36 50.09
δVir 12:55:36.4833 +03:23:51.355 −471.44 −52.81 16.11
RLeo 09:47:33.4907 +11:25:44.020 −0.57 −42.70 9.87
CWLeo 09:47:57.382 +13:16:43.66 . . . . . . . . .

αAur 05:16:41.2956 +45:59:56.505 −75.52 −427.13 77.29
RHya 13:29:42.8189 −23:16:52.888 −60.73 +11.01 1.62
RCas 23:58:24.7936 +51:23:19.545 +84.39 +18.07 9.37
γ Cru 12:31:09.9293 −57:06:45.249 +27.94 −264.33 37.09
ηCar 10:45:03.591 −59:41:04.26 −7.6 +1.0 . . .

βGru 22:42:39.9349 −46:53:04.437 +135.68 −4.51 19.17
RSCnc 9:10:38.8054 +30:57:47.589 −9.41 −33.05 8.21
εMus 12:17:34.6363 −67:57:38.418 −231.26 −26.37 10.80

Notes. Data obtained from the Simbad astronomical database and the Hipparcos online catalog. Note that all the stars except CWLeo
and ηCar were present in the Hipparcos catalog.
a Parallax measured at Earth.

are limited by the temporal resolution, so the ring background
varies slowly with time compared to the variations in the stellar
signal and has negligible effect on the inferred locations of sharp
edges.

2.4. Edge Detection

After deriving the light curve and geometrically navigating
each occultation, we determined the radius, inertial longitude,
and time when the star passed behind 22 edges in the Cassini
Division: the inner and outer edges of the Huygens, Herschel,
Russell, Jeffreys, Kuiper, Laplace, Bessel, and Barnard Gaps,
as well as the inner and outer edges of the dense ringlets in
the Huygens, Herschel, and Laplace Gaps. Note that we do
not consider the “Strange” ringlet in the Huygens Gap in this
analysis, nor the low-optical depth ringlets in the Huygens,
Jeffreys, or Laplace Gaps.

The edges in the Cassini Division are quite variable in their
morphology, and even a single edge may have different shapes
in different occultations. This could make the identification of
edges based on half-light levels (French et al. 1993) problematic,
so instead we identified the edge as the point in the light curve
with the steepest slope. Even so, some effort was required to
prevent the edge-detection algorithm from mistaking cosmic-
ray spikes or other sharp ring features for the desired edge.
The algorithm therefore begins by normalizing the total signal
(star + reflected ringshine, if any) to unity in the gaps. This is
accomplished by first determining the average DN in two clear
zones (117,700–117,750 km and 119,970–120,000 km) within
the two widest gaps in the Cassini Division: the Huygens Gap
and the Laplace Gap. A linear trend based on these two numbers
establishes the unocculted stellar brightness throughout this
region and is used to normalize the data so that the signal in
each gap is approximately 1.0.

For each edge, a fiducial zone is selected for analysis which
is sufficiently wide to accommodate all observed edge positions
and residual pointing errors. (For the B-ring edge this region is
150 km wide. For the Huygens Ringlet edges this zone is 40 km
wide. For the Herschel Ringlet and Herschel Gap inner edge
it is 20 km wide. For the inner edge of the Laplace Gap it is

15 km wide. For the Herschel Gap outer edge, the Russell and
Jeffreys Gap inner edges, the Laplace Ringlet and the Laplace
Gap outer edge, and the Bessel and Barnard Gaps it is 10 km.
For the Russell and Jeffreys Gaps’ outer edges and the Kuiper
Gap edges it is 5 km.) The algorithm first makes a preliminary
estimate of the location of the relevant gap edge based on where
the signal in this region first deviates significantly from unity.
The final estimate of the edge location is then the point where
the brightness profile has the steepest slope in a region within
±4 km of the preliminary edge estimate (except for the low-
resolution δ Virginis occultation, where a region ±20 km was
used).

For certain occultations with fast time sampling or low signal
to noise, the raw profile is too noisy for the above algorithm to
find all the edges reliably. In these cases, a boxcar smoothing
was applied to the data prior to estimating the edge position. The
occultations where this was done and the specific smoothing
lengths used are given in Table 1. In all cases, the uncertainty in
the edge position is determined by the radial sampling interval
because this is typically much larger than the projected stellar
diameter or the Fresnel zone.

2.5. Occultation Quality

While the above procedure was applied to all the occultation
cuts in Table 1, there were a few occultations which we elected
not to use with the Cassini-Division edges. The Rev 30 R Leonis
and Rev 65 R Cassiopaea occultations had signal-to-noise ratios
too low to detect all the edges in the Cassini Division reliably,
while the resolution of the Rev 29 δ Virginis and the Rev 31
CW Leonis occultation were so much lower than the rest of
the observations that they would not contribute much to our
understanding of most of these edges. These data are therefore
not considered “Quality” occultations and are not used in the
analysis involving the edges within the Cassini Division itself
(they are designated with Xr or Xd in Table 1). However, many
of these occultations occur at early times in the Cassini mission,
when VIMS occultations are comparatively rare, so they are
useful when considering the time-evolution of the B-ring edge
(see below).
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Table 3
Elementary Properties of Cassini-Division Gap Edges

Feature Mean Radius St. Dev. Edge Type
(km) (km)

B-ring Outer Edge 117564.4 51.4 Resonant (2:1 Mimas)
Huygens Ringlet Inner Edge 117804.4 20.3 Eccentric
Huygens Ringlet Outer Edge 117822.8 20.2 Eccentric
Huygens Gap Outer Edge 117930.6 2.8 Unknown

Herschel Gap Inner Edge 118188.2 5.9 Eccentric
Herschel Ringlet Inner Edge 118233.9 2.3 Unknown
Herschel Ringlet Outer Edge 118263.2 2.7 Unknown
Herschel Gap Outer Edge 118283.4 1.1 Unknown (Circular?)

Russell Gap Inner Edge 118589.7 5.2 Eccentric
Russell Gap Outer Edge 118628.2 0.9 Circular

Jeffreys Gap Inner Edge 118929.6 2.7 Eccentric
Jeffreys Gap Outer Edge 118966.5 0.8 Circular

Kuiper Gap Inner Edge 119401.7 1.0 Eccentric
Kuiper Gap Outer Edge 119406.1 0.7 Circular

Laplace Gap Inner Edge 119845.2 2.6 Eccentric
Laplace Ringlet Inner Edge 120036.4 1.8 Unknown (Resonant? 9:7 Pandora)
Laplace Ringlet Outer Edge 120077.7 2.1 Eccentric
Laplace Gap Outer Edge 120085.7 1.3 Eccentric

Bessel Gap Inner Edge 120231.3 1.6 Eccentric
Bessel Gap Outer Edge 120243.6 1.0 Circular?

Barnard Gap Inner Edge 120303.7 2.4 Resonant? (5:4 Prometheus)
Barnard Gap Outer Edge 120315.9 0.7 Circular

3. DATA ANALYSIS

The above procedures yield roughly 40 “quality” estimates
of the position of each of the 22 selected gap edges for a range
of different times and inertial longitudes. The simplest statistics
that can be computed from these data are the (unweighted)
means and standard deviations of all the edge estimates, which
are presented in Table 3. Of particular interest are the standard
deviations, which range from around 1 km up to 50 km for the
edge of the B ring.

Based on these variances, we can begin to identify several
different classes of edges in the Cassini Division. First of all,
there are several features whose scatter is around 1 km, which
likely represent truly circular ring edges. These include the outer
edges of the Russell, Jeffreys, Kuiper, Barnard, and possibly the
Bessel and Herschel Gaps. (The inner edge of the Kuiper Gap
has a similarly low variance, but further investigation shows
that it belongs in the eccentric class of ring features, discussed
below).

The remaining edges all have noticeably larger variances and
therefore appear to be non-circular in some form. Three of these
edges (the outer edge of the B ring, and the inner edges of the
Laplace Ringlet and the Barnard Gap) are close to mean-motion
resonances with known satellites of Saturn (Mimas 2:1, Pandora
9:7 and Prometheus 5:4, respectively) which could provide
natural explanations for their shapes. However, this still leaves
most of the edges unexplained. We have found that 10 of these
features (both edges of the Huygens Ringlet, the inner edges
of the Herschel, Russell, Jeffreys, Kuiper, Laplace, and Bessel
Gaps, and the outer edges of the Laplace Gap and Ringlet)
can be well fit with ellipses that precess around the planet at
the expected rate given Saturn’s oblateness. Four non-circular
edges (both sides of the Herschel Ringlet, as well as the outer
edges of the Huygens and possibly the Herschel Gaps) cannot
be fit by simple elliptical models and therefore require further
investigation.

We will consider each of these different classes in detail
below. First, we will investigate the apparently circular edges
and show how they can be used to refine the estimates of the other
edge locations. Next, we will discuss the eccentric features and
compare the amplitudes and precession rates of these features.
We will then consider the inner edge of the Barnard Gap and
explore whether the structure of this edge can be explained by
the perturbations from Prometheus. Finally, we will look at the
outer edge of the B ring, which has the largest radial excursions
and the most complex structure. The inner edge of the Laplace
Ringlet, both edges of the Herschel Ringlet, and the outer edges
of the Herschel and Huygens Gaps still require further study
and will not be discussed in detail in this paper.

3.1. Circular Edges

Figure 2 shows the scatter in the inferred positions of the outer
edges of the Herschel, Russell, Jeffreys, Kuiper, Bessel, and
Barnard Gaps. All of these data sets have rather low dispersions.
Furthermore, there is a strong correlation among the radial
excursions of different edges from the same occultation. (For
example, the low points in all six panels near 80◦ and 140◦
longitude come from the Rev 70 CW Leo occultations. Since this
object was not observed by Hipparcos, the occultation geometry
here is more uncertain than the others.) This suggests that most
of the scatter in the positions of these edges is due to small errors
in the geometric reconstructions of different occultations.

Assuming that most of these edges are circular, we use these
features to compute a radial offset for each cut and refine the
location estimates for the remaining edges. For each occultation,
we compute the mean deviation of the measured positions of
the outer edges of the Russell, Jeffreys, Kuiper, Bessel, and
Barnard Gaps from the mean values listed in Table 3 (118628.2,
118966.5, 119406.1, 120243.6, and 120315.9 km, respectively).
These radial shifts, tabulated in Table 1, are then applied to all
edges for that occultation. Note that the nominal positions of the
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Figure 2. Radial excursions (deviations from the unweighted mean) of six apparently circular edges in the Cassini Division, plotted as functions of inertial longitude.
The error bars indicate the radial sampling scale of each occultation.

outer edges of the Russell, Jeffreys, and Bessel Gaps are 1–2 km
interior to the values reported in French et al. (1993). Such a
small shift should be of no major consequence for this analysis,
but will be the subject of a future investigation of Saturn’s pole
orientation incorporating data from all circular features in the
rings.

3.2. Eccentric Edges

The observed radial position r ′ of an eccentric edge depends
on the inertial longitude λ and time relative to some epoch δt of

the observation as follows:

r ′ = r ′
o − A × cos(λ − Ωpδt − λo), (1)

where r ′
o is the mean edge location, A is the amplitude of the

radial excursions, λo is a phase offset, and Ωp is a pattern speed.
Since an eccentric edge closely follows the path of a freely
precessing particle on an eccentric orbit, we expect Ωp = �̇ ,
where �̇ is the apsidal precession rate, which in the Cassini
Division ranges between 4.◦5 day−1 and 5.◦1 day−1.

Preliminary investigations showed that 10 of the edges in
the Cassini Division could be well fit by such an eccentric
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Figure 3. Radial excursions (after offset subtraction) of the inner and outer edges of the Huygens Ringlet. Error bars indicate the radial sampling scales of the different
occultations. Note time is measured relative to an epoch of 2005-195T02:13:13.557 (which corresponds to a Cassini spacecraft clock time of 150000000), and the
mean radii are for the eccentric model rather than the data.

(A color version of this figure is available in the online journal.)

model with Ωp close to the expected value of �̇ . These features
are both edges of the Huygens Ringlet, the inner edges of the
Herschel, Russell, Jeffreys, Kuiper, Laplace, and Bessel Gaps,
as well as the outer edges of the Laplace Gap and Ringlet.
The Huygens Ringlet was previously known to be an eccentric
structure (Turtle et al. 1991; Spitale & Porco 2006), and there
was some evidence that the inner edge of the Herschel Gap
might be as well (Flynn & Cuzzi 1989). However, the fact that a
majority of the edges in the Cassini Division are simple ellipses
is a rather unexpected finding.

Having identified these features, we sought to determine the
parameters in Equation (1). Given the extensive occultation data
available, and mindful that the precise precession rates at a given
location might be affected by nearby ring material (Nicholson &
Porco 1988), we chose not to assume a predicted pattern speed
for each edge but instead included Ωp as a free parameter in
each fit.

For each possible value of the pattern speed Ωp, we computed
the following quantities:

αR = 1

n

n∑
i=1

(r ′
i − r̄ ′) × cos(λi − Ωpδti), (2)

αI = 1

n

n∑
i=1

(r ′
i − r̄ ′) × sin(λi − Ωpδti), (3)

where r̄ ′ is the mean radius of the edge and the sums are
over the ∼40 measurements of r ′. If the radial position of the
edge is described by Equation (1), then

√
α2

R + α2
I = ρA/2,

where ρ is the correlation coefficient between r ′
i − r̄ ′ and

cos(λi − Ωpδti − λo). This function will be at a maximum
when there is perfect correlation between these parameters (i.e.,

when ρ = 1). In the limit of perfect sampling of all possible
true anomalies (λi − Ωpδti), this should only occur when the
assumed pattern speed Ωpequals the true pattern speed. Thus,

the value of Ωpthat yields the highest value of
√

α2
R + α2

I pro-
vides the best estimate of the true pattern speed. In this case,
the parameters αR and αI will approach −(A/2) cos λo and
−(A/2) sin λo(again in the limit of perfect sampling of all possi-
ble true anomalies), so we can estimate the amplitude and phase
parameters using the equations A/2 =

√
α2

R + α2
I and tan λo =

αI/αR .
Figures 3–5 show the measured radial excursions for the

eccentric edges as a function of λ − Ωpδt using the best-fit
pattern speeds. In all cases, the data are well organized into a
sine wave. Table 4 lists the best-fit parameters for these edges.
Note that the observed pattern speeds of these features are not
far from the predicted pattern speeds derived by assuming the
edge follows a freely precessing elliptical orbit. The uncertainty
in the observed pattern speeds is set by the time baseline of the
observations, which is approximately 1300 days. A difference
of 0.◦01 day−1 in the pattern speed would therefore shift the
phase of the first and last occultations by roughly 15◦, which is
probably on the edge of detectability.

What is particularly interesting about the fitted pattern speeds
of the eccentric edges is that they almost form a regular
sequence. To see this, first note that both edges of the Huygens
Ringlet have the same pattern speed (5.◦03 day−1), as expected
for a narrow ringlet, and that all the eccentric features in the
Laplace Gap also have similar pattern speeds (4.◦72 day−1),
so there are only seven distinct pattern speeds in Table 4,
one for each gap/ringlet. The average difference in pattern
speed between adjacent features is 0.◦06 day−1, with a standard
deviation of about 0.◦01 day−1, which is comparable to the
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Figure 4. Radial excursions (after offset subtraction) of the inner edges of the Herschel, Russell, Jeffreys, and Kuiper Gaps. Error bars indicate the radial sampling
scales of the different occultations. Note time is measured relative to an epoch of 2005-195T02:12:13.557 (which corresponds to a Cassini spacecraft clock time of
150000000), and the mean radii are for the eccentric model rather than the data.

(A color version of this figure is available in the online journal.)

uncertainty in the precession rates of the patterns (outliers being
the 0.◦04 day−1 difference between the pattern speeds for the
Herschel and Russell Gap inner edges and the 0.◦08 day−1

difference between the Jeffreys and Kuiper Gap inner edges).
Also, with the exception of the almost-circular Kuiper Gap inner
edge, there is an almost monotonic decrease in the amplitude of
these patterns from 27 km at the Huygens Ringlet to 2 km at the
Bessel Gap. This regularity hints that these eccentric edges may

be controlled by a series of closely spaced resonances. This idea
will be explored in more detail below after a consideration of
the structure of two resonantly controlled edges.

3.3. Barnard Gap Inner Edge

The Barnard Gap inner edge is a special case because it is
the only inner edge of a gap in the Cassini Division besides
the B-ring edge that cannot be fit to a simple eccentric model.
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Figure 5. Radial excursions (after offset subtraction) of the inner edges of the Laplace and Bessel Gaps, as well as the outer edges of the of the Laplace Gap and
Ringlet. Error bars indicate the radial sampling scales of the different occultations. Note time is measured relative to an epoch of 2005-195T02:12:13.557 (which
corresponds to a Cassini spacecraft clock time of 150000000), and the mean radii are for the eccentric model rather than the data.

(A color version of this figure is available in the online journal.)

All the other non-circular, non-eccentric edges are either on
ringlets within the gaps (Herschel and Laplace) or at the outer
edges of gaps containing such ringlets (Huygens and Herschel).
Furthermore, the mean radius of the Barnard Gap’s inner edge is
120304 km, which is very close to the predicted location of the
Prometheus 5:4 inner Lindblad resonance (ILR) at 120303.7 km.
Thus, it is reasonable to expect that the shape of this edge is
described by the following function:

r = ro − A × cos(5(λ − λPrometheus)). (4)

Figure 6 plots the radial excursions of this edge as a function
of 5(λ − λPrometheus), and indeed shows that most of the data
can be roughly described by the above functional form. There
are some clear deviations from the expected pattern, most
noticeably some points with large positive excursions near
5(λ − λPrometheus) = 20◦, and a possible phase shift in the data
relative to the model. Similar deviations are seen in the B-ring
edge as well (see below), and may reflect complications in the
dynamics of resonantly controlled edges. In spite of this, it does
appear that the Barnard Gap is strongly influenced, and probably
controlled, by the 5:4 Lindblad resonance with Prometheus.
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Table 4
Parameters for the Eccentric Edges

Feature Mean Radiusa Amplitude Phaseb Pattern Speed Pattern Speed
(Observed) (Predicted)c

Huygens Ringlet Inner Edge 117805.8 km 26.9 km −80◦ 5.◦03 day−1 5.◦022 day−1

Huygens Ringlet Outer Edge 117823.5 km 26.9 km −74◦ 5.◦03 day−1 5.◦019 day−1

Herschel Gap Inner Edge 118188.3 km 7.9 km −171◦ 4.◦97 day−1 4.◦964 day−1

Russell Gap Inner Edge 118589.8 km 7.3 km 118◦ 4.◦93 day−1 4.◦904 day−1

Jeffreys Gap Inner Edge 118929.6 km 3.4 km −98◦ 4.◦87 day−1 4.◦854 day−1

Kuiper Gap Inner Edge 119401.6 km 1.0 km 13◦ 4.◦79 day−1 4.◦786 day−1

Laplace Gap Inner Edge 119844.7 km 3.6 km 7◦ 4.◦73 day−1 4.◦723 day−1

Laplace Ringlet Outer Edge 120077.9 km 2.8 km 123◦ 4.◦72 day−1 4.◦691 day−1

Laplace Gap Outer Edge 120085.6 km 1.5 km 9◦ 4.◦73 day−1 4.◦689 day−1

Bessel Gap Inner Edge 120231.2 km 2.1 km 14◦ 4.◦68 day−1 4.◦669 day−1

Notes.
a Note these mean radii differ slightly from those in Table 3 because these are the mean radii of the eccentric model rather than the mean
of the data.
b Longitude of edge’s pericenter for an eccentric model using the given pattern speed at an epoch of 2005-195T02:12:13.557 (which
corresponds to a Cassini spacecraft time of 150000000).
c Predicted precession rate of eccentric particle orbit with semimajor axis equal to the observed mean edge radius, based on current
estimates of Saturn’s gravity field parameters (Jacobson et al. 2006).

Figure 6. Radial excursions of the inner edge of the Barnard Gap, plotted as a
function of five times the longitude relative to Prometheus. Note that the data
are reasonably well organized in this longitude system, consistent with the edge
being influenced by the 5:4 resonance with Prometheus.

3.4. B-ring Outer Edge Observations

The outer edge of the B ring has long been known to be
strongly affected by the Mimas 2:1 ILR (Goldreich & Tremaine
1978; Smith et al. 1982). The radial excursions of a particle’s
orbit near this resonance can be described by the following
equation (see Section 4 below):

r = ro − A × cos(2(λ − λMimas)). (5)

Analyses of the Voyager data showed that the above expres-
sion provided a reasonably accurate description of the outer
edge of the B ring in 1981 with an amplitude A � 75 km (Porco
et al. 1984). However, as shown in the top panel of Figure 7, the
VIMS occultation data do not fit this simple model so clearly.
The measurements obtained in 2008 do possess a clear m = 2
structure with an amplitude of 75 km, but there is a signifi-
cant phase offset, such that the minimum radius does not occur
where λ � λMimas but instead lags behind this point by about

40◦ in phase (i.e., one of the two minima falls ∼20◦ in longitude
behind Mimas). Furthermore, the data taken prior to 2008 fall
well away from the curve described by the 2008 data. The radial
differences between the 2005–2007 and 2008 data are as much
as 100 km, which is far too large to be explained by pointing
errors, time variability in the pattern’s amplitude or some ad-
ditional (smaller amplitude) perturbations in the edge position.
Instead, the differences between the 2005–2007 data and the
2008 data are best explained by a time variation in the orien-
tation of the pattern relative to Mimas. Indeed, if we assume
the pattern moves at a speed ∼0.◦045 day−1 slower than Mimas’
mean motion, then the 2005–2007 data are well aligned with the
2008 data (see the bottom panel of Figure 7). It therefore appears
that between 2005 and 2008 the phase of this m = 2-symmetric
pattern has drifted backwards relative to Mimas.7

This trend in the pattern’s orientation over the last few years
can also be detected by comparing the VIMS occultation data
obtained in 2008 with various measurements of the B-ring
edge made by other instruments earlier in the Cassini Mission.
Data from 12 occultations of the radio signal from the Cassini
spacecraft (French et al. 2009) confirm that in 2005 the m = 2
radial excursions of the B-ring edge led Mimas by 70◦ in phase
(or 35◦ in longitude). A similar result was obtained by Spitale
& Porco (2006), based on Cassini imaging sequences in 2005.
The pattern has therefore drifted backwards relative to Mimas
by ∼55◦ in longitude (or 110◦ in phase) between 2005 and
2008, consistent with the drift rate obtained using the VIMS
data alone.

A steady drift in the m = 2 pattern relative to Mimas would
be extremely surprising, given that this pattern is supposed to
be generated by gravitational perturbations from that moon. It
seems more reasonable that the orientation of the m = 2 pattern
instead librates relative to the moon on a timescale that is long
compared to the Cassini mission to date. We therefore posit that

7 The long-term average mean motion of Mimas is 381.◦994509 ±
0.◦000005 day−1 (Harper & Taylor 1993), but the 4:2 resonance with Tethys
results in a slow variation in the mean motion with an amplitude of
0.◦011 day−1 and a period of 70.8 years. Although this variation is too small to
account for the observed drift in the B-ring edge distortion, it does lead to an
instantaneous mean motion at epoch (Day 2005-195) of 381.◦984 day−1, close
to that derived from the JPL SPICE ephemeris.
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Figure 7. Radial excursions of the outer edge of the B ring. The top panel shows the data plotted vs. the difference in longitude relative to Mimas. The middle panel
shows the data assuming a constant pattern speed equal to Mimas’ mean motion, and the bottom panel shows the data organized using a slightly slower pattern speed
that provides the best fit to the data. Note that data from all 48 occultation cuts in Table 1 are used in these plots.

(A color version of this figure is available in the online journal.)

the m = 2 structure of the B-ring edge can be described by the
following equation:

r = ro − A × cos(2[λ − λMimas − φL × sin(Lt − θL)]), (6)

where the last term in the cosine argument describes a slow
libration of the longitude of the minimum radius relative to
Mimas with an amplitude of φL and a period of 2π/L (we
shall see below that the amplitude A also appears to be time
dependent).

Estimating φL and L from the Cassini VIMS data alone is
difficult because the libration period appears to be significantly
longer than the observation arc. Earlier measurements of the

B-ring edge orientation back to the Voyager missions could be
useful, but these data are rather sparse, so before we consider
using those data, it is useful to first place some constraints on
the libration parameters using the Cassini VIMS data alone.

Since the pattern probably aligned with Mimas sometime
during 2007, we can make the crude approximation that during
the entire Cassini mission to date sin(Lt − θL) � (Lt − θL), in
which case

r � ro−A×cos(2[λ−(nMimas+φLL)t+φLθL−λMimas(t = 0)]),
(7)

where nMimas � 381.◦99 day−1 is the current mean motion of
Mimas. In this case, the same basic procedure described above
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for finding the pattern speeds of the eccentric edges can be
used to estimate the value of nMimas + φLL that best fits the
data. Using all the VIMS occultation data, the best-fit pattern
speed for the m = 2 component of the B-ring edge is found to
be 381.◦945 day−1, or about 0.◦045 day−1 slower than Mimas’
mean motion (see Figure 7, bottom panel; using only the quality
data or including the radio science data does not change this
result much). Thus, the product |φLL| must be 0.◦045 day−1

(where φL is measured in radians and L is measured in
degrees day−1).

To turn this estimate of |φLL| into a constraint on L, note
that φL cannot have any value. First, φL cannot exceed 90◦ or
else the pattern would be circulating instead of librating, which
seems unlikely. Also, φL is probably at least 35◦ or 0.6 rad, since
the pattern is offset by that much in 2005. These considerations
suggest that L most likely lies somewhere in the range between
0.◦03 day−1 and 0.◦10 day−1, corresponding to a libration period
of between 10 and 30 years.

Additional rough constraints on φL and L can be obtained
by recalling that analyses of the Voyager data showed that
the m = 2 pattern was aligned with Mimas in 1980–1981
(Porco et al. 1984). This suggests that zero-crossings of the
libration occurred in 1980–1981 and 2007, which would imply
the libration period is a submultiple of 52 years, or that L is an
integral multiple of 0.◦02 day−1. The Cassini-based estimate of
|φLL| and the Voyager data can be satisfied if L � 0.◦04 day−1,
0.◦06 day−1, 0.◦08 day−1, etc. (with φL � 60◦, 40◦, and 30◦, etc.,
respectively).

Guided by these constraints, we performed a more compre-
hensive investigation of the B-ring edge using a combination of
occultation data obtained over the last 30 years. This combined
data set includes (1) the 48 VIMS occultation cuts listed in
Table 1, (2) 12 occultation cuts from 2005 obtained by the
Cassini radio-science experiment (RSS) reported in French et al.
(2009) and kindly provided to us, (3) the Voyager 1 RSS occulta-
tion (Tyler et al. 1983), (4) the Voyager 2 PPS occultation (Lane
et al. 1982; Esposito et al. 1983, 1987), (5) multiple data from
the ground-based 28 Sagittarius occultations from 1989 July
(French et al. 1993), and (6) occultations observed by the Hub-
ble Space Telescope in 1991 (Elliot et al. 1993) and 1995 (Bosh
et al. 2002). All of the pre-Cassini data have been re-analyzed
by French et al. (2009).

To determine which combination of libration parameters
could best fit these data, we computed the Pearson’s correlation
coefficient ρ between the radial excursions and the parameter
cos(2[λ−λMimas −φL×sin(Lt−θL)]) for different values of φL,
L, and θL. This correlation coefficient will be maximal with the
model parameters that best match the actual motion of the edge,
so it provides a convenient way to search the parameter space
for likely solutions. This method also has the advantage that it
is relatively insensitive to any time variability in the amplitude
A of the pattern (see below).

Based on this analysis, we found that solutions with L <
0.◦05 day−1 were strongly disfavored. This is primarily be-
cause all of the pre-Cassini measurements show negative radial
excursions, and there was no way to align both the 28 Sgr and
Voyager measurements with the minima in the Cassini data un-
less L > 0.◦05 day−1. Furthermore, we found that frequencies
near 0.◦058 day−1 and 0.◦117 day−1 better organized the data
than other frequencies. Note that both these frequencies are part
of the acceptable series of values that the above simplistic anal-
ysis suggested would be compatible with both the Voyager and
Cassini data.

Unfortunately, the available data do not clearly favor one
of these two solutions for the B-ring edge over the other. The
top two panels in Figure 8 show the two best-fit solutions, with
libration frequencies 0.◦058 day−1 and 0.◦117 day−1 and libration
amplitudes φL = 52◦ and 32◦ (in both cases the most recent
zero-crossing time was in mid-2007). The scatter of the data
about the mean curves is not significantly different in these two
cases, so both solutions are equally good in this respect. Worse,
the earlier data are unable to rule out the possibility that the
m = 2 pattern could be drifting backwards at a constant speed
instead of librating. The bottom panel of Figure 8 shows the data
plotted using the best-fit constant pattern speed, which turns out
to be 381.◦932 day−1, or about 0.◦05 day−1 slower than Mimas’
current mean motion. The scatter in the data for this solution is
not much larger than it is for the librating solutions.

Future observations may eventually provide a way to discrim-
inate between these possible solutions. However, some of the
difficulty in determining the correct model for the motion of the
m = 2 pattern stems from the comparatively large scatter in
the measurements with respect to any of the above solutions. In
all cases, the average amplitude of the pattern is around 60 km,
but rms residuals are roughly 20 km, which is much larger than
the ∼1 km measurement errors in each of these data sets. This
suggests that the B-ring edge is not just a fixed-amplitude m = 2
pattern that librates relative to Mimas, but has a more complex
shape, perhaps with additional perturbation modes.

To explore this possibility, let us take a closer look at two
particular subsets of the data: the VIMS data from 2008 and
the combined VIMS and RSS data from 2005. Each of these
subsets consists of a reasonably large number of occultation
cuts (31 and 16, respectively) that were not only taken over a
sufficiently broad range of longitudes relative to Mimas that we
can estimate the shape of the m = 2 pattern, but also obtained in
a sufficiently short period of time that we can ignore the libration
of the pattern with respect to Mimas.

The best-fit m = 2 pattern for the 2008 data has an amplitude
of 75.3 km and a phase of −39.◦4 relative to Mimas (i.e., the
pattern lags Mimas by 19.◦7 in longitude), while the best-fit
pattern for the 2005 data has an amplitude of 48.7 km and a
phase of +70.◦0. Thus, the amplitude of the m = 2 pattern varies
with time as well as the phase (see Figure 9). This is not entirely
unexpected, given that a libration can often be modeled as a
combination of free and forced terms, which naturally leads
to coupled variations in both the phase and the amplitude of
the pattern (see Section 4 below). Indeed, some of the observed
scatter in the data in Figure 8 is likely due to unmodeled changes
in the amplitude of the m = 2 pattern. Even so, the variations
in the amplitude of the pattern cannot be the only source of
scatter in these data, as each of the 2008 and 2005 data sets
alone show significant scatter around the mean m = 2 pattern,
with individual residuals up to ∼40 km (see Figure 9).

A previous analysis of Cassini images by Spitale & Porco
(2006) suggested that additional perturbations, possibly m = 3,
might influence the B-ring edge’s shape. Motivated by this
result, we took the 2008 and 2005 data sets, removed the
best-fitting m = 2 pattern from each of them, and fitted the
residuals to m = 0, 1, 3, 4, 5, and 6 patterns. For each non-zero
value of m, we examined a range of pattern speeds in the vicinity
of the expected speed of a “normal mode” (French et al. 1991)
with this m number:

Ωp = [(m − 1)n + �̇ ]/m. (8)
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Figure 8. Radial excursions of the B-ring edge, including data from Cassini-VIMS and RSS experiments, Voyager observations and various earth-based occultation
observations. The top two panels show the data as organized using a librating longitude system with libration frequencies of 0.◦058 day−1 and 0.◦117 day−1, respectively.
The bottom panel shows the data organized using a steady drift rate of ∼0.◦05 day−1 slower than Mimas’ mean motion (as before, times are measured relative to an
epoch of 2005-195T02:12:13.557 or a Cassini spacecraft clock time of 150000000). The available data are clearly insufficient to distinguish between these different
models, given the very large residual scatter.

For m = 0, the pattern does not rotate, but the whole ring
oscillates radially at the epicyclic frequency κ = n − �̇ , as
observed for the Uranian γ ring (French et al. 1986). As with
eccentric features in the Cassini Division, we computed the
amplitudes

αR = 1

n

n∑
i=1

δri × cos[m((1 − δm0)λi − Ωpδti)], (9)

αI = 1

n

n∑
i=1

δri × sin[m((1 − δm0)λi − Ωpδti)], (10)

where δri are the residual radial variations in the edge positions
after removing the m = 2 pattern. As before, if there is a pattern
in these radius measurements with a given m and Ωp, then√

α2
R + α2

I should have a maximum at the appropriate values for
those parameters.

For both the 2005 and 2008 data sets, the clearest maxima
were obtained with m = 1. Indeed, as shown in Figure 10,
the residuals in the 2008 data are reasonably well fit by a
precessing Keplerian ellipse with an amplitude of about 18 km
and a pattern speed of 5.◦08 day−1 (with an uncertainty of
∼0.◦05 day−1 determined by the ∼6-month observing arc). This
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Figure 9. Radial excursions of the B-ring edge measured by the VIMS and RSS experiments in 2005 (top) and by VIMS in 2008 (bottom). In both cases, the data can
be reasonably well fit by simple sine curves.

(A color version of this figure is available in the online journal.)

pattern speed is very similar to the expected apsidal precession
rate of 5.◦061 day−1 for a Keplerian orbit at this radius. For the
2005 data, the best-fit solution has a slightly larger amplitude
of about 23 km and the best-fit pattern speed of 4.◦19 day−1,
17% slower than the predicted value of �̇ . However, given the
short time-baseline covered by the 2005 data and the limited
number of data points available, a pattern speed of 5.◦08 day−1

(consistent with the 2008 observations) can also organize the
2005 data reasonably well (see the bottom panel of Figure 10).
An attempt to fit a single, coherent m = 1 perturbation to both
data sets yields multiple equal-quality fits at an array of pattern
speeds separated by 360◦/3 years � 0.◦3 day−1. The available
data are therefore too sparse to permit us to derive a more precise
model of this perturbation or an accurate measurement of the
pattern speed. However, the existence of similar m = 1 patterns
in both the 2005 and 2008 data sets strongly suggests that this
is a “permanent” feature of the B-ring edge.

The radial variations in the location of the B-ring edge there-
fore have at least two components: an m = 2 perturbation forced
by the strong Mimas 2:1 ILR, with an average radial amplitude
of ∼60 km and an orientation which librates (or circulates) with
respect to the direction to Mimas, and an m = 1 Keplerian el-
lipse with an amplitude of ∼20 km which freely precesses under
the influence of Saturn’s oblate figure at roughly 5◦ day−1. Even
this rather complicated model provides a relatively poor fit, in
comparison with those for the eccentric edges in the Cassini
Division, with rms residuals of 10–20 km. We suspect that this
is due to deficiencies in our model of the m = 2 perturbation,

whose libration is still not accurately modeled (e.g., we have
not yet implemented a model for the amplitude variations), but
it is also possible that additional perturbations are present. Ef-
forts to derive more detailed and accurate models of the B-ring
edge are underway and will be presented in future work, but
already the preliminary results presented here hint at a close
connection between the B-ring edge and the Cassini-Division
Gaps.

4. THEORETICAL EXPECTATIONS FOR THE B-RING
OUTER EDGE

Before delving into the possible connections between the
B-ring edge and the Cassini-Division Gaps, it is useful to first
take a closer look at the complex behavior of the B-ring’s
outer edge. In particular, the above data allow several different
solutions for the motion of the m = 2 component on this edge, all
of which have the m = 2 pattern drift or move relative to Mimas.
We would like to establish whether any of these solutions are
plausible in terms of the local dynamical environment. Since a
detailed model along the lines of those developed in Borderies
et al. (1982) and Hahn et al. (2009) is beyond the scope of this
paper, we will instead examine the behavior of isolated ring
particle orbits in the vicinity of the Mimas 2:1 ILR. While not
conclusive, these simpler calculations do at least demonstrate
that the observed variations in the amplitude and orientation of
the m = 2 pattern are not wildly inconsistent with theoretical
expectations.
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Figure 10. Residual radial variations of the outer edge of the B ring, after removing the m = 2 mode pattern associated with the Mimas 2:1 resonance. The top and
middle panels show the 2008 and 2005 residuals, respectively, each organized using the best-fit pattern speed. Note the pattern speed for the 2008 data is close to the
apsidal precession rate at this location, while the 2005 data is best fit by a 20% slower pattern speed. The bottom panel shows the 2005 data plotted using the same
pattern speed as the 2008 data, to illustrate that the data are relatively well organized in this case as well. As before, all times are measured relative to an epoch of
2005-195T02:12:13.557 or a Cassini spacecraft clock time of 150000000.

(A color version of this figure is available in the online journal.)

The following discussion is based on that in Chapter 8 of
Murray & Dermott (1999), but couched in terms of the physical
coordinates, r and λ, and the standard orbital elements, a, e, and
� , rather than a Hamiltonian formalism.

At a first-order ILR, the resonant argument is given by

ϕILR = (m − 1)λ + � − mλs, (11)

where m is a positive integer, λ and λs refer to the mean
longitudes of the test particle and satellite, respectively, and
� is the longitude of pericenter of the test particle’s orbit. At

the so-called exact resonance,

dϕILR

dt
= (m − 1)n + �̇sec − mns = 0, (12)

where n is the orbital mean motion and �̇sec is the apsidal
precession rate of the test particle due to non-resonant pertur-
bations (chiefly the planet’s oblateness). For a 2:1 ILR, m = 2
and nres = 2ns − �̇sec.

An ensemble of test particles which share common values
of semimajor axis a, eccentricity e, and ϕILR, but different
instantaneous values of λ and � , will define a streamline given
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by
r(λ, t) ≈ a [1 − e cos(λ − � )] , (13)

or in terms of ϕILR

r(λ, t) ≈ a [1 − e cos (m(λ − λs) − ϕILR)] . (14)

This is the same as Equation (6) above, with A = ae, r ′
0 = a,

and
ϕILR = 2φL sin(Lt − θL). (15)

Following Murray & Dermott (1999, see their Equation (8.26)
and Table 8.5), the corresponding time-averaged disturbing
function of the satellite (to lowest order in eccentricity and for
zero inclination) is given by

RILR = Gms

as

f (α)e cos ϕILR, (16)

where ms is the mass of the satellite, α = a/as , and for m = 2 the
function f (α) = −0.75/α comes from evaluating the disturbing
function. The Lagrange equations which describe the resulting
perturbations in the test particle’s orbital elements are

dn

dt
= −3(m − 1)βn2e sin ϕILR, (17)

de

dt
= −βn sin ϕILR, (18)

d�

dt
= −βne−1 cos ϕILR + �̇sec, (19)

dε

dt
= −1

2
βne cos ϕILR, (20)

where we have introduced the dimensionless resonance strength
β = −(ms/MS)αf (α), with MS the mass of the planet. The
quantity ε is the longitude at epoch, defined by the usual
expression λ = ε+nt . These are equivalent to Equations (8.28)–
(8.31) of Murray & Dermott (1999), except that our definition
of the resonant argument in Equation (11) is opposite in sign to
theirs. Combining Equations (17), (19), and (20), we can derive
an expression for the rate of change of ϕILR:

dϕILR

dt
= (m−1)n−mns+�̇sec−

[
βn

e
+

(m − 1)βne

2

]
cos ϕILR.

(21)
For small values of e, we can safely neglect the last term in
brackets (which arises from Equation (20)).

From Equations (17) and (18), we see that n and e must vary
in phase, with

dn

de
= 3(m − 1)ne, (22)

so that we may write, to the lowest order in e,

n ≈ n0 +
3

2
(m − 1)n0e

2, (23)

where n0 is a constant. Substituting this expression for n
into Equation (21), and introducing the constant parameter
ν = (m − 1)n0 − mns + �̇sec, we have our final equation for the
resonant variable, correct to the lowest order in e:

dϕILR

dt
= ν +

3

2
(m − 1)2n0e

2 − βn0

e
cos ϕILR. (24)

The frequency parameter ν is best thought of as a measure of
the distance from exact resonance,

ν ≈ −3

2
(m − 1)nres

(
a − ares

ares

)
, (25)

where ares and nres are the semimajor axis and unperturbed mean
motion at exact resonance, defined by Equation (12). Note that
ν > 0 for orbits interior to ares.

Equilibrium solutions to Equations (18) and (24) occur where
e = e0 and ϕILR = ϕ0, where e0 and ϕ0 are constants in time.
Such solutions only exist for ϕ0 = 0 or ϕ0 = π , and where the
eccentricity satisfies the cubic equation:

ν = βn0

e0
cos ϕ0 − 3

2
(m − 1)2n0e

2
0. (26)

For positive values of ν (i.e., interior to ares) only a single
solution exists, with ϕ0 = 0. But for negative values of ν(i.e.,
exterior to ares) up to three branches of solutions exist, labeled
A, B, and C by Murray & Dermott (1999, see their Figure 8.9).
Solution A, with ϕ0 = 0, is an extension of the equilibrium
solution for ν > 0. Solutions B and C have ϕ0 = π , with
eB � eC � eA. Solution C is an unstable equilibrium, and
thus of little physical interest, but solutions A and B are both
stable. Branches B and C merge at a bifurcation point, where
dν/de0 = 0,

νc = −3

2
n0[3(m − 1)2β2]1/3, (27)

and

ec =
[

β

3(m − 1)2

]1/3

, (28)

and cease to exist for larger values of ν.
For e 	 ec, the equilibrium, or forced eccentricity is given

approximately by

e0 ≈ β
n0

ν
cos ϕ0, (29)

with ϕ0 = 0 for ν > 0 (solution A) and ϕ0 = π for ν < 0
(solution B). For e 
 ec, ϕ0 = 0 (solution A) or π (solution C)
and

e0 ≈
[

2|ν|
3n0(m − 1)2

]1/2

. (30)

At ν = 0, e0 = 21/3ec.
In the context of planetary rings, it is usually assumed that we

are in the “small-e” regime, with e 	 ec and a resonantly forced
eccentricity and phase given by Equation (29) (see Murray &
Dermott 1999, Equation (10.21) and Figure 10.9).

If we now substitute suitable numerical values for the
Mimas 2:1 ILR, we find that ares = 117,553.65 km, �̇sec =
5.◦0613 day−1, nres = 2ns − �̇sec = 758.◦9277 day−1, α ≈
0.6336, ms/M = 6.60 × 10−8 (Jacobson et al. 2006), and β =
4.95×10−8. The corresponding eccentricity and frequency at the
bifurcation point are ec = 0.00255 and νc = −0.◦0221 day−1.
From Equation (25) we have that

ν ≈ −0.◦0097/day

(
a − ares

1 km

)
, (31)

so that the bifurcation point occurs at a − ares = +2.3 km with
a forced amplitude, aec = 299 km.
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Since the maximum radial amplitude observed at the edge of
the B ring, A � 75 km, or one-quarter of the critical value, we
may conclude that the streamlines are indeed in the “small-e”
regime. We can then use Equation (29) to estimate the effective
value of ν for streamlines at the edge of the B ring. If we adopt
an average forced eccentricity of (0.50 ± 0.12) × 10−3 (i.e.,
A = 60 ± 15 km), and note that ϕ appears to librate around 0
rather than π , then we find

νeff ≈ βn0

e0
cos ϕ0 = +0.075 ± 0.◦019 day−1 (32)

with an effective distance from exact resonance of a − ares =
−8 ± 2 km. This may be compared with the observed mean
location of the edge of 117,565.4 km, or a−ares = +12 km. The
B-ring edge thus behaves as if it were located 5–10 km interior
to the 2:1 resonance, whereas it is actually located ∼12 km
exterior to the resonance. A similar conclusion was reached by
Porco et al. (1984) in their study of this edge using Voyager
observations, though their value of a − ares was less accurate
due to uncertainties at that time in the absolute radius scale of
the rings.

However, the classical “resonance width” wres—the range in
semimajor axis over which test particle orbits on opposite sides
of exact resonance will overlap due to their 180◦ difference in
ϕ0—is given by substituting Equation (25) into Equation (29)
and solving for aeo = a−ares = wres/2 (see Murray & Dermott
1999, Equation (10.23)):

wres ≈ 2ares

[
2β

3(m − 1)

]1/2

= 43 km. (33)

(Note that this is actually 1/2 of Murray and Dermott’s ex-
pression, which includes the radial excursions due to the forced
eccentricities.) Within ∼20 km of exact resonance, therefore,
we cannot expect the above test particle model to give realistic
estimates of e0 as a function of a. In an actual planetary ring,
the situation will be further complicated by gravitational and
collisional interactions between the ring particles, which will
act to prevent the streamline crossing predicted by our simple
test-particle model within ±wres/2 of ares. Such a model has
recently been developed for application to the A- and B-ring
edges by Hahn et al. (2009), based on earlier work by Borderies
et al. (1982).

Although dissipative collisions within a real ring might be
expected to rapidly damp any motion relative to the equilibrium
solutions discussed above, our observations of the B-ring
edge strongly suggest either that the resonance angle ϕILR is
librating about an equilibrium value close to 0, or that it is
circulating in a retrograde direction (i.e., 〈dϕILR/dt〉 < 0).
The equations of motion, Equations (17)–(20), admit of both
finite-amplitude oscillations in ϕILR and of circulating solutions.
For a series of phase portraits of such librations, the interested
reader is referred to Figure 8.10 in Murray & Dermott (1999).
(Their dimensionless parameter δ is equal to 3ν/νc, while their
amplitude parameter Φ = 1

2 (e/ec)2.)
In the small-e limit (i.e., e 	 ec), Equation (24) reduces to

dϕILR

dt
≈ ν − βn0

e
cos ϕILR, (34)

while the variation in e is given by Equation (18), where we may
set n ≈ n0. In this limit, the variations in ϕILR are dominated

by the resonant effects on � . These coupled equations are most
readily solved by introducing the conjugate variables

h = e cos ϕILR, k = e sin ϕILR, (35)

in terms of which Equations (18) and (34) become

dh

dt
= −νk, (36)

dk

dt
= νh − βn0. (37)

The solution follows trivially:

h(t) = βn0

ν
+ ef cos(νt − θ ), (38)

k(t) = ef sin(νt − θ ). (39)

Recall that βn/|ν| is the forced eccentricity, e0, from
Equation (29) above. The free eccentricity, ef , and phase an-
gle, θ , are arbitrary constants of the motion, set by the initial
conditions. In the h, k plane, the motion is in a circle of radius ef
about the fixed point, (±e0, 0). Interior to the resonance (ν > 0,
equilibrium branch A) the motion is counterclockwise about
(+e0, 0), while exterior to the resonance (ν < 0, branch B) the
motion is clockwise about (−e0, 0). In both cases, the angular
frequency is simply equal to ν, given by Equation (25) above.

If ef < e0, the solution describes a librational motion of ϕ
about either 0 (for ν > 0) or π (for ν < 0). The maximum
libration amplitude is given by ϕmax = sin−1(ef /e0), while the
instantaneous eccentricity is equal to

e(t) =
√

h2 + k2 = [
e2

0 + e2
f + 2eoef cos(νt − θ )

]1/2
. (40)

For ef > e0, the angle ϕILR circulates continuously through 2π
radians, while e oscillates between ef −e0 and ef +e0. Example
trajectories for both cases are shown in Figure 8.11 of Murray
& Dermott (1999).

Although the form of the small-e librations motivated our
choice of the model used to fit the B-ring edge above, we note
that even this simple test-particle model implies (1) that the
amplitude of the edge, A = ae should oscillate as the edge
librates or circulates, and (2) that the variation in the resonant
angle, ϕILR, will not be sinusoidal or linear, unless ef 	 e0 or
e0 
 ef . The substantial variations observed in A and ϕILR over
the course of the Cassini mission to date suggest that the latter is
unlikely to be true. A more sophisticated model might therefore
be based on the small-e solution above.

Despite these limitations, we note that the best-fitting libration
frequencies of 0.◦058 and 0.◦117 day−1 found above are generally
consistent with our theoretical estimate of ν = 0.075 ±
0.◦019 day−1 in Equation (32), based on equating the observed
amplitude to the forced eccentricity.

If, on the other hand, the B-ring edge is circulating, then
the best-fitting drift rate of φLL = −0.◦05 day−1 (compared to
Figure 8) implies that dϕILR/dt = 2φLL ≈ −0.◦10 day−1,
from Equation (15), or a − ares = +10 km, which agrees
fairly well with the observed mean radius of the edge. Thus,
both librating and circulating small-e models seem to be
quantitatively consistent with our observations of the B-ring
edge, despite their obvious limitations noted above.

For completeness, we did examine the large-e case, but these
calculations indicate that a large-e libration is less compatible
with the observed motion of the B-ring edge. Not only does the
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predicted forced amplitude, A = ae0, exceed 750 km only 5 km
outside the resonant radius—10 times the maximum observed
value—but the libration frequency is quite slow, reaching only
0.◦024 day−1 at a − ares = 5 km and 0.◦033 day−1 at 20 km.
Such low libration frequencies are strongly disfavored by the
available data.

5. A POSSIBLE EXPLANATION FOR THE LOCATION
OF THE CASSINI-DIVISION GAPS

The above analysis indicates that the structure of the Cassini
Division may be more regular than it appears at first glance.
Certainly, the Barnard Gap is no longer a mystery, as it seems
to be held open by the 5:4 mean motion resonance with
Prometheus. Furthermore, the remaining gaps seem to form
a pattern. The Herschel, Russell, Jeffreys, Kuiper, Laplace, and
Bessel Gaps all seem to have an eccentric inner edge and most
of these also have a circular outer edge. (The Huygens, Herschel
and Laplace Gaps do not have perfectly circular outer edges, but
these are also the gaps which contain dense ringlets, which may
complicate the situation.) Furthermore, the six eccentric gap
edges seem to define a series of evenly spaced pattern speeds
with a characteristic spacing of about 0.◦06 day−1. Even the
Huygens Ringlet and the m = 1 component of the B-ring edge
seem to fall in this sequence. Finally, there is the suggestive
coincidence that the m = 2 pattern on the B-ring edge could
be librating with an angular frequency not too dissimilar from
0.◦06 day−1 (although we must caution that other solutions are
possible).

Based on these findings, we have developed a novel expla-
nation for the location of the gaps in the Cassini Division. Just
as the inner edges of the Huygens and Barnard Gaps are estab-
lished by resonances with Saturnian satellites (Mimas 2:1 and
Prometheus 5:4, respectively), the inner edges of the other gaps
are maintained by resonances which involve the edge of the B
ring. In the following sections, we demonstrate that the gravi-
tational perturbations from the radial excursions of the B-ring
edge, together with perturbations from Mimas, can give rise to
terms in the equations of motion that would support the forma-
tion of eccentric edges at their observed locations in the Cassini
Division.

Note that for the purposes of this theoretical study, we will
assume that the orientation of the m = 2 pattern on the B-ring
edge librates with a frequency of ∼0.◦06 day−1, which matches
the typical spacing between the pattern speeds of eccentric
features in the Cassini Division. This particular solution is
clearly the one where the B-ring-edge patterns would be most
likely to generate a series of structures like the Cassini-Division
Gaps. Thus, an analysis of this case will establish whether
such a model has any hope of working. Of course, our current
understanding of the data admits the possibility of different
libration frequencies or even circulation of the m = 2 pattern. If
one of these alternate solutions turns out to be correct, then the
connection between the B-ring edge and the Cassini Division
may still exist but be more complicated, and the simpler analysis
presented here could still help clarify this relationship.

5.1. Qualitative Frequency Studies

To determine if any interesting resonances in the Cassini
Division could be generated by the B-ring edge, one must write
down the gravitational potential associated with the observed
structure of the B-ring edge, compute the appropriate terms
in the disturbing function, and determine if they could drive

structures like those seen in the various gap edges. In this case,
however, the data described above already provide hints of what
terms in the disturbing function could be involved in generating
the observed edges. Therefore, prior to exploring the dynamical
environment of the Cassini Division in detail, we will first take
a more qualitative look at the situation in order to clarify which
terms in the gravitational potentials are likely to be relevant.

The m = 1 patterns on the relevant Cassini-Division edges
move at speeds close to the expected local apsidal precession
rates given Saturn’s oblateness (see Table 4). Thus, each edge
can be thought of as a collection of particles on freely precessing
eccentric orbits whose pericenters are all aligned to produce
a coherent structure. Assuming the orientation of the m = 2
pattern in the B-ring edge librates at ∼0.◦06 day−1, this alignment
in pericenters would appear to occur at places where the apsidal
precession rate �̇ has the following values:

�̇ = �̇B − jL, (41)

where �̇B is the apsidal precession rate of the B-ring edge
(also the pattern speed of the m = 1 component on that
edge), j is an integer, and L is the libration frequency of the
m = 2 pattern in the B-ring edge. Since �̇ as a function of
a is determined primarily by the higher-order components in
Saturn’s gravitational field, Equation (41) implicitly specifies
the locations of a series of regularly spaced resonances. At these
locations, the following quantity is approximately constant:

ϕ = � − �B + jLt. (42)

We propose that there is a term in the equations of motion that
tries to maintain ϕ near some value ϕo. Such a term will act
to align orbital pericenters and produce a coherent structure on
each edge that is stable against small perturbations. In order for
this to work, the equation of motion of this resonant argument
needs to have a term of the form

d2ϕ

dt2
� −f 2

o sin(ϕ − ϕo). (43)

In this particular situation, the above expression can be re-
written as (assuming �̇B and L are constant)

d2�

dt2
� −f 2

o × sin(� − �B + jLt − ϕo). (44)

Provided such a term exists in the equations of motion, then the
pericenters of individual particle orbits could become aligned,
forming a coherent m = 1 pattern that moves around the planet
at the local precession rate established by Saturn’s oblateness,
consistent with the observations.

Lagrange’s planetary equations relate time derivatives in
orbital elements like � to derivatives of the disturbing function
(e.g., d�/dt ∝ dR/de). Thus, in order to determine if ϕ =
� −�B + jLt is a proper resonant argument that can produce a
coherent structure, we need to find a term or a combination
of terms in the disturbing function that are proportional to
sin(� − �B + jLt).

The question now is whether such terms are likely to appear
in the disturbing function generated by the B-ring edge. We can
model the B-ring edge as a collection of mass ribbons, each of
which has the characteristic shape

r = ro − d1 cos(φ − �B) − d̃2 cos(2[φ − λMimas − φ̃L]), (45)
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where φ is the azimuthal angle. φ̃L = φL × sin(Lt − θL) is the
time-variable azimuthal offset due to the edge’s libration (see
Equation (6) above). Note the term d̃2 may also have a time-
variable component (d̃2 = d2[1 ± δd

2 cos(Lt − θL)]) because
the amplitude of the m = 2 pattern is apt to change over the
course of the libration cycle. In fact, as discussed in Section 4
above, the librations in the amplitude and the phase are likely
to be coupled in such a way that neither oscillation is purely
sinusoidal, but for the purposes of this analysis we will ignore
such complications.

Such mass ribbons will produce a relatively complicated
potential, but in general we expect terms in the disturbing
function to contain second-order terms of the following form

Rkl ∝ d
|k|
1 d̃

|l|
2 cos(k(λ − �B) + l[2λ − 2λMimas − 2φ̃L]), (46)

where k and l are various integers and λ is the perturbed particle’s
mean longitude (assuming the particle’s orbit is nearly circular).
We can quickly see that any term of this form that contains φ̃L

will also contain λMimas, so no term of this form will have the
form required to produce something like Equation (44). This
suggests that the B-ring edge alone will be unable to produce
the resonances required to explain the eccentric edges in the
Cassini Division.

All is not lost, however, because there is a possibility that
the perturbations from the B-ring edge, acting together with
perturbations from the nearby and very powerful Mimas 2:1
ILR, can generate the desired terms in the disturbing function
through a sort of three-body resonance. In such a situation,
the time derivatives of orbital elements can be proportional to
the products of disturbing functions, which means we will get
products of the Rkl above with the term responsible for the
Mimas 2:1 resonance,

RMimas ∝ mM cos(λ + � − 2λMimas), (47)

where mM is the mass of Mimas. This yields terms of the
following form:

R′
k,l ∝ mMd

|k|
1 d̃

|l|
2 sin((λ + � − 2λMimas) + k(λ − �B)

+ l[2λ − 2λMimas − 2φ̃L]). (48)

When k = 1 and l = −1, this term has the promising form

R′
1,−1 ∝ mMd1d̃2 sin(� − �B + 2φ̃L), (49)

or, equivalently

R′
1,−1 ∝ mMd1d̃2 sin(� − �B + 2φL sin(Lt − θL)). (50)

This term is proportional to something like sin(A × t + B ×
sin(C × t)). Note in particular that in this case φL � 50◦ or
nearly 1 radian (see Figure 8), so the coefficient B is actually
quite large. Figure 11 shows a Fourier transform of a function
of the form sin(t + sin(0.01t)), which illustrates that this sort
of function actually has multiple periodic components (the
amplitudes of these different components can be evaluated using
Bessel functions; see Gray & Mathews 1895). The above term
in the disturbing function can therefore be expressed as the
following series:

R′
1,−1 ∝

∑
j

Cj sin(� − �B + jLt − jθL), (51)

Figure 11. Fourier transform of the function x = sin(t + sin(0.01t)), showing
the multiple frequency components with comparable amplitudes.

which is exactly the form which we are seeking (compared
with Equation (44) above). A single disturbing term of the form
given in Equation (49) could therefore potentially lead to the
formation of multiple, evenly spaced features, like the gaps in
the Cassini Division.

Given all this, it seems reasonable to look for three-body-like
resonances in the Cassini Division where one of the bodies is
Mimas and the other is the B-ring edge. Furthermore, we will
be particularly interested in terms in the disturbing function of
the B-ring edge that have the form

R1,−1 ∝ d1d̃2 sin([λ − �B] − [2λ − 2λMimas − 2φ̃L]). (52)

5.2. Evaluating the Disturbing Function

The above analysis indicates that we will need two pieces of
the disturbing function: (1) the part of the disturbing function
due to Mimas that goes like cos(λ + � − 2λMimas) and (2) the
part of the disturbing function due to the B ring that goes like
cos(λ + �B − 2λMimas − 2φ̃L).

The relevant part of the Mimas disturbing function is given
by Equation (16) above

RMimas = GmM

aM

f (a/aM )e cos(λ + � − 2λMimas), (53)

where mM and aM are Mimas’ mass and orbital semimajor axis,
respectively, while a and e are the particles’ semimajor axis and
eccentricity (recall that for a 2:1 resonance f (α) = −0.75/α).

Of course, extracting the relevant bit of the ring’s disturbing
function requires more effort. Again, consider a mass ribbon
whose position is described by the following equation:

r = ro − δr = ro −d1 cos(φ −�B) − d̃2 cos(2φ − φ̃LM), (54)

where for simplicity of notation we have introduced the term
φ̃LM = 2λMimas + 2φ̃L.

The disturbing function for a small mass element dm of this
ring on a particle at radius r ′ and longitude λ is given by

Rdm = Gdm

[
1

r ′

∞∑
l=1

( r

r ′
)l

Pl(cos ψ) − r ′

r2
cos ψ

]
, (55)

where ψ is the difference in longitudes between the mass
element and the particle of interest, so φ = ψ + λ.
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The total disturbing function for the ring is then this expres-
sion integrated over all ψ

Rring = Gmr

2π

∫ 2π

o

[
1

r ′

∞∑
l=1

( r

r ′
)l

Pl(cos ψ) − r ′

r2
cos ψ

]
dψ,

(56)
where mr is the total mass of the ribbon, which for now is
assumed to be uniformly distributed in φ.

The terms we are interested in here are proportional to
(δr)2 = (r − ro)2 because

(δr)2 = 2d1d̃2 cos(ψ +λ−�B) cos(2ψ +2λ−φ̃LM)+· · · , (57)

(δr)2 = d1d̃2 cos(ψ + λ + �B − φ̃LM) + · · · , (58)

(δr)2 = d1d̃2 cos(λ + �B − φ̃LM) cos ψ + · · · . (59)

So this is the lowest order term in d1, d̃2 that contains the desired
frequency term.

Re-writing Rring so that δr is explicit, we find

Rring = Gmr

2πr ′

∫ 2π

o

∞∑
l=1

(
ro − δr

r ′

)l

Pl(cos ψ)dψ

− Gmrr
′

2π

∫ 2π

o

1

(ro − δr)2
cos ψdψ. (60)

Expanding both terms and keeping only terms proportional
to (δr)2, we obtain

R′
ring = Gmr

2πr ′r2
o

∞∑
l=2

l(l − 1)

2

( ro

r ′
)l

[∫ 2π

o

(δr)2Pl(cos ψ)dψ

]

− 3Gmrr
′

2πr4
o

∫ 2π

o

(δr)2 cos ψdψ. (61)

While both parts of this function are non-zero, the second part
is a single term while (as we will see below) the first part is a
slowly converging series. Thus, at this point we will drop the
second term and only keep the parts of the first term containing
the element explicitly listed in Equation (59):

R′
ring � Gmrd1d̃2

2πr ′r2
o

cos(λ + �B − φ̃LM)
∞∑
l=2

l

2

( ro

r ′
)l

×
[∫ 2π

o

(l − 1) cos ψPl(cos ψ)dψ

]
. (62)

It turns out that for large values of l the term in the square
brackets becomes 4 for odd l and 0 for even l (see Figure 12).
Since ro/r ′ � 1 in the Cassini Division, the series slowly
converges, so we can actually approximate this term as 2. In
this approximation

R′
ring � Gmrd1d̃2

2πr ′r2
o

cos(λ + �B − φ̃LM)
∞∑
l=2

l
( ro

r ′
)l

, (63)

and since
∑

lxl = 1/(1 − x)2

R′
ring � Gmr

2πr ′
r ′2

r2
o

d1d̃2

(r ′ − ro)2
cos(λ + �B − φ̃LM). (64)

Figure 12. Term
∫ 2π

o
(n − 1) cos ψPn(cos ψ)dψ , evaluated for different values

of n. The bottom branch corresponds to even n, where the integral is zero
by symmetry. The top branch corresponds to odd n, which asymptotically
approaches 4.

Finally, we assume in this case that the particle is on a nearly
circular orbit, so r ′ � a, so the final expression for this function
is

Rr
ring � Gmr

2πa

a2

r2
o

d1d̃2

(a − ro)2
cos(λ + �B − φ̃LM), (65)

where the superscript r indicates that this perturbation is due to
the radial distortions in the B-ring edge.

This expression gives the disturbing function for a single
ribbon of mass total mr. This perturbation from the entire outer
part of the B ring can be approximated as a series of such ribbons
with different values of mr, ro, d1, and d̃2. Since the structure of
the B ring is still uncertain at this point (Hahn et al. 2009), for
simplicity we will here assume that d1 and d̃2 decrease linearly
with radius toward the planet:

d1 = D1
ro − Ri

Ro − Ri

, (66)

d̃2 = D̃2
ro − Ri

Ro − Ri

, (67)

where Ro is the mean radius of the B-ring edge, D1 and D̃2 are
the values of d1 and d̃2 at the edge, and Ri = Ro − W is the
assumed radius where the amplitudes of the radial excursions
in the mass ribbons go to zero. Furthermore, let us assume that
the mass of each ribbon is

mr = 2πσrodro, (68)

where σ is the (unperturbed) surface mass density of the outer
B ring.

If we insert the above expressions for mr, d1, and d̃2 and
integrate over all values of ro between Ri and Ro, assuming that
W = Ro − Ri is much less than Ro and a − Ro, we find the
disturbing function from the entire B ring is given by

Rr
Ring � GσW

3

a

Ro

D1D̃2

(a − Ro)2
cos(λ + �B − φ̃LM). (69)

At this point, we should note that the above model of the B
ring might be too simplistic, in that it assumes the mass ribbons
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are of constant mass. It is of course possible that the mass density
of the ribbons ρ also varies with longitude

ρ = mr

2π
[1 + μ1 cos(φ − �B) + μ2 cos(2φ − φ̃LM)], (70)

where μ1 and μ2 are fractional mass density variations along the
ribbon. If particles do not collide with one another, then the mass
variations μ1 and μ2 could be derived from the gradients in the
radial variations and orbital parameters. However, in practice,
the outer part of the B ring is very dense, so collisions are very
important. Indeed preliminary investigations show that the local
optical depth of the B ring can vary by over a factor of 2. While
we expect these density variations to have some connection with
the radial positions of the outer edge, at the present moment we
will avoid attempting to estimate μ1 and μ2. Regardless of
the numerical values of these parameters, such mass anomalies
would mean that terms of order μ1d̃2 and μ2d1would also
produce terms with the desired frequency. Following the same
procedures as described above, one can show the disturbing
function for a ring with both radial excursions and mass
anomalies is (ignoring the possibility of phase shifts between
the mass anomalies and the radial excursions)

Rrm
Ring � GσW

3

a

Ro

(
D1D̃2

(a − Ro)2
− μ2

D1

a − Ro

− μ1
D̃2

a − Ro

)

× cos(λ + �B − φ̃LM). (71)

5.3. Numerical Values of the Disturbing Function Terms

Having obtained these two terms, it is worth evaluating their
coefficients so we can make some quantitative comparisons of
their strength.

For RMimas this is relatively easy, since

RMimas = GmM

aM

f (a/aM )e cos(λ + � − 2λMimas), (72)

or, equivalently

RMimas = GmM

a2

a

aM

f (a/aM )(ae) cos(λ + � − 2λMimas). (73)

Given mM � 4 × 1019 kg, and (a/aM )f (a/aM ) � −0.75 for a
2:1 resonance, and assuming a � 118,500 km and ae � 5 km
(appropriate for the Russell Gap), we find

RMimas = −7.1 × 10−4m2/s2
( ae

5 km

) (
118,500 km

a

)2

× cos(λ + � − 2λMimas). (74)

For RRing there are more uncertain terms. First consider-
ing the simpler case of pure radial excursions in the ring
(Equation 69):

Rr
Ring � GσW

3

a

Ro

D1D̃2

(a − Ro)2
cos(λ + �B − φ̃LM). (75)

Again, assume a � 118,500 km for reference. Also, based
on our measurements, we will assume Ro � 117,500 km,
D1 � 20 km, and D̃2 � 60 km. For rough purposes, we will use
a surface mass density of σ � 100 g cm−2and W � 100 km,
though these parameters are less well constrained. Substituting

these numbers into the above expression gives the following
result:

Rr
Ring � 2.7 × 10−6m2/s2 ×

(
σ

100 g cm−2

)(
W

100 km

)

×
(

a

118,500 km

)(
D1

20 km

)(
D̃2

60 km

)(
1000 km

(a − Ro)

)2

× cos(λ + �B − φ̃LM). (76)

Thus, the perturbations from the B ring are about 200 times
weaker than those from the 2:1 Mimas resonance. While this is
a rather large factor, it is not many orders of magnitude. Also
note that the perturbations from the ring could be even larger if
there are significant variations in the mass of the ribbons with
longitude.

5.4. The Pseudo-Three-Body Resonance

To complete the argument that the perturbations from the
B ring and Mimas can act in concert to align the orbit pericenters
in the Cassini Division, we will now demonstrate the existence of
three-body-like resonances involving these objects. First, recall
Equation (44), and realize that the overall goal is to find a term
in d2�/dt2 that is proportional to sin(� − �B + jLt − ϕo). To
do this, we need to express d2�/dt2 in terms of the disturbing
function, which can be done by using the Lagrange planetary
equations.

Assuming the particles in the Cassini Division have no incli-
nation, and keeping only terms to lowest order in eccentricity e,

d�

dt
= 1

na2e

∂R
∂e

+ �̇sec, (77)

where �̇sec is again the precession induced by Saturn’s oblate-
ness, which we will assume here to be a constant at any given
semimajor axis a. This means that

d2�

dt2
= d

dt

(
1

na2e

∂R
∂e

)
. (78)

In this case, we are only interested in the terms RMimas and RRing
derived above, and RRing does not depend on the eccentricity e,
so this equation simplifies to

d2�

dt2
= d

dt

(
1

na2e

∂RMimas

∂e

)
. (79)

Which can be expanded using Kepler’s third law to give

d2�

dt2
= −1

na2e

[
1

e

∂RMimas

∂e

de

dt
+

1

2a

∂RMimas

∂e

da

dt

− d

dt

(
∂RMimas

∂e

) ]
. (80)

Since de/dt and da/dt can be expressed in terms of derivatives
of the disturbing function, the first two terms in this expression
naturally give a product of two disturbing functions, enabling the
term RRing to mix with RMimas to obtain the desired frequency.
However, the third term can also do this since

d

dt

(
∂RMimas

∂e

)
= ∂2RMimas

∂ε∂e

dε

dt
+

∂2RMimas

∂a∂e

da

dt
+ · · · . (81)
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Note that other derivatives are not of interest here because either
they are zero or because they do not lead to terms with the
appropriate frequencies. For example, ∂2RMimas/(∂e)2 = 0, and
any term involving d�/dt cannot give a useful term because
RRing is independent of e. Thus,

d2�

dt2
= −1

na2e

[
1

e

∂RMimas

∂e

de

dt
+

(
1

2a

∂RMimas

∂e
− ∂2RMimas

∂a∂e

)
da

dt

− ∂2RMimas

∂ε∂e

dε

dt

]
. (82)

Now we can use the following Lagrange equations:

da

dt
= 2

na

∂R
∂ε

, (83)

de

dt
= − e

2na2

∂R
∂ε

− 1

na2e

∂R
∂�

, (84)

dε

dt
= − 2

na

∂R
∂a

+
e

2na2

∂R
∂e

. (85)

Note that we want terms involving a product of RMimas and
RRing, so only derivatives of the latter will be of interest here.
Furthermore, since RRing only depends on λ = nt +εand a, only
the first term in each equation will contribute.

Hence, substituting and simplifying

d2�

dt2
= −1

n2a4e

[ (
1

2

∂RMimas

∂e
− a

2

∂2RMimas

∂a∂e

)
∂RRing

∂ε

+ 2a
∂2RMimas

∂ε∂e

∂RRing

∂a

]
. (86)

Notice that since RMimas depends on various powers of a,
∂2RMimas/∂a∂e is of order a−1∂RMimas/∂e, so all the elements
of the first term are of the same order. However, since RRing ∝
(a − Ro)−x , ∂RRing/∂a has terms that are of order (a −
Ro)−1RRing, and since a − Ro is much less than a, this means
the latter term is much larger, so we can approximate

d2�

dt2
� −2a

n2a4e

∂2RMimas

∂ε∂e

∂RRing

∂a
. (87)

Substituting Equations (53) and (69) into this expression (i.e.,
assuming μ1 = μ2 = 0), we get

d2�

dt2
= 2a

n2a4e

[
GmM

aM

f (a/aM ) sin(λ + � − 2λMimas)

]

×
[

2GσW

3

a

Ro

D1D̃2

(a − Ro)3
cos(λ + �B − φ̃LM)

]
.

(88)

Keeping only the desired long-period term, and recalling that
φ̃LM = 2λMimas + 2φ̃L, this becomes

d2�

dt2
= 2

3

n2

e

[
mM

MS

a

aM

f (a/aM )

] [
σWRo

MS

a2

R2
o

aD1D̃2

(a − Ro)3

]

× sin(� − �B + 2φ̃L). (89)

Note that for a 2:1 resonance a/aMf (a/aM ) � −0.75 (see
Table 8.5 in Murray & Dermott 1999), so this equation can be
written as

d2�

dt2
= −f 2

o sin(� − �B + 2φ̃L), (90)

where

f 2
o = 2

3

n2

e

[
mM

MS

a

aM

|f (a/aM )|
][

σWRo

MS

a2

R2
o

aD1D̃2

(a − Ro)3

]
(91)

is a positive quantity that indicates the strength of this resonance.
Recall that compound trigonometric functions like sin(� −

�B + 2φ̃L) = sin(� −�B + 2φL sin(Lt − θL)) can be expressed
as a series of terms of the form sin(� − �B + jLt). We may
therefore expand the right-hand side of Equation (90) into the
series of terms

d2�

dt2
=

∑
j

−f 2
j sin(� − �B + jLt), (92)

where f 2
j = Cjf

2
o measures the strength of the individual

resonances. As shown in Figure 11, Cj will in general be a
decreasing function of j, but for large-amplitude librations Cj
would not be much less than unity for most j in the Cassini
Division.

If we consider the resonant argument ϕj = � − �B + jLt ,
Equation (92) says that there is a term in the equation of motion:

ϕ̈j = −f 2
j sin ϕj . (93)

Since ϕ̈j = d
dϕj

(ϕ̇j
2/2), this means

ϕ̇j
2 = ϕ̇2

o − 4f 2
j sin2(ϕj/2), (94)

where ϕ̇o is the value of ϕ̇j where ϕj = 0. Note that a librating
solution to this equation of motion will only exist if ϕ̇j = 0 for
some value of ϕj . This will only happen if ϕ̇2

o < 4f 2
j . Or, in

other words, when

|�̇o − �̇B − jL| < 2fj , (95)

where �̇o is the apsidal precession rate when ϕ = 0. Now,
the apsidal precession rate in the Cassini Division is dominated
by Saturn’s oblateness. Thus, this resonance will only be able
to confine the pericenter locations over a region in the rings
where the precession rate is within 2fj of �̇B −jL. Inserting the
same numbers used in the previous section into Equation (91),
we find that in the simple case without mass anomalies (and the
amplitude of the m = 2 pattern on the B-ring edge is nearly
constant)

f 2
j � 7 × 10−22/s2Cj

(
5 km

ae

)(
σ

100 g cm−2

) (
W

100 km

)

×
(

D1

20 km

) (
D̃2

60 km

)(
1000 km

a − Ro

)3

, (96)

so 2fj is of order 5 × 10−11/s or 0.◦00025 day−1. Assuming
the precession rates are dominated by Saturn’s oblateness
(so δ�̇/�̇ � (7/2)δa/a), this range in precession rates
corresponds to a range in semimajor axis on the order of a few
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kilometers. These resonances should therefore be able to align
the pericenters of particle orbits over a region in the rings a few
kilometers across, which is comparable to the amplitudes of the
observed eccentric features. This result is encouraging, although
we must point out that this analysis merely demonstrates that
eccentric orbits within a few kilometers of the resonance can
have their pericenters aligned by these resonances. This analysis
does not determine the actual eccentricity of individual particle
orbits near these resonances, which must be the subject of future
work.

6. DISCUSSION OF POTENTIAL FURTHER WORK

The above analysis shows that if the orientation of the B-ring
edge librates at ∼0.◦06 day−1, then the combined gravitational
perturbations from the B ring and Mimas should align the
pericenters of particle orbits at the observed locations of the
eccentric gap edges in the Cassini Division. Furthermore, if
the physical parameters of the B ring are close to the values
assumed above, then particles with aligned orbital pericenters
will extend over a range of semimajor axis comparable to the
observed amplitudes of the eccentric features in the Cassini
Division, which is needed to avoid streamline crossing. Both
of these findings lend support to the notion that the gaps in the
Cassini Division may indeed be generated by pseudo-three-body
resonances involving perturbations from Mimas and the B-ring
edge. At the same time, it is also clear that more work needs
to be done to develop a complete model of how the Cassini-
Division Gaps are formed in this sort of scenario. While such
a complete model is beyond the scope of this paper, we will
describe in this section what we see as productive avenues for
future work toward this goal.

First of all, while the above calculations provide an expla-
nation for why there should be coherent eccentric features at
the observed locations of the inner edges of the gaps in the
Cassini Division, this analysis does not yet provide a physical
explanation of why gaps should form at these locations. We
expect that once the gaps have formed, the relevant resonances
should maintain the eccentric shape of the inner edges by align-
ing the pericenters of the relevant particles’ orbits. Furthermore,
we speculate that the mass anomaly produced by the eccentric
inner edge of each gap may help keep the outer edge from dif-
fusing inwards via a modified shepherding mechanism in which
the periodic radial and tangential gravitational forces from the
eccentric inner edge cause the semimajor axes of the particles
on the gap’s outer edge to migrate outwards. While Rappaport
(1998) determined that the torque from a simple precessing
eccentric ringlet is always negative and is therefore unable to
confine the outer edge of a gap, the perturbations from eccen-
tric edges (which could involve significant mass anomalies as
well as radial excursions) have not yet been thoroughly inves-
tigated. Regardless of the specific shepherding mechanism, any
successful model of the gap outer edges must be consistent with
the observed near-circularity of the outer edges.

While further analytical calculations could clarify which
torques might be able to hold open these gaps, numerical
studies may be needed to determine how the eccentric inner
edges form in the first place. The above calculations suggest
that the pericenters of eccentric orbits will become aligned, but
they do not indicate whether there is any term in the equations
of motion that would tend to generate eccentricities at these
locations. While it is possible that such terms are produced
by some combination of the various perturbations described
above, it is also possible that the eccentricities are generated by

an instability in the Cassini Division itself. If particle collisions
produce small eccentricities, which are in turn aligned by the
above resonance, this will produce small anomalies in the local
gravitational field that could then drive larger eccentricities in
the region, which will also become aligned, until an eccentric
edge is formed. If we can better understand how these edges
form, we may be able to convert the observed amplitudes of the
radial excursions into constraints on the physical characteristics
of the B ring such as its mass density.

Whereas the amplitude of the edges’ radial excursions should
be related to the physical properties of the B-ring edge, the
orientations of the m = 1 patterns should be related simply to
the kinematics of the B-ring edge. In the idealized model given
above, the aligned pericenter locations for the different edges
are determined by the movements of the different components
in the B-ring edge, and we expect this to be the case in the
actual Cassini Division as well. However, the actual pericenter
locations of the eccentric Cassini-Division features could be
affected by finite mass anomalies in the outer B ring, as well as
variations in the amplitude of the m = 2 pattern in the B-ring
edge. Given that these aspects of the B-ring edge are not yet well
modeled, we cannot yet predict the absolute orientation of the
Cassini-Division edges at any given time. In fact, if one accepts
that the eccentric Cassini-Division edges are produced by the
sorts of resonances described above, one could even use the
observed amplitudes and orientations of the different eccentric
edges to place constraints on the time variability in the B-ring’s
edge.

More generally, the above model was developed assuming the
m = 2 pattern in the B-ring edge librates with a frequency of
around 0.◦06 day−1, which matches the spacing in the observed
pattern speeds of the eccentric features in the Cassini Division.
More work needs to be done to confirm that this particular
solution is indeed the correct one. Beyond considering more
data (e.g., from Cassini images, J. N. Spitale & C. C. Porco,
2010, in preparation), more sophisticated theoretical modeling
of the B-ring edge may be able to better constrain the likely
solutions. Even if one of the other possible solutions for the
motion of the m = 2 pattern turns out to be correct, a variant of
the above model may still be able to produce the observed pattern
in the locations of the Cassini-Division features. For example, if
the m = 2 pattern is actually circulating instead of librating,
then its amplitude and drift rate will periodically change as
it drifts relative to Mimas, which should produce a series of
resonant terms in the equations analogous to those derived
above.

Finally, a full understanding of the Cassini-Division Gaps
will also need to encompass the non-circular ringlets in the
Huygens, Herschel, and Laplace Gaps. The Huygens Ringlet,
being the most eccentric feature in the Cassini Division, may
turn out to be the limiting case of an eccentric edge. The origin
of the Laplace Ringlet may be connected with the second-order
Pandora resonance on its inner edge (Colwell et al. 2009). Even
so, the Herschel Ringlet remains largely mysterious.

7. CONCLUSIONS

1. The outer edges of five of the eight named gaps in the
Cassini Division (that is, all the gaps that do not contain
dense ringlets) are circular to within 1 km.

2. The inner edges of six of the eight gaps in the Cassini
Division (that is, all of the gap inner edges that do not lie
near first-order Lindblad resonances with known satellites)
are eccentric, with m = 1 radial variations that drift around
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the planet at rates close to the expected apsidal precession
rates.

3. The radial excursions in the inner edge of the Barnard Gap,
which lies close to the 5:4 ILR with Prometheus, do appear
to have an m = 5 component tied to that moon.

4. The radial excursions in the outer edge of the B ring, which
lies close to the 2:1 ILR with Mimas, have an m = 2
component. However, the amplitude of the pattern and its
orientation relative to Mimas change with time. While the
available data do not yet determine a unique solution for
the motion of the m = 2 pattern, one possibility is that it
librates relative to Mimas with a frequency ∼0.◦06 day−1

and an amplitude of ∼50◦ in longitude or a frequency of
0.12 deg/day and an amplitude of ∼30 degrees.

5. In addition to the m = 2 pattern, the B-ring edge also
appears to have an m = 1 component that drifts around the
planet at a rate close to the expected apsidal precession rate
at the B-ring edge of 5.◦06 day−1.

6. The pattern speeds of the eccentric features in the Cassini
Division, including the Huygens Ringlet and the m = 1
component of the B-ring edge, appear to form a regular
series given by Ωp = �̇B−jL, where j = 0, 1, 2, 3, . . . , 7,
�̇B � 5.◦06 day−1 is the apsidal precession rate at the
B-ring edge, and L � 0.◦06 day−1 is a likely value for the
libration frequency of the m = 2 component in the B-ring
edge.

7. By combining gravitational perturbations from both com-
ponents of the B-ring edge with the perturbations from the
2:1 Mimas ILR, one can find terms in the equations of par-
ticle motion of the form �̈ ∝ sin(� − �B + jLt). Such
terms could act to align the pericenters of particle orbits
at the locations of the eccentric inner edges of each of the
gaps, and therefore could explain the locations of the gaps
in the Cassini Division.
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