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a b s t r a c t

The so-called ‘‘Charming Ringlet” (R/2006 S3) is a low-optical-depth, dusty ringlet located in the Laplace
gap in the Cassini Division, roughly 119,940 km from Saturn center. This ringlet is particularly interesting
because its radial position varies systematically with longitude relative to the Sun in such a way that the
ringlet’s geometric center appears to be displaced away from Saturn’s center in a direction roughly
toward the Sun. In other words, the ringlet is always found at greater distances from the planet’s center
at longitudes near the sub-solar longitude than it is at longitudes near Saturn’s shadow. This ‘‘heliotropic”
behavior indicates that the dynamics of the particles in this ring are being influenced by solar radiation
pressure. In order to investigate this phenomenon, which has been predicted theoretically but not
observed this clearly, we analyze multiple image sequences of this ringlet obtained by the Cassini space-
craft in order to constrain its shape and orientation. These data can be fit reasonably well with a model in
which both the eccentricity and the inclination of the ringlet have ‘‘forced” components (that maintain a
fixed orientation relative to the Sun) as well as ‘‘free” components (that drift around the planet at steady
rates determined by Saturn’s oblateness). The best-fit value for the eccentricity forced by the Sun is
0.000142 ± 0.000004, assuming this component of the eccentricity has its pericenter perfectly anti-
aligned with the Sun. These data also place an upper limit on a forced inclination of 0.0007�. Assuming
the forced inclination is zero and the forced eccentricity vector is aligned with the anti-solar direction,
the best-fit values for the free components of the eccentricity and inclination are 0.000066 ± 0.000003
and 0.0014 ± 0.0001�, respectively. While the magnitude of the forced eccentricity is roughly consistent
with theoretical expectations for radiation pressure acting on 10-to-100-lm-wide icy grains, the exis-
tence of significant free eccentricities and inclinations poses a significant challenge for models of low-
optical-depth dusty rings.

� 2010 Elsevier Inc. All rights reserved.

1. Introduction

Images taken by the cameras onboard the Cassini spacecraft
have revealed that several of the wider gaps in Saturn’s main rings
contain low-optical-depth, dusty ringlets (Porco et al., 2005). One
of these ringlets is located in the 200-km wide space in the outer
Cassini Division between the inner edges of the Laplace gap and
the Laplace ringlet, 119,940 km from Saturn’s center. This ringlet
has a peak normal optical depth of around 10�3 and its photomet-
ric properties (such as a dramatic increase in brightness at high
phase angles) indicate that it is composed primarily of small dust
grains less than 100 lm across (Horányi et al., 2009). While this
feature is officially designated R/2006 S3 (Porco, 2006), it is unof-
ficially called the ‘‘Charming Ringlet” by various Cassini scientists,
and we will use that name here. Regardless of its name, this ringlet

is of special interest because its radial position varies systemati-
cally with longitude relative to the Sun in such a way that the ring-
let’s geometric center appears to be displaced away from Saturn’s
center towards the Sun. In other words, this ringlet always appears
some tens of kilometers further from the planet’s center at longi-
tudes near the sub-solar longitude than it is at longitudes near Sat-
urn’s shadow (see Fig. 1). This ‘‘heliotropic” behavior suggests that
non-gravitational forces such as solar radiation pressure are affect-
ing the particles’ orbital dynamics, as predicted by various theoret-
ical models (e.g. Horányi and Burns, 1991; Hamilton, 1993).

While other dusty ringlets, like those in the Encke Gap, may also
show heliotropic behavior (Hedman et al., 2007), the Charming
Ringlet provides the best opportunity to begin investigations of
this phenomenon. Unlike the Encke Gap ringlets, the Charming
Ringlet does not appear to contain bright clumps or noticeable
short-wavelength ‘‘kinks” in its radial position. The absence of such
features makes the global shape of the ringlet easier to observe
and quantify. Furthermore, the radial positions of the edges of
the Laplace gap and ringlet only vary by a few kilometers
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(Hedman et al., 2010), so this gap is a much simpler environment
than other gaps (like the Huygens gap) where the radial locations
of the edges can vary by tens of kilometers. Finally, the observa-
tions of the Charming Ringlet are more extensive than those of
some other dusty ringlets.

In this paper, we build upon the preliminary work reported in
Hedman et al. (2007) and Burt et al. (2008) in order to develop a
model for the three-dimensional shape and orientation of the
Charming Ringlet and to explore what such a model implies about
the particle dynamics in this ring. First, we provide a brief sum-
mary of the data that will be used in this analysis and then fit
the different data sets to models of an eccentric, inclined ringlet.
These fits indicate that the shape and orientation of the ringlet
change significantly over time. Next, we review the theoretical pre-
dictions for how particle orbits should behave under the influence
of solar radiation pressure. Based on this theory, we develop a glo-
bal model that includes both forced and free components in the
ringlet’s eccentricity and inclination; these can reproduce the
observations reasonably well. Finally, we discuss the implications
of such a model for the dynamics of this ringlet.

2. Observations and data reduction

All the images used in this analysis were obtained by the Nar-
row-Angle Camera (NAC) of the Imaging Science Subsystem (ISS)

onboard the Cassini spacecraft (Porco et al., 2004). While ISS has
obtained many images of the Charming Ringlet over the course
of the Cassini mission, we will focus here exclusively on a limited
sub-set of these data from a few imaging sequences. Each of these
sequences was obtained over a relatively short period of time and
covers a sufficient range of longitudes or viewing geometries that it
can provide useful constraints on the shape and orientation of the
ring. These data sets are therefore particularly useful for develop-
ing a shape model for this ring. In principle, once a rough model
has been established, additional data can be used to refine the
model parameters and test the model. However, such an analysis
is beyond the scope of this paper and therefore will be the subject
of future work.

Two different types of observation sequences will be utilized in
the present study, ‘‘longitudinal scans” and ‘‘elevation scans”. Each
longitudinal scan consists of a series of images of the Cassini Divi-
sion, with different images centered at different inertial longitudes
in the rings. These scans provide maps of the apparent radial posi-
tion of the Charming Ringlet as a function of longitude relative to
the Sun. The seven such scans used in this analysis (listed in
Table 1a) are all the scans obtained prior to 2009 that contain
the Charming Ringlet, have sufficient radial resolution to clearly re-
solve the ringlet and also cover a sufficiently broad range of longi-
tudes (>140�) to provide a reliable measurement of both the
ringlet’s eccentricity and inclination (see below).

Fig. 1. Sample images of the Charming Ringlet in the Cassini Division obtained by the Narrow-Angle Camera onboard the Cassini spacecraft. The top two images were
obtained on day 343 of 2008 as part of the RETARMRMP observation in Orbit 96, when the sub-solar longitude was 217� (see Table 1). The two images have been separately
cropped, rotated and stretched to facilitate comparisons. In both images, radius in the rings increases towards to upper right. The arrows at the top of the image point to the
Charming Ringlet in the Laplace gap. Note that in the left-hand image (N1607440846, observed longitude = 5�) of a region near Saturn’s shadow, the ringlet is closer to the
inner edge of the gap, while in the right-hand image (N1609443806, observed longitude = 192�) of a region near to the sub-solar longitude, the ringlet is closer to the outer
edge of the gap. The bottom image (N1547759879) was obtained on day 17 of 2007 as part of the RPXMOVIE observation in Orbit 37, when the ring-opening angle was only
�0.36�. The image has been rotated so that Saturn’s north pole points upwards. Ring radius increases from right to left, and the arrow points to the Charming Ringlet in the
Laplace gap. Note that the ringlet appears slightly displaced upwards in this image relative to the edges of the gap (the upper arm of the ring disappears into the glare of the
edge of the gap faster than the lower arm). This suggests that this ringlet is inclined.
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By contrast, elevation scans consist of a series of images of the
ring ansa taken over a period of time when the spacecraft passed
through the ringplane, yielding observations covering a range of
ring-opening angles B around zero. Such images provide limited
information about the ringlet’s eccentricity, however, observable
shifts in the ringlet’s apparent position relative to other ring fea-
tures provide evidence that the ringlet is inclined (see Fig. 1). These
observations therefore can furnish additional constraints on the
ringlet’s vertical structure. Thus far, only one image sequence (gi-
ven in Table 1b) has sufficient resolution and elevation-angle cov-
erage to yield useful constraints on the ringlet’s orientation.

All of these images were processed using the standard CISSCAL
calibration routines (version 3.6) (Porco et al., 2004) that remove
backgrounds, flat-field the images, and convert the raw data num-
bers into I/F (a standardized measure of reflectance where I is the
intensity of the scattered radiation while pF is the solar flux at Sat-
urn). We then extracted measurements of the ringlet’s radial posi-
tion with the following procedures.

First, all the relevant images were geometrically navigated
employing the appropriate SPICE kernels to establish the position
and approximate pointing of the spacecraft. The pointing was re-
fined using the outer edge of the Jeffreys Gap (called OEG 15 in
French et al. (1993), assumed to be circular and lie at
118,968 km) as a fiducial feature. Recent Cassini occultation mea-
surements demonstrate that this feature is circular to better than
1 km (Hedman et al., 2010; French et al., 2010), making it a reliable
reference point in the rings.

Once each image was navigated, the brightness data were con-
verted into radial brightness profiles by averaging the brightness at
each radius over a range of longitudes. For the longitudinal scans,
each image covered a sufficiently small range of longitudes that
variations in the radial position of the ringlet within an image
could be ignored. Consequently, a single radial scan was derived
from each image by averaging the data over all observed longi-
tudes. By contrast, for the elevation scans, variations in the radial
position of the ringlet were apparent within individual images. A
series of 8–20 radial brightness profiles was therefore extracted
from each image, with each profile being the average brightness
of the ring in a range of longitudes between 0.5� and 1.0� wide.
Note that for all these profiles, the radius scale corresponds to
the projected position of any given feature onto the ringplane.

The Charming Ringlet could be detected as a brightness peak
within the Laplace gap in all of these radial scans. The radial posi-
tion of the ringlet was estimated from each scan by fitting the ring-
let’s brightness profile to a Gaussian. For the high-phase
observations in Orbit 30, the ringlet was sufficiently bright that
the Gaussian could be fit directly to the radial profile. For the other
(lower-phase) profiles, however, the ringlet was considerably fain-
ter and the brightness variations within the gap due to various
instrumental effects could not be ignored. In these situations, a
background light profile for the gap was computed using the data
outside the ringlet (the edges of the ringlet were determined based
on where the slope of the brightness profile around the ringlet was
closest to zero). This background was interpolated into the region
under the ringlet (using a spline interpolation of the profile
smoothed over three radial bins) and a Gaussian was fit to the
background-subtracted ringlet profile. Fig. 2 shows examples of
the raw profile, the interpolated background and the background
plus the fitted Gaussian, demonstrating that this procedure yields
sensible results even when the ringlet is rather subtle.

The above process yielded a series of measurements of the
apparent radial position of the ringlet as a function of longitude.
Fig. 3 shows these data for the seven different longitudinal scans.
Note that in all cases the ringlet is found furthest from the planet
at a point near to the sub-solar longitude. This is not just a coinci-
dence of when the ringlet was observed, but is instead the evi-

dence for the ‘‘heliotropic” character of this ringlet. However, we
can also observe that the apparent shape of the ringlet varies sig-
nificantly among the different observations. This implies that the
ringlet does not simply maintain a fixed orientation relative to
the Sun, but instead has a more complex and time-variable shape.

For the elevation scan, the radial position of the ringlet versus
longitude from each image can be fit to a line. Fig. 4 shows the
slopes of the line derived from these images as a function of
ring-opening angle B. The slope changes dramatically as the space-
craft crosses the ringplane. This strongly suggests that this portion
of the ring is vertically displaced from the ringplane (Burt et al.,
2008), and means that we will need a three-dimensional model
to fully describe the shape of this ringlet.

3. Ringlet shape estimates from individual observations

The above evidence for time-variable and three-dimensional
structure obviously complicates our efforts to quantify the Charm-
ing Ringlet’s shape. Fortunately, it turns out that the data from
individual scans can be reasonably well fit by simple models of
eccentric, inclined ringlets. By fitting each scan to such a model,
we can further reduce the data to a small number of shape/orbital
parameters, which may change with time.

Each scan consists of measurements of the apparent radial posi-
tion of the ringlet projected on the ringplane ~r versus longitude rel-
ative to the Sun k � k� = k

0
. Assuming the ringlet can have both an

inclination and an eccentricity, the radial and vertical positions of
the ringlet versus longitude are for small eccentricities and inclina-
tions well approximated by:

r ¼ a� ae cosðk0 �-0Þ; ð1Þ
z ¼ ai sinðk0 �X0Þ; ð2Þ

where a, e and i are the semi-major axis, eccentricity and inclination
of the ringlet, and -

0
and X

0
are the longitudes of pericenter and

ascending node relative to the Sun.
If z is nonzero, the apparent position of the ringlet will be dis-

placed when it is projected onto the ringplane. Assuming the ob-
server is sufficiently far from the ring, this displacement is simply

d~r ¼ � z
tan B

cos k0 � k0c
� �

; ð3Þ

where B is the ring-opening angle to the observing spacecraft and k0c
is the longitude of the spacecraft relative to the Sun. Substituting in
the above value for z, we find:

d~r ¼ �ai
2 tan B

sin 2k0 �X0 � k0c
� �

� sin X0 � k0c
� �� �

: ð4Þ

The apparent radial position of such a ringlet is therefore:

~r ¼ r þ d~r

¼ aþ ai
2 tan B

sin X0 � k0c
� �

� ae cosðk0 �-0Þ

� ai
2 tan B

sin 2k0 �X0 � k0c
� �

: ð5Þ

Note that this expression contains two terms that depend on
the longitude k

0
: one proportional to e and one proportional to i.

Since these two terms depend on longitude in different ways, it
should be possible to determine both the eccentricity and inclina-
tion from any observation sequence that covers a sufficiently broad
range of longitudes. Also, since the terms involving i depend on the
ring-opening angle B while those involving e do not, the effects of
inclination and eccentricity on the apparent position of the ringlet
should also be separable when the observation sequences cover a
sufficient range in B.
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3.1. Elevation scan

Over the limited range of longitudes observed in each image of
the elevation scan, the apparent-radius-versus-longitude curve is
well fit by a straight line. Fig. 4 shows the slope of this line as a
function of ring-opening angle, with error bars derived from the
linear fit.

Given the above expression Eq. (5) for the apparent radial po-
sition of the ring versus longitude, these measured slopes can be
identified with the quantity:

m ¼ d~r
dk0
¼ ae sinðk0 �-0Þ � ai

tan B
cos 2k0 �X0 � k0c

� �
: ð6Þ

In other words, m = C � z/tanB, where C is the constant back-
ground slope due to the eccentricity of the ringlet and z is its ver-
tical displacement at the observed longitude. Fitting the data from
the elevation scan to an equation of this form, we find that at the
observed longitude and time:

z ¼ ai cosð2k0 �X0 � k0cÞ ¼ 2:54� 0:02 km; ð7Þ
C ¼ ae sinðk0 �-0Þ ¼ 19:5� 0:2 km: ð8Þ

The curve plotted in Fig. 4 shows this best-fit function, which
reproduces the trends in the data rather well. However, the v2 of
this fit is 206 for 32 degrees of freedom, indicating that the errors
on the individual slope measurements have been underestimated.
Thus the above uncertainties on z and C should probably be in-
creased by a factor of 2.5. Note that while these data alone cannot
provide exact estimates on eccentricity and inclination, we can
establish that ai is at least 2.5 km and ae is at least 19 km.

3.2. Longitudinal scans

Fig. 3 shows the estimated position of the Charming Ringlet
versus longitude relative to the Sun for each of the seven longitu-
dinal scans. Each of these data sets has been fit to a function of the
form (cf. Eq. (5))

~r ¼ r0 þ r1 cosðk0 � /1Þ þ r2 cosð2k0 � /2Þ: ð9Þ

The best-fit solutions, shown as the dark gray curves in Fig. 3,
satisfactorily reproduce the trends seen in the real data. We can
therefore use the parameters of this fit and Eq. (5) to derive the
ring-shape parameters a, e, i, -

0
and X

0
(see Table 2). The error

bars on the orbital parameters are computed using the rms resid-
uals from the fit to estimate the error bars on each data point.
These residuals are always less than 1 km, or about a factor of
10 better than the image resolution (see Tables 1 and 2), and
probably reflect small errors and uncertainties in the fitted loca-
tions of the fiducial edge and ringlet center. The small scatter in
these data therefore confirms the stability of the pointing and fit-
ting algorithms within each of these sequences.

Let us consider each of these different parameters in turn,
starting with the semi-major axis a. No formal error bars on this
parameter are given here because this parameter is the one most
likely to be affected by systematic pointing uncertainties between
the different scans caused by differences in the appearance and
contrast of the fiducial edge. Nevertheless, the scatter in these
values is still only a few kilometers and well below the resolu-
tions of the images (compare to Table 1), providing further confir-
mation that the fitting procedures employed here are robust. Note
that all the observations give a values within a few kilometers of
119,940 km, which is very close to exactly halfway between the
inner edge of the Laplace gap at 119,845 km and the inner edge
of the Laplace ringlet at 120,036 km (Hedman et al., 2010).

Turning to the eccentricity and pericenter, we may note that
while the pericenter is always around 180� from the Sun, bothTa
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the pericenter location and the eccentricity vary significantly from
one observation to another. The values of ae range from 9.5 km to
25 km, and the pericenter locations deviate from the anti-Sun
direction by up to 35�. The ringlet therefore does not maintain a
perfectly fixed orientation relative to the Sun.

Finally, consider the inclination and the node estimates. Six of
the seven estimates for ai fall in a relatively narrow range of 2.3–
3.2 km. The one outlier is the 5.1 km estimate from the Orbit 96
data. However, this observation was made while the spacecraft
was well above the ringplane, and the ring-opening angle changed
more over the course of this observation than in any of the others
(see Table 1). Thus this measurement of the inclination may be re-
garded as suspect. Looking at the remaining data, the relatively
small scatter in ai may imply that the inclination of this ringlet
does not vary much with time. However, we also find that the node
positions are very widely scattered. This implies that this ringlet’s
line of nodes does not have a fixed orientation relative to the Sun.

4. Solar radiation pressure and models of heliotropic orbits

The above data show that the ringlet’s pericenter is on average
anti-aligned with the Sun, suggesting that a force like solar radia-
tion pressure is influencing the shape and orientation of this ring-
let. However, the eccentricity and alignment of this ringlet also
vary significantly over time, and this indicates that the ringlet’s
dynamics are more complex than we might have expected. In order
to facilitate the interpretation of these data, we will review how
solar radiation pressure affects orbital parameters. This analysis
roughly follows the treatment given in Horányi and Burns (1991)
for a particle in orbit around Jupiter, but is generalized to account
for the possibility that the Sun may be located significantly above
or below the ringplane. Also, we will restrict ourselves to nearly
circular orbits, thereby obtaining simpler expressions than those
given by Hamilton (1993). Note that throughout this analysis we
assume the dynamics of the particles is determined entirely by so-
lar radiation pressure and Saturn’s gravity (other non-gravitational
forces such as plasma drag are neglected).

We begin with the standard perturbation equations for the
semi-major axis a, eccentricity e, inclination i, the longitude of

periapse - and the longitude of node X of a particle orbit (see
e.g. Burns, 1976). Since we are interested in orbits with small
eccentricities and inclinations, these expressions can be approxi-
mated as

da
dt
¼ 2an

Fr

FG
e sin f þ Ft

FG
ð1þ e cos f Þ

� �
; ð10Þ

de
dt
¼ n

Fr

FG
sin f þ 2

Ft

FG
cos f

� �
; ð11Þ

d-
dt
¼ n

e
� Fr

FG
cos f þ 2

Ft

FG
sin f

� �
; ð12Þ

di
dt
¼ n

Fz

FG
cosð-�Xþ f Þ

� �
; ð13Þ

dX
dt
¼ n

sin i
Fz

FG
sinð-�Xþ f Þ

� �
; ð14Þ

where n is the particle’s mean motion, FG = GMmg/a2 is approxi-
mately the force of Saturn’s gravity on a particle with mass mg

(neglecting the effects of Saturn’s finite oblateness), f is the parti-
cle’s true anomaly and Fr, Ft and Fz are the radial, azimuthal and nor-
mal (to the orbit plane in the direction of orbital angular
momentum) components of the perturbing force, respectively.

Say the Sun is located at an elevation angle B� above the rings
and a longitude k� in some inertial coordinate system. Then the
components of the solar radiation pressure force F� at a specified
longitude k in the ring are given by:

Fz ¼ �F� sin B�; ð15Þ
Fr ¼ �F� cos B� cosðk� k�Þ; ð16Þ
Ft ¼ þF� cos B� sinðk� k�Þ: ð17Þ

Substituting these expressions into the equations of motion,
and recognizing that f = k �-, we obtain

da
dt
¼ 2an

F� cos B�
FG

½e sinð-� k�Þ þ sinðk� k�Þ�; ð18Þ

de
dt
¼ n

F� cos B�
2FG

½3 sinð-� k�Þ þ sinð2k�-� k�Þ�; ð19Þ

Fig. 2. Examples of the profile fitting procedures described in the text. In each plot, the data points shows the brightness profile across the Laplace gap, including the
Charming Ringlet. The data are given in terms of ‘Normal I/F0 , which is the observed I/F multiplied by the sine of the ring-opening angle. The dark gray curve shows the fit
background profile, while the light gray curve shows this background plus the best-fit Gaussian profile for the ringlet. Note the example on the right is among the most
extreme in terms of the subtleness of the ring signal, and even here the fit is very good. Most of the fits used in this analysis are more like the example on the left.
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d-
dt
¼ n

e
F� cos B�

2FG
½3 cosð-� k�Þ � cosð2k�-� k�Þ�; ð20Þ

di
dt
¼ �n

F� sin B�
FG

cosðk�XÞ; ð21Þ

dX
dt
¼ � n

sin i
F� sin B�

FG
sinðk�XÞ: ð22Þ

For small perturbations, we expect that -, X, e, i and k� will
change much more slowly than k does. Thus, to obtain the long-
term secular evolution of the orbital elements, we may average
these expression over a single orbit. However, in doing this, we

must take care to account for Saturn’s shadow, which blocks the
light from the Sun during a fraction of the particle’s orbit �. The
appropriate orbit-averaged equations of motion are:

da
dt

� 	
¼ nae 2dð�Þ F� cos B�

FG

� �
sinð-� k�Þ; ð23Þ

de
dt

� 	
¼ n

3
2

f ð�Þ F� cos B�
FG

� �
sinð-� k�Þ; ð24Þ

d-
dt

� 	
¼ n

e
3
2

f ð�Þ F� cos B�
FG

� �
cosð-� k�Þ; ð25Þ

di
dt

� 	
¼ �n gð�Þ F� sin B�

FG

� �
cosðX� k�Þ; ð26Þ

dX
dt

� 	
¼ n

sin i
gð�Þ F� sin B�

FG

� �
sinðX� k�Þ; ð27Þ

Fig. 3. The apparent radius of the Charming Ringlet (projected onto the ringplane) as a function of longitude relative to the Sun, derived from the seven longitudinal scans.
The observations are shown as crosses. The dark gray curve shows the best-fit model to each data set with the parameters listed on each plot (compare with Eq. (5)). The light
gray curve is the same model with the term /sin(2k) removed to illustrate the importance of this term to the overall fit.
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where d(�) = 1 � �, f(�) = 1 � � + sin(2p�)/6p and g(�) = sin(p�)/p
(see Appendix A).

For an oblate planet like Saturn, these equations of motion are
incomplete because they do not take into account the steady pre-
cession in the pericenter and node caused by the planet’s finite
oblateness, which augments the motion of - and X. The full equa-
tions of motion are therefore:

da
dt

� 	
¼ nae 2dð�Þ F� cos B�

FG

� �
sinð-� k�Þ; ð28Þ

de
dt

� 	
¼ n

3
2

f ð�Þ F� cos B�
FG

� �
sinð-� k�Þ; ð29Þ

d-
dt

� 	
¼ n

e
3
2

f ð�Þ F� cos B�
FG

� �
cosð-� k�Þ þ _-o; ð30Þ

di
dt

� 	
¼ �n gð�Þ F� sin B�

FG

� �
cosðX� k�Þ; ð31Þ

dX
dt

� 	
¼ n

sin i
gð�Þ F� sin B�

FG

� �
sinðX� k�Þ þ _Xo; ð32Þ

where _-o and _Xo are pericenter-precession and nodal-regression
rates due to Saturn’s oblateness.

Finally, we can simplify these expressions by replacing the iner-
tial longitudes - and X with longitudes measured relative to the
Sun, -

0
= - � k� and X

0
= X � k�:

da
dt

� 	
¼ nae 2dð�Þ F� cos B�

FG

� �
sin -0; ð33Þ

de
dt

� 	
¼ n

3
2

f ð�Þ F� cos B�
FG

� �
sin -0; ð34Þ

d-0

dt

� 	
¼ n

e
3
2

f ð�Þ F� cos B�
FG

� �
cos-0 þ _-0o; ð35Þ

di
dt

� 	
¼ �n gð�Þ F� sin B�

FG

� �
cos X0; ð36Þ

dX0

dt

� 	
¼ n

sin i
gð�Þ F� sin B�

FG

� �
sin X0 þ _X0o; ð37Þ

where _-0o ¼ _-o � _k� and _X0o ¼ _Xo � _k� will be referred to here as the
‘‘modified” pericenter-precession and nodal-regression rates,
respectively.

Assuming that B� changes sufficiently slowly, then for any
semi-major axis a there is a unique steady-state solution to these
equations where hda

dti ¼ hde
dti ¼ hd-

0

dt i ¼ hdi
dti ¼ hdX0

dt i ¼ 0. This steady-
state orbital solution has the following orbital parameters (assum-
ing sin i ’ i):

ef ¼
n
_-0o

3
2

f ð�Þ F�
FG

cos B�

� �
; ð38Þ

-f ¼ k� þ p; ð39Þ

if ¼
n

j _X0oj
gð�Þ F�

FG
sin jB�j

� �
; ð40Þ

Xf ¼ k� þ
p
2

B�
jB�j

: ð41Þ

This orbit has a finite eccentricity ef with the pericenter anti-
aligned with the Sun, so that the apoapse of the orbit points to-
wards the Sun. This is grossly consistent with the observed helio-
tropic behavior of the Charming Ringlet shown in Figs. 3 and 4.
Furthermore, if B� is nonzero, then this orbit also has a finite incli-
nation, and the ascending node is located ±90� from the sub-solar
longitude, depending on whether the Sun is north or south of the
ringplane. The orbit will therefore be inclined so that it is on the
opposite side of the equator plane as the Sun at longitudes near lo-
cal noon.

However, this steady-state solution is a special case. More gen-
eral solutions to the equation of motion can be most clearly de-
scribed using the variables (Horányi and Burns, 1991, see also
Murray and Dermott, 1999, Eqs. (7.18)–(7.19)):

h ¼ e cosð-� k�Þ ¼ e cos-0; ð42Þ
k ¼ e sinð-� k�Þ ¼ e sin-0; ð43Þ
p ¼ i cosðX� k�Þ ¼ i cos X0; ð44Þ
q ¼ i sinðX� k�Þ ¼ i sin X0: ð45Þ

In terms of these variables, the above equations of motion re-
duce to:

da
dt

� 	
¼ 4dð�Þ

3f ð�Þ aef _-0ok; ð46Þ

dh
dt

� 	
¼ � _-0ok; ð47Þ

dk
dt

� 	
¼ _-0oðhþ ef Þ; ð48Þ

dp
dt

� 	
¼ � _X0o q� if

B�
jB�j


 �
; ð49Þ

dq
dt

� 	
¼ _X0op; ð50Þ

where ef and if are the steady-state (forced) eccentricity and inclina-
tion derived above. While both these parameters depend on the
semi-major axis a via the mean-motion n, Eq. (46) demonstrates

Fig. 4. The slope in the apparent-radius-versus-longitude, plotted against ring-
opening angle B to the spacecraft, as derived from the single elevation scan. The
curve is the best-fitting model with the parameters shown (compare with Eq. (6)).

Table 2
Ring shape parameters derived from the longitudinal scans.

Orbit/obs. sequence rmsa (km) dab (km) ae (km) - � k� (deg) ai (km) X � k� (deg)

030/AZDKMRHP001/ 0.7 5.8 24.92 ± 0.26 163.9 ± 0.7 2.27 ± 0.34 325.4 ± 6.4
042/RETMDRESA001/ 0.9 2.8 23.42 ± 0.52 197.8 ± 0.9 2.63 ± 0.29 195.0 ± 9.7
070/RETMDRESA001/ 0.9 �0.4 9.42 ± 0.61 174.8 ± 2.9 3.21 ± 0.35 14.6 ± 5.3
071/PAZSCN002/ 0.2 �1.7 12.59 ± 0.95 146.5 ± 1.3 3.01 ± 0.51 10.9 ± 3.6
082/RETARMRLP001/ 0.3 �1.1 12.88 ± 0.08 151.6 ± 0.3 3.03 ± 0.09 352.9 ± 2.0
092/RETARMRLF001/ 0.2 �0.6 12.59 ± 0.06 155.2 ± 0.2 2.75 ± 0.09 349.3 ± 2.5
096/RETARMRMP001/ 0.2 �1.6 24.55 ± 0.08 184.8 ± 0.1 5.08 ± 0.24 217.3 ± 2.8

a rms residuals of the data after the fit.
b a – 119,940 km.
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that the fractional variations in the semi-major axis are Oðe2Þ and
can therefore be neglected for the nearly circular orbits of interest
here. Thus for the rest of this analysis ef and if will be assumed to
be constants. In that case [h,k] and [p,q] satisfy two pairs of sepa-
rately coupled harmonic-oscillator equations, so the trajectories
traced out by the above equations form circles in [h,k] and [p,q]
space (Horányi and Burns, 1991). The centers of these circles are gi-
ven by the steady-state solutions, and the orbit evolves around the
circles at rates given by the modified precession rates _-0o and _X0o. As
the orbit evolves along these paths, if ef and if are nonzero, the or-
bit’s total eccentricity and inclination will change periodically with
periods of 2p= _-0o and 2p= _X0o, respectively. In general, the various
orbital parameters can be described as the vector sums in [h,k]
and [p,q] space of two components: a constant, ‘‘forced” component
and a time-variable, or ‘‘free” component. The evolution of such an
orbit is specified by 10 parameters (see Fig. 5):

� ef and if, the so-called forced eccentricity and forced inclination,
whose values should be determined by Saturn’s gravity and the
in-plane and normal components of the solar radiation
pressure.
� -0f ¼ -f � k� and X0f ¼ Xf � k�, which specify the orientation of

the orbit relative to the Sun. Given the above analysis, we
expect -0f ¼ p and X0f ¼ �p=2.
� el and il, the so-called free eccentricity and free inclination.

These are the radii of the circles traced out by the orbits in
[h,k] and [p,q] space, respectively. These parameters can in
principle have any non-negative value, and are set by the initial
conditions.
� -0l and X0l, the pericenter and node (relative to the Sun) of the

free components of the eccentricity and inclination at some
epoch time. These parameters are initial conditions and can in
principle have any value between 0 and 2p.
� _-0l and _X0l, which specify how fast the free components of the

eccentricity and inclination move around the fixed points. These
parameters should equal the modified precession and regres-
sion rates _-0o and _X0o, which are determined by the oblateness
of the planet and the motion of the Sun.

At this point, it is useful to examine heuristically the evolution
of such orbits, to clarify the physical processes involved. In the case
where the eccentricity equals ef and has its pericenter anti-aligned
with the Sun, the orbit can be regarded as a circular path that is
displaced by a distance aef from Saturn’s center. In this particular
configuration, the orbit-averaged torque on the particle from solar
radiation pressure balances that from the central planet, so the or-
bit does not evolve. In other configurations, these torques will not
balance and the eccentricity and pericenter will change over time.
For example, imagine that the orbit starts off with a small eccen-
tricity ei < ef and the pericenter located +90� ahead of the sub-solar
longitude. At this time, the particle is heading away from the Sun at
pericenter and is approaching the Sun at apocenter. The solar radi-
ation pressure therefore causes the particle to accelerate in the
direction of orbital motion when it is at pericenter and to deceler-
ate at apocenter. This causes the orbit’s eccentricity to increase
(note that in Eq. (11), Ftcos f is positive in both positions). At the
same time the pericenter precesses around the planet under the
influence of Saturn’s oblateness. The eccentricity continues to grow
until the apocenter becomes aligned with the Sun. However, once
the orbit’s precession carries the apocenter further, toward the
dusk ansa of the ring, the particle will be moving away from the
Sun at apoapse and towards the Sun at periapse. At this point,
the solar radiation pressure will accelerate the particle near
apoapse and decelerate it near periapse, causing the eccentricity
to shrink (note that in Eq. (11), Ftcos f is negative). The orbital
eccentricity will therefore decrease until it reaches a minimum

when the pericenter is aligned with the Sun, at which point the cy-
cle begins anew.

Now consider the inclination and node. Consider a case where
the Sun is in the southern hemisphere, the initial inclination ii > if,
and the ascending node is near the sub-solar longitude. At this
time, the particle is heading northwards on the sunward side of
its orbit and southwards on the shadowed side. The radiation force
from the Sun pushes northwards on the particle as it passes on the
sunward side of the planet, accelerating the vertical motion of the
particle and increasing the inclination in the orbit. If there were no
shadow, then this increased tilt would be canceled out when the
particle feels the same northward force as it is heading southward
on the planet’s far side. However, because sunlight is blocked from
this side of the rings by the planet’s shadow, the torque is not can-
celed and the inclination increases. Meanwhile, the node regresses
due to Saturn’s oblateness (if i > if, then the second term on the left
hand side of Eq. (37) dominates). Thus the inclination continues to
grow until the ascending node reaches a point 90� behind the Sun.
After this point, the ascending node will head into the shadow and
the descending node will move towards the sub-solar longitude. In
this case, the particle is moving southwards while it is exposed to
solar radiation pressure that drives it northwards, so the radiation
pressure will decelerate the vertical motion and cause the inclina-
tion to lessen until it reaches a minimum when the ascending node
is 90� ahead of the solar point, at which point the cycle starts again.

The orbital evolution described above is not specific to solar
radiation pressure, but will occur whenever the ring particles feel
forces with a fixed direction in inertial space. To demonstrate that
solar radiation pressure in particular is a reasonable explanation
for the shape and orientation of the Charming Ringlet, let us now
evaluate numerically the strength of the solar radiation pressure
force F� and the resulting ef and if.

The solar radiation pressure force F� is given by (Burns et al., 1979):

F� ¼ SAQ pr=c; ð51Þ

where c is the speed of light, S is the solar energy flux, A is the cross-
sectional area of the particles, and Qpr is an efficiency factor that is
of order unity in the limit of geometric optics. The force ratio for
quasi-spherical grains can therefore be written as:

F�
FG
¼ 3

4
S
c

a2

GM
Qpr

qrg
; ð52Þ

where q is the particle’s density and rg is the particle’s radius. If we
now assume S = 14 W/m2 at Saturn, c = 3 � 108 m/s,
GM = 3.8 � 1016 m3/s2, a = 119,940 km (appropriate for the Charming
Ringlet) and q = 103 kg/m3 (appropriate for ice-rich grains) we find:

F�
FG
¼ 1:3� 10�5 Q pr

rg=1 lm
: ð53Þ

The other parameters in Eqs. (38) and (40) can also be esti-
mated. For the observations considered here, the shadow covers
roughly 80� in longitude, so � ’ 0.2, in which case f(�) ’ 0.85 and
g(�) ’ 0.2. Also, given Saturn’s gravitational harmonics (Jacobson
et al., 2006), the orbital and precession rates in the vicinity of the
Charming Ringlet are n = 736�/day and _-0o ’ j _X0oj ’ 4:7�= day. With
these values, the forced eccentricities and inclinations are:

ef ’ 0:0026 cos B�
Q pr

rg=1 lm
; ð54Þ

if ’ 0:00041 sin jB�j
Q pr

rg=1 lm
: ð55Þ

Note that over the course of Saturn’s year, cosB� ranges from
0.9 to 1.0, while sin jB�j ranges from 0 to 0.5. Thus if can change sig-
nificantly on seasonal timescales, while ef should remain approxi-
mately constant.

M.M. Hedman et al. / Icarus 210 (2010) 284–297 291



Author's personal copy

The ae observed in the Charming Ringlet range between 10 and
30 km. This would be consistent with the ef predicted by this mod-
el if rg/Qpr is between 10 and 30 lm, which are perfectly reasonable
values. These findings therefore support the notion that solar radi-
ation pressure influences this ringlet’s dynamics.

The variations in the ringlet’s eccentricity, pericenter and node
relative to the Sun could potentially also be explained by this sort
of model in terms of nonzero free eccentricities and inclinations.
Indeed, we will show below that just such a model can provide a
useful description of the ring’s shape. However, at the same time,
we must recall that the above analysis was for the orbital proper-
ties of a single particle, whereas the observed ringlet is composed
of many particles. One would expect that these particles would
have a range of sizes, and some dispersion in their orbital param-
eters. While the shape of the ringlet should reflect the average
orbital parameters of all its constituent particles, one might have
expected that this averaging would wash out any free component
in the eccentricity or inclination. Such a model therefore raises a
number of questions about the dynamics of this ringlet, which will
be discussed in more detail below.

5. Combining the observations

Keeping in mind the above caveats about applying a model
appropriate to an individual particle’s orbit to the entire ringlet,
we will now attempt to fit the observational data to a 10-parame-
ter global model that includes both forced and free components in
the eccentricity and inclination.

As discussed above, an orbit with forced and free orbital ele-
ments will trace out circles in [h,k] and [p,q] space as the orbit
evolves. Therefore, we plot the orbital elements derived from the
above fits in this space (see Fig. 6). Intriguingly, the admittedly
sparse data do seem to describe a circle in [h,k] space, centered
roughly at [ah,ak] = [�17,0] km. In [p,q] space, the situation is less
clear. Neglecting the outlying data from Orbit 96 (discussed above),
the data could be consistent with a circle centered near the origin,
but most of the data points are clustered to one side of the circle,
making it difficult to be certain.

To make these visual impressions more quantitative, we found
the circles in [h,k] and [p,q] that best describe the data. We used
the following procedures for the [h,k] data: for each possible value
of [h,k], we computed the distance between this point and the
location of every one of the longitudinal scan data points [hj,kj]:

Rjðh; kÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðh� hjÞ2 þ ðk� kjÞ2

q
: ð56Þ

(Note the data from the elevation scan are not included in this
analysis because they do not constrain h and k or p and q sepa-
rately.) We also calculate a typical error for each data point rj,
which is the average of the errors on h and k (the difference in
the errors on these parameters was not considered large enough

to justify complicating the analysis). We then compute the average
value of the appropriate Rj, weighting the observations by their er-
ror bars, to obtain the mean distance R. We then compute the fol-
lowing v2 statistic:

vðh; kÞ2 ¼
X ðRjðh; kÞ � RÞ2

r2
j

: ð57Þ

This statistic measures the goodness of fit of the data to the
best-fit circle centered at a given value of h and k. The [p,q] space
analysis is essentially the same, except that the data from Orbit 96
are excluded from the fit for the reasons described above. The con-
tours in Fig. 6 illustrate how v2 varies with [h,k] and [p,q].

For the [h,k] plot, the best-fit solution is at [ah,ak] =
[�18,1.9] km. This would imply that the periapse leads the anti-solar
direction by 6�. However, the best-fit solution assuming the pericen-
ter is exactly anti-aligned with the Sun is not obviously worse than
the overall best fit. Note that even for these best-fitting models,
the v2 fit is still quite poor (74 for 4 degrees of freedom). This is con-
sistent with a visual inspection of the data, which scatter around the
circle by more than their error bars. This excess scatter could occur
for a number of reasons. The data used here come from a range of
phase angles, and are sensitive to different parts of the size distribu-
tion, which may lead to differences in the apparent shape of the ring-
let. Also, our background subtraction algorithm and other
procedures used to derive the radial positions of the ringlet may have
introduced systematic errors between different scans.

For the [p,q] plot, the best-fitting model has [ap,aq] = [0,1.2] km.
Here thev2 value is good (3.1 for 3 degrees of freedom). However, the
difference in the quality of the fit between this and [p,q] = [0,0] is
only marginally significant (assuming no forced inclination, the v2

is 9.9 for 5 degrees of freedom). Furthermore, since the Sun is in
the southern hemisphere, and B� is negative, we expect that the
best-fit q should be negative, not positive. Thus the best-fitting mod-
el is a bit of a surprise. Since B� changes significantly over the time
period covered by these observations, a more complete model would
include a time-variable forced inclination. However, given the weak
evidence for any forced inclination at all, we chose not to consider
such complications at this time.

Despite these uncertainties, we can now explore whether the
temporal evolution of the shape parameters are consistent with
the above model, which suggests that the parameters should drift
around the circles at nearly constant rates determined by the mod-
ified pericenter-precession and nodal-regression rates. Given the
sparseness of the data, we cannot establish easily whether any gi-
ven solution is unique. However, preliminary examination of the
data showed that they were approximately consistent with the ex-
pected drift rates _-0o ’ � _X0o ’ 4:7�=day


 �
. Therefore, for each

posssible solution for ef, el, if and il, we determined the phase of
the shape for each longitudinal-scan observation, unwrapped the
phase assuming drift rates close to those expected, and fitted the

Fig. 5. A graphical representation of the free and forced components of the eccentricity (left) and inclination (right), showing the parameters used in this analysis.
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resulting phases versus observation time to a line to obtain esti-
mates of the rates _-0l and _X0l, as well as the longitudes at epoch
-0l and X0l (the epoch time being taken as the time of the first image
in the Orbit 42 sequence 2007-099T22:19:10, see Table 1). Regard-
less of whether we accepted the best-fit solution (triangles/dashed
circles in Fig. 6) or a simplified solution assuming -0f ¼ 180� and
if = 0 (diamonds/solid circles in Fig. 6), we obtain roughly the same
rates. _-0l ¼ 4:66�=day and _X0l ¼ �4:75�=day. Recall that these are
the modified precession rates in a reference frame tied to the
Sun. The precession rates in an inertial coordinate system must ac-
count for the movement of Sun _k� ¼ 0:03�= day. Thus the preces-
sion rates are actually: _-l ¼ 4:69�=day and _Xl ¼ �4:72�=day. The
expected rates at 119,940 km are 4.71�/day and �4.68�/day,
respectively, so these numbers are close to theoretical expecta-
tions. This model therefore can provide a useful parametrization
of the available data.

Table 3 summarizes the model parameters for the shape of the
Charming Ringlet. Model 1 is the simplified model in which -f is
taken to be exactly anti-aligned with the Sun and the forced incli-

nation is assumed to be zero. Model 2 is the more complex model
that allows both -0f and if to have their ‘‘best-fit” values.

6. Comparing model predictions with the observations

Tables 4–6 compare the observed shape parameters measured
by the various observations with the predictions from the two
models derived above. While the model parameters were derived
using weighted averages of data from different observations, these
comparisons do not consider variations in the uncertainties in the
observations. This is because, as noted above, these simplified
models were unable to fit the [h,k] data to within the error bars.
Thus an unweighted analysis will provide a conservative estimate
of how well these models describe the data.

Table 4 presents the model predictions for the eccentricity and
pericenter locations from the longitudinal scans. Note that the only
observation where the more complex Model 2 does a better job
predicting the eccentricity and pericenter than the simpler Model
1 is in the Orbit 30 data. This is consistent with Fig. 6, where the
dashed circle (Model 2) gets closer to the point in the upper left
(from Orbit 30) than the solid circle (Model 1), but for all the other
data points the dashed circle is not obviously a better fit than the
solid one. Note the Orbit 30 data were taken at a substantially
higher phase angle than the other observations, so this observation
may probe a different part of the size distribution and the shape
parameters may not be perfectly comparable to the others. There-
fore, we conclude that the simpler model that assumes the forced
component of the pericenter is perfectly anti-aligned with the Sun
is a preferable model for the shape of the ring. This model recovers
the eccentricity of the ringlet with an rms residual of 1 km and the
pericenter location with an rms residual of 4�.

Table 5 presents the model predictions for the inclinations and
nodes for the longitudinal scans. In this case, there is not a clear
difference between the two models. Given that including a forced
inclination does not substantially reduce the scatter in the obser-
vations, for the sake of simplicity we favor the use of the simpler
Model 1 in this case as well. Here the model predicts the inclina-
tion with an rms residual of 0.3 km and the node location with
an rms residual of 14�.

Finally, Table 6 compares the model predictions for the z and C
parameters for the elevation scan (see Eqs. (7) and (8)). This is a crit-
ical check on the model, which was developed using only the longi-
tudinal scan data. Here, we can see that both models give values for z
and C that are reasonably consistent with the observed values.

In conclusion, while Model 1 is clearly over-simplified and does
not provide a perfectly accurate description of the observed data, it
nevertheless appears to be a useful approximate description of the
ringlet’s shape and time variability.

7. Interpretation

We can now compare the observed shape parameters of this
ringlet with theoretical expectations. The forced eccentricity and
inclination can be relatively easily understood in terms of the solar

Fig. 6. Diagrams showing the data derived from the various observations versus the
parameters ah and ak (top) and ap and aq (bottom). The data points with error bars
come from the longitudinal scans (see Table 2). The diagonal lines represents the
constraints from the elevation scan. The gray scales in the background indicate the
values of the v2-statistic on the forced eccentricity and inclination discussed in the
text. Each level corresponds to a factor of 2 in v2 (which dark being lower values).
The white triangles mark the best-fit values of h, k, p and q. In the upper plot, the
white diamond marks the best-fit forced eccentricity along the k = 0 axis, while in
the lower plot the diamond is at the origin. The solid and dashed lines are the best-
fit circles centered on the diamonds and triangles, respectively.

Table 3
Model parameters for the Charming Ringlet.

Model aef (km) -0f (�) ael
a(km) _-0l

b (�/day) -0l
b,c (�) aif (km) X0f (�) ail

a (km) _X0l
b (�/day) X0l

b,c (�)

1 17.0 ± 0.5d 180 7.9 ± 0.4 4.66 ± 0.01 230 ± 3 – – 2.9 ± 0.2 �4.73 ± 0.02 �152 ± 9
2 18.1 174 7.6 ± 0.4 4.67 ± 0.01 225 ± 4 1.3 +90 3.3 ± 0.1 �4.77 ± 0.02 �158 ± 9

Note: Rev 96 data excluded from inclination/node fits.
a Errors are the standard deviations of the values Rj, see Eq. (56).
b Errors from linear fit, assuming central values for aef, ael, aif and ail.
c Longitudes relative to Sun at epoch = 2007-099T22:19:10 (time of first observation in Orbit 042).
d Error based on factor of 2 increase in v2 relative to best-fit value.
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radiation forces discussed above. By contrast, the free components
of the eccentricity and inclination are surprising and more diffi-
cult to explain.

7.1. Forced eccentricity and inclination

Eqs. (54) and (55) indicate that solar radiation pressure should
produce a ring with if/ef ’ 0.16tanjB�j. For the observations de-
scribed here jB�j ranges between 16� and 3�, so if/ef would be be-
tween 0.04 and 0.01. This is consistent with the observed values
of aef ’ 17 km and aif < 1 km. Furthermore, the observed aef sug-
gests a typical particle size rg ’ 20 lm 	 Qpr, which is not unrea-
sonable. However, we must caution that the particles in the
Charming Ringlet probably have a distribution of sizes, and this
estimated value of rg may only be an effective average value for
this distribution. The particle size distribution will be investi-
gated in more detail in a future study of the ring’s spectrophoto-
metric properties and detailed morphology.

7.2. Free eccentricity and inclination

While nonzero free eccentricities and inclinations are accept-
able solutions to the equation of motion for a single particle’s or-
bit, it is surprising for the ringlet as a whole to exhibit such terms,
because they imply that all the component particles’ orbits not
only have comparable finite values of el and il, but also have sim-
ilar values of -l and Xl. Such an asymmetry in these components
of the ring’s shape could be due to one of three things: (1) an
asymmetry in the initial conditions of the ring particles, (2) an ex-
plicit longitudinal asymmetry in the equations of motion, or (3) a
spontaneous symmetry-breaking in the ringlet. We will consider
each of the possibilities below.

7.2.1. Asymmetric initial conditions
There are various ways to produce a collection of particles

with the same values for -l and Xl. For example, an impact near
the present location of the ringlet could release a cloud of dust
from one point in space, suddenly injecting a collection of parti-
cles into the gap that have similar orbital elements. Alternatively,
particles could be supplied into the ring over an extended period
of time, but for some reason dust grains with certain orbital
parameters are generated at higher rates than others. In this case,
the relevant source bodies for the dust would almost certainly be
too large to have any detectable forced eccentricity due to solar
radiation pressure. Thus the observed heliotropic ring could not
be simply be low-velocity impact debris tracing the orbit of its
source material, but instead must reflect some more complex pro-
duction process involving various interactions with the local plas-
ma and dust environment.

Regardless of how the particles were injected into the ring, the
observable ring particles must be relatively young in order for any
asymmetry in the initial conditions to be visible in the present
ringlet. The Charming Ringlet has a full-width at half-maximum
of about 30 km. If we assume a comparable spread in semi-major
axes, then the precession rates of the particles in the ring will vary
by about 0.003�/day. The values of -l and Xl would therefore
spread over all possible longitudes in a few hundred years. While
this timescale could be extended if we assume the radial width of
the ring is due to variable eccentricities rather than semi-major
axes, even then the visible particles in the ring probably cannot
be more than a few thousand years old if they are to preserve
any asymmetry in their initial conditions. Such ages are not en-
tirely unreasonable, for small dust grains like those seen in the
Charming Ringlet can be rapidly destroyed by energetic particle
bombardment (Burns et al., 2001), or lost by adhering to larger
objects in the Cassini Division. However, we must caution thatTa
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the production and loss of dust grains within narrow gaps has not
been studied in great detail yet.

Another important constraint on these sorts of models is the
lack of gross variations in the brightness or morphology of the
ring with longitude. This argues against any large source bodies
existing within the ringlet itself, as such objects would tend to
scatter and perturb the material in their vicinity, producing either
gaps or possibly clumps similar to those visible in the Encke Gap
ringlets; such gaps and clumps are not seen in the Charming
Ringlet. It also requires that the ringlet grains exist long enough
to spread evenly over all longitudes, which takes a few years or
decades.

7.2.2. Asymmetric terms in the equations of motion
Instead of an asymmetric source, it is also conceivable that the

equations of motion contain terms that depend on -l and Xl. Re-
cently, Hedman et al. (2010) demonstrated that a combination of
perturbations from Mimas and the massive B-ring outer edge
could give rise to terms in the equation of motion like:

d2-
dt2

* +
¼ �f 2

o sinð-� _-rtÞ; ð58Þ

where fo and _-r are constants. Such a term acts as a restoring force
on the pericenter location of any particle’s orbit. Thus, in a region
where the precession rate _- ’ _-r , this term aligns the pericenters
of all freely-precessing eccentric orbits. If such a term was effec-
tive on the Charming Ringlet, it could explain how all the particles
in the ringlet happen to have the same value of -l.

One difficulty with this sort of model is that the particles in the
Charming Ringlet seem to have both -l and Xl aligned. While one
could imagine expressions similar to Eq. (58) involving the node
instead of the pericenter, it is difficult to have both terms operate
at the same location. Like any other resonant term in the equa-
tions of motion, such terms can only be effective over a narrow
range of semi-major axes (or equivalently, narrow ranges of _-
and/or _X), and resonances involving nodes typically occur at dif-
ferent locations from those involving pericenters (Murray and
Dermott, 1999). It therefore would be quite a coincidence if the
Charming Ringlet just happened to fall at a location where both
angles could be effectively constrained.

7.2.3. Spontaneous symmetry breaking
A ringlet with finite free eccentricity and free inclination can in

principle form spontaneously without any terms in the equations
of motion that depend explicitly on -l and Xl, and without any
strong asymmetry in the particle’s initial conditions. Such phe-
nomena have been discussed almost exclusively in the context of
massive, dense ringlets (Borderies et al., 1985). However, one can
argue that this sort of ‘‘spontaneous symmetry-breaking” could
also occur in low-optical-depth dusty rings via dissipative pro-
cesses like collisions, provided that there are terms in the individ-
ual particle’s equations of motion that favor the development of a
nonzero el and il comparable to those observed for the entire ringlet.

Dissipative collisions are often invoked as a mechanism that
causes narrow rings to spread in semi-major axis (Goldreich
and Tremaine, 1982), so it might seem surprising that such colli-
sions could also align pericenter or node locations. However, un-
like the semi-major axis, the longitudes of pericenter and nodeTa
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Table 6
Comparison of model predictions with elevation scan observation.

ae (km) -
0

(�) ai (km) X
0

(�) C (km/rad) z (km)

Observation 19.5 2.54
Model 1 24.3 188.2 2.9 237.7 22.0 2.78
Model 2 25.2 186.2 2.4 216.6 22.4 2.37
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have no direct effect on a particles’ orbital energy. Thus, while the
dissipation of orbital energy requires that particles’ orbital semi-
major axes evolve in a particular direction, this is not the case
for pericenters or nodes. Instead, the evolution of pericenters and
nodes should be driven primarily by the collisons’ dissipation of
relative motions.

To illustrate how such collisions can align pericenters and nodes,
consider the following simple situation: there is a ringlet composed
of many particles with similar orbital properties, and there is a single
particle whose orbit is misaligned with the others. For simplicity, as-
sume that both the ringlet and the particle have zero eccentricity and
zero forced inclination. Furthermore, assume that both the ringlet
and the particle have the same free inclination i but different longi-
tudes of ascending node Xr and Xp, respectively. If Xr – Xp, then the
particle’s orbit will cross the ringlet at two longitudes kc = (Xp + Xr)/
2 ± p/2. At these two longitudes the particle will feel a force due to its
collisions with the particles in the ringlet, and the vertical compo-
nent of that force Fz will be proportional to the vertical velocity of
the particles in the ringlet, so Fz / cos(kc �Xr). Inserting this into
Eq. (14), we can express the perturbation to the particle’s node posi-
tion due to its interactions with the ringlet as:

dXp

dt
¼ 2D sinðkc �XpÞ cosðkc �XrÞ ð59Þ

where D is a constant.
Substituting in the above expression for the crossing longitudes

kc and simplifying, this expression reduces to the simple form:

dXp

dt
¼ �D sinðXp �XrÞ: ð60Þ

The forces applied to the particle’s orbit during the ringlet
crossings therefore do tend to align the particle’s orbital node po-
sition with that of the ringlet. A similar calculation demonstrates
that the same basic phenomenon acts to align pericenters as well.
Thus collisions can indeed align pericenters and nodes, provided
the collisions are frequent (and lossy) enough, and provided the
particles maintain some finite (free) eccentricity and inclination.

The requirement that collisions are frequent enough to align peri-
centers is probably met for the Charming Ringlet. While this ringlet
has a low normal optical depth (roughly 10�3), the orbital period is
sufficiently short (around 0.5 days) that the collisional timescale is
still only a few years or decades, much less than the typical erosion
timescales of thousands of years (Burns et al., 2001).

On the other hand, the persistance of the nonzero free eccen-
tricities and inclinations probably requires some modifications to
the individual particles’ dynamics. If the particles’ equations of mo-
tion were just given by Eqs. (47)–(50) above, dissipative collisions
would (assuming the initial conditions were not highly asymmet-
ric) tend to produce a ringlet with el = il = 0. Thus, we probably
need to add some additional terms to these equations to produce
something similar to the Charming Ringlet’s observed shape. One
relatively simple way to accomplish this is to add non-linear
damping terms into the equations:

dh
dt

� 	
¼ � _-0okþ chðhþ ef Þ 1� hþ ef

el


 �2
" #

; ð61Þ

dk
dt

� 	
¼ _-0oðhþ ef Þ þ ckk 1� k

el


 �2
" #

; ð62Þ

dp
dt

� 	
¼ � _X0o q� if

B�
jB�j


 �
þ cpp 1� p

il


 �2
" #

; ð63Þ

dq
dt

� 	
¼ _X0opþ cq q� if

B�
jB�j


 �
1� q� if B�=jB�j

il


 �2
" #

; ð64Þ

where ch; ck 
 _-0o and jcpj; jcqj 
 j _X0oj quantify the magnitude of
the damping terms. These terms transform the [h,k] and [p,q] sys-
tems from simple harmonic oscillators into van der Pol oscillators

(Baierlein, 1983). Such oscillators are characterized by a limit cycle
which the system will asymptotically approach no matter where it
is started in [h,k] and [p,q] space. These limit cycles are circles cen-
tered at [h,k] = [�ef, 0] and [p,q] = [0, ± if] with radii of el and il, and
the orbit traces out the circles at rates given by _-0o and _X0o. These
equations of motion therefore cause any particle’s orbit to evolve
to the same path as the observed ringlet. On their own, particles
started at different points in phase space will wind up at different
points along this cycle. However, if the relative motions among
the particles are efficiently dissipated, then all the particles should
eventually clump together in phase space such that they all move
around the limit cycle together, as observed.

Models of this sort have the advantage that the additional terms
in the equations of motion do not have explicit frequency-depen-
dent terms that can only be effective at specific locations in the
rings. Such terms are therefore more likely to show up in a broader
range of contexts, and could even be generic features of small dust
grains’ dynamics in narrow gaps. For example, the non-linear
damping terms in the above equations contain either el or il. While
these are small numbers in absolute terms, they are not much
smaller than the fractional gap width da/a, so such factors could
arise due to interactions between the ringlet particles and the
gap edges. This would not be unreasonable, as small particles could
be attracted to the edges by the force of gravity, or even repelled if
the small grains in the ring have a sufficient electrical charge. Fur-
thermore, variations in the plasma environment within the gap
could also possibly produce perturbations on the grains’ motions
with the appropriate positional dependence.

One clue to the exact nature of these forces is that the observed
ring traces out a circle that is centered on the point [h,k] = [�ef,0]
and excludes the origin [h,k] = [0,0]. Based on some preliminary
analyses, it appears that a limit cycle of this type cannot be created
by non-linear damping terms involving only e or - , but instead re-
quires terms that contain k and/or h + ef, like the ones given above
(note that only one of the two terms ch and ck has to be nonzero to
produce the desired limit cycle). Since h and k are tied to the location
of the Sun, this implies that these damping terms might also have
some connection with the Sun. One possibility is that these terms re-
flect the influence of Saturn’s shadow. When small particles enter
the shadow, electrons are no longer being ejected from their surfaces
via the photoelectric effect. This can significantly change their elec-
tric charge and thereby lead to significant forces that would prefer-
entially damp or drive h or k. Further investigation is needed to
explore whether the perturbations from these or other processes
could account for the observed shape of the Charming Ringlet.
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Appendix A. Orbit averages including shadow effects

Eqs. (23)–(27) are derived from Eqs. (18) to (22) by averaging
over all longitudes k. This averaging procedure is complicated by
the presence of Saturn’s shadow, which blocks sunlight from
reaching part of the rings. If a fraction � of the ring is in Saturn’s
shadow, then the ring particles only feel the solar radiation pres-
sure when jk � k�j < p(1 � �). Thus if X is any of the radiation-pres-
sure-induced terms on the right-hand sides of Eqs. (18)–(22), then
the orbit-averaged value of X is:
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hXi ¼ 1
2p

Z þpð1��Þ

�pð1��Þ
Xdðk� k�Þ: ð65Þ

Eqs. (18)–(22) contain terms proportional to k0, sin(k � k�),
sin(2k �- � k�), cos(2k �- � k�), sin(k �X), and cos(k �X).
Inserting these factors into Eq. (65) yields the following
expressions:

hk0i ¼ ð1� �Þ; ð66Þ

hsinðk� k�Þi ¼ 0; ð67Þ

hsinðk�XÞi ¼ � sinðp�Þ
p

sinðX� k�Þ; ð68Þ

hcosðk�XÞi ¼ þ sinðp�Þ
p

cosðX� k�Þ; ð69Þ

hsinð2k�-� k�Þi ¼ þ
sinð2p�Þ

2p
sinð-� k�Þ; ð70Þ

hcosð2k�-� k�Þi ¼ �
sinð2p�Þ

2p
cosð-� k�Þ: ð71Þ

The appropriate combination of these terms then yields the fac-
tors d(�), f(�) and g(�) in Eqs. (23)–(27).
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