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Constraints on clade ages from fossil outgroups

Matthew M. Hedman

Abstract.—This paper presents a method for constraining the age of a clade with the ages of the earliest
fossil specimens in that clade’s outgroups. Given a sufficiently deep, robust, well-resolved, and
stratigraphically consistent cladogram, this method can yield useful age constraints even in the
absence of specific information about the fossil preservation and recovery rates of individual taxa. The
algorithm is applied to simulated data sets to demonstrate that this method can yield robust
constraints of clade ages if there are sufficient fossil outgroups available and if there is a finite chance
that additional outgroups may be discovered in the future. Finally, the technique is applied to actual
fossil data to explore the origin of modern placental mammals. Using data from recently published
cladograms, this method indicates that if all Mesozoic eutherians are regarded as outgroups of
Placentalia, then the last common ancestor of modern placental mammals and their Cenozoic allies
lived between 65 and 88-98 million years ago, depending on the assumed cladogram and the number

of outgroups included in the analysis.
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Introduction

The fossil record is an important tool for
reconstructing the history of life on Earth,
providing critical constraints on when vari-
ous groups of organisms arose or went
extinct. Even analyses of DNA sequence data
use fossil evidence to translate measures of
genetic similarity into age estimates for
cladogenic events. However, fossils represent
only a sample of all the organisms that
belonged to a given taxon, so it is not always
straightforward to translate the ages of recov-
ered fossils into information about the dura-
tions of specific clades. In particular, although a
clade must be at least as old as its earliest fossil
representative, it is not so obvious how to
determine the maximum possible age of any
given taxon based on fossil data.

Fossil preservation and recovery rates
determine how long taxa could have existed
prior to their oldest known fossil representa-
tives, so many efforts to constrain clades’ true
durations first estimate the recovery rates of
the relevant taxa in various ways (e.g., Strauss
and Sadler 1989; Marshall 1997; Foote et al.
1999). However, when estimating the age of a
given clade, one must consider not only that
clade’s own stratigraphic record but also its
phylogenetic relationships with other taxa.
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For example, a large stratigraphic gap be-
tween the earliest known examples of two
closely related taxa could imply the existence
of an extended ““ghost lineage” without fossil
representatives (Norell 1993). Although there
is still considerable debate on how best to
combine stratigraphic and phylogenetic data
(especially when there appear to be incon-
gruities between the reconstructed phylogeny
and the fossil record; see, e.g., Fisher 2008 and
references therein), combinations of fossil age
estimates and phylogenetic analyses have
already proven useful for estimating rates of
character change (Ruta et al. 2006) and
placing older limits on clade ages (Marshall
2008). It therefore seems likely that the best
constraints on the age of a given taxon will be
those that utilize both phylogenetic and
stratigraphic information.

This work presents a method for constrain-
ing a particular clade’s age with the ages of
the oldest fossil representatives of that clade’s
outgroups. Perhaps surprisingly, it turns out
that given a sufficiently deep, robust, well-
resolved, and stratigraphically consistent
cladogram, these fossil dates by themselves
can provide interesting constraints on clade
ages. The method presented here therefore
differs from previously published methods
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that use estimates of fossil recovery rates
derived from the fossil record (Hueslenbeck
and Rannala 1997, Wagner 2000) or relative
lineage durations derived from molecular
data (Marshall 2008) to help constrain the
ages of the relevant taxa. This method could
therefore provide a useful way to quantita-
tively evaluate hypotheses regarding the
timing of cladogenic events in cases where
the fossil recovery rates are difficult to con-
strain or molecular data are not available. On
the other hand, the method presented in this
paper relies on a relatively secure phylogeny,
so its utility may be limited in situations where
the phylogenetic reconstruction has significant
uncertainties. Nevertheless, the analyses pre-
sented here could still help clarify how much
information fossil outgroups can provide on
clade ages, and so may be useful in efforts to
develop a more generally applicable approach
to dating the origins of taxa.

For clarity, the basic algorithm for constrain-
ing a clade’s age is first illustrated by using the
relatively simple case of a well-resolved,
stratigraphically consistent cladogram with
Hennig-comb topology. This is followed by a
briefer discussion of how this method can be
extended to handle cladograms with more
complex or uncertain topologies, unresolved
nodes, stratigraphic gaps, etc. Simulated data
sets are used to explore the properties of the
constraints derived by using this method and
the sensitivity of the results to assumed
parameters and sampling rates. These prelim-
inary tests demonstrate that in certain limits
this method can indeed produce sensible
constraints on clade ages.

In order to illustrate how this technique
might be applied to actual fossil data, I
investigate the origin of modern placental
mammals. The earliest clear fossil examples
of Placentalia (the crown group that includes
the last common ancestor of modern placental
mammals and all of that animal’s descen-
dants) date from shortly after the K/T
boundary 65 Myr ago (Rose and Archibald
2005). However, recent DNA analyses indi-
cate that the last common ancestor of modern
placental mammals lived around 105 Ma
(e.g., Springer et al. 2003). This 40-Myr gap
between the molecular estimate and the

earliest fossil members of Placentalia has been
discussed at length in the literature (e.g., Rose
and Archibald 2005), but despite some im-
portant work by Foote et al. (1999) and Tavare
et al. (2002), it has been difficult to quantify
this seeming inconsistency between the mo-
lecular and fossil evidence. The algorithm
developed here provides a new way to
evaluate the magnitude and the significance
of the difference between the molecular
analyses and the fossil data.

Methods
The Dating Algorithm

Nomenclature—The basic algorithm devel-
oped here can best be explained by first
considering a simple case involving a clado-
gram like that shown in Figure 1. (More
complex situations will be discussed below.)
The nodes on this cladogram are labeled by
the numbers j = 1,2,3, ..., n and the times for
each node are denoted by 14, 15, ..., 1,. Note
that the topology of the cladogram requires
that 1y < b, < ... < 1,1 < 1, The taxa
derived from each node are designated by the
numbers | = I, II, I1I, ..., N. The earliest fossil
representatives of these taxa occur at times fy,
tw, tny ..., ty. For simplicity, assume for now
that the fossil record is stratigraphically
consistent with this cladogram, so t; < t;; < ...
< ty-1 < tn. For concreteness, the t; and ¢; will
be described as times throughout this paper,
but in practice these parameters could just as
well be regarded as depths in a stratigraphic
column (Strauss and Sadler 1989) or positions
in a sequence of fossiliferous localities (Wagner
1995). In any case, the goal is to obtain
constraints on the possible values of t; based
on the (known) values of .

Statistical Framework.—This analysis will be
performed using a Bayesian statistical frame-
work instead of a classical (frequentist)
statistical approach. In classical statistics,
unknown parameters like t; have fixed values
and observed data are used to obtain esti-
mates and confidence intervals on these
parameters. By contrast, a Bayesian analysis
yields the probability that the unknown
parameters have particular values based on
their consistency with the observed data. For
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FIGURE 1.

A diagram of a simple cladogram that illustrates the notation system used in this paper. Sequential nodes in

this simple cladogram are denoted by the numbersj = 1, 2, 3... n — 1, n. The fossil taxa derived from these nodes are
named | = I IL III, ... N — 1,N, and the dots indicate the age of the known specimens of each taxon. The (known) ages
of the earliest fossil specimen of each species are given by t;, fy;, etc. The (unknown) ages of the nodes are given by the

variables 14, T,, etc.

example, consider a probabilistic process that
yields a set of observable parameters O. The
probability of observing particular values for
O depends on a set of input parameters X as
described by the function P(O1X). The prob-
ability that the input parameters have the
values X given the observed values of O can
then be expressed as follows:

p(X|0)=Cn(X) P(O]X), 1)

where C is a normalization constant and n(X)
is the so-called prior probability, a function
that specifies the probability that the param-
eters X have a set of given values in the
absence of any information about O. The
function p, which specifies the probability of
X given the observed values of O, is known as
the posterior probability distribution func-
tion. Further background on Bayesian meth-

ods can be found in statistics textbooks like
Lupton (1993), and see Strauss and Sadler
(1989) for a demonstration of how this
technique can be applied to fossil data.

For this study, the observable parameters
are the ages of each taxon’s earliest fossil
representatives f;, and the unknown parame-
ters we wish to constrain are the node times
1. However, the probability that the first
fossil specimen of a given taxon has a certain
age t; depends not only on the corresponding
node time 1, but also on ry(t), the (possibly
time-dependent) fossil recovery rate of taxon
J. In general, the probability of obtaining a
given value of ¢; can be written as follows:

P(ty |5, 1y (5) =0(ti —)f (1), ty, 7y(1)) . (2)

Here 6(x) is the Heaviside step function (8(x)
=1 for x > 0 and 6(x) = 0 for x < 0), which
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imposes the constraint that t; > 1. The
function f specifies the probability that the
first fossil representative of the clade occurs at
a given time f; after t;. If r/(t) is allowed to
vary with time, then f can become almost
arbitrarily complex. However, f can always be
expressed as the following product:

K
Fa ey =rt) [T 1—r+konst,  (3)
k=0

where 6t is an infinitely small time step and K =
(ty — 1p)/8t. This product is explicitly the
probability that a fossil is recovered at time t;
times the probability that no fossil is recovered
in any previous time step. If 7/(t) is assumed to
be constantin time, then this product reduces to
the simple exponential form given in Strauss
and Sadler (1989) and other texts.

Given the above form for P(t;l1;, 7(t)),
equation (1) provides an expression for the
posterior probability of t; and 7/(t) given an
observed value of t;:

p(zj. rj(t) | ) =C = (v, (1) P(ty | 7. 17(£)). (4)
Because the prior probability that t; has a
given value is not expected to be correlated
with the fossil recovery rate 7(t), the prior
probability can be written as the product of
two terms, one that gives the prior probability
of 1, and another that gives the prior
probability of r/(t):
n(t, 77(t)) =m (g) ma 1y (1)) (5)
Combining equations (3)-(5) then yields
p(v. 10 [ t) =C mi(g)) O(t) — ;) ma(r (1))
xf (v, ty, 7y (8)). (6)
This is the joint posterior probability distri-
bution of t; and r4(t). To obtain the probability
distribution of t; alone, one must integrate the

above expression over all possible values of 7;
at every time step:

p(y | i) = J J JP(% r(®) [ ty)
dT](T]‘)dT](Tj + 5t)...d7"](t]). (7)

Because only the functions 7, and f depend on
7y(t), this expression can be written as follows:

p(ti[t)=Cmi(y) O(t—7) F(v. ty), (8)
where the function F is

F(‘C]‘, i’]) = J J J th(l’](t))f(‘tj, tﬂ’](t))

dl’](‘fj)d?’]('l?j + St)...dr](t]). (9)
Further progress requires specifying the priors.
In the absence of any other information, it is
reasonable to assume that 7; is equally likely to
occur at any time after the formation of the
previous node at 1,1, so one can assume

m (1) =C 0(tj—1j-1),

where C’ is a constant.
The optimal choice of my(r(t)) is less
obvious, but it turns out to be useful to first

rewrite the time-dependent recovery rate as
the product of two terms:

r(t) =Ry s(t), (11)
where R; is the mean recovery rate and s(t)

represents the time variations in 7(t). The
prior on 7; can then be expressed as

a2 (ry(£)) =12’ (Ry) 2" (s(t)).-

Together with equations (3) and (9), this
yields the following expression for F:

F(‘L’j, i’])

_ J 1/ (R)) % {J o (s(ty)Rys(tpds(ty)

(10)

(12)

=

X H J " (s(t; +kdt))

k=1

x [1—Rys(t; +k&t)5t]

ds(t]+k8t)} dR,
(13)

Given no other information about the varia-
tions in the fossil recovery rate, it is reason-
able to assume that at any time s(t) is equally
likely to have any value between 0 and some
arbitrary maximum value S. In this case, the
above expression reduces to

Hmm=ﬂjmﬂw&

K

o

R;S
k=1 2

- Blat)ary
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where F, is a constant. This expression can be
rewritten as

F(t,t))=F, J ' (R)Rye RSt =/24R,. (15)

Now to specify the prior on the mean
recovery rate. It might at first seem reasonable
to assume that R; is equally likely to have any
value between zero and some maximal value.
However, with this prior the function F is
sensitive to the arbitrarily chosen maximal
value. In order to make the posterior proba-
bility less explicitly dependent on the possible
range of fossil recovery rates, consider an
alternative prior with the following form:

7' (Ry)oc Ri]z {1 —e‘R’/Rcr.
Note that the term in the square brackets
prevents this function from becoming infinite
as R; approaches zero. In the limit where the
parameter R approaches zero, the final integral
in equation (15) becomes a constant, which
removes any explicitly preservation-dependent
terms in the expression for p. This choice of
priors is therefore equivalent to assuming that
t; — 1; is equally likely to have any positive
value. In the absence of other information, this
is not an unreasonable assumption to make, and
furthermore it has practical advantages for this
analysis. In particular, equation (8) reduces to
a very simple form (note we also make the
dependence on the previous node time explicit):

(| t-1 b)) =c 0(tj—1-1) O(t—1;), (17)

where ¢ is just a constant determined by the
normalization criterion:

JO p(tj | tj—1, tdy =1,

which requires that ¢ = 1/(t; — 1;-1), so the
posterior probability for 1; as a function of ¢;and
7j—1 can finally be written as

9(1]- —T]'_l)e(t] — ’Ej)
=11 '

(16)

(18)

Pt Tj-1.1y) = (19)
Equation (19) demonstrates that with the above
choice of priors, node j is equally likely to occur
any time between the age of the earliest fossil
representative of a taxon derived from that
node and the appearance of the previous node
in the cladogram. These are the weakest

possible constraints that can be placed on 7,
so this choice of priors should produce conser-
vative constraints on the node times. Other
choices of the prior n," based upon estimates of
the fossil recovery rate could potentially place
tighter constraints on the clade ages and should
be explored in future work. However, as will be
shown below, even this very simplistic formu-
lation can provide useful information about the
age of certain nodes in the cladogram.

Of course, equation (19) alone does not
provide any practical information about the
age of node j because it depends explicitly on
the age of the earlier node t;—;, which is a
priori an unknown parameter just like t;. To
obtain useful constraints on node times, it is
necessary to extend this analysis to the entire
cladogram. The probability that the earliest
fossil representatives of the various clades are
tIr tHr tIH/ tN/ given the node time T1, To, T3,

. 1, and the recovery rates r(t), ru(t), rm(t),
... ry(t) is simply a product of terms:

P(tI, tH, e tN | T1, T2, - .- Tps 1’1(1’), T’H(t), . FN(i’))
=P(t1 | 11, TI(t)) * P(tH | T2, Vll(t)) E O 3

P(tn | ta, (1), (20)
where each term P(t;I1;, 7)(t)) has the form
given by equation (2). The desired probability
distribution function for the t; is this expres-
sion multiplied by the appropriate priors and
integrated over all possible values for the (t).
Again, we can choose the priors on the 7(t)
such that the preservation-dependent terms
integrate to constants. Finally, the topology of
the cladogram suggests that we assume a
prior for the t; in which all possible combi-
nations of 1; are equally likely subject to the
constraintthat 11 < L < 13 < ... < 1,1 < Tp-
For practical reasons that will become evident
later, it is also useful to specify that the first
node in the cladogram cannot occur earlier
than a time 7, prior to #.

With these assumptions, the joint posterior
probability of all node times is given by the
product

. IN)

=p(t1 |70, tr) * p(T2 | T1, t1r) * ... %

p(Tla TZ) R T‘rl | TO& tIa tHa

p(tn | Ta-1, tn),
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FiGure 2. A graphical illustration of the proposed iterative method for computing the probability that a given node
occurs at a given time. Each of the three panels above shows the posterior probability distribution function (p.d.f.) of
one of the first three nodes in a cladogram like the one illustrated in Figure 1. These functions indicate the probability
that a given node occurred as a function of time, which in this case has arbitrary units. The ages of the earliest fossil
representatives of taxa I, II, and III are indicated at the top of the figure as #, t;, and ty;, respectively. The top panel
shows the p.d.f. of the age of node 1 (t;), which by construction is taken to be equally likely to occur at any time
between t; and an arbitrarily selected time 1, (here taken to be —700). The middle panel shows the p.d.f. of the age of
node 2 (1,) derived using the above p.d.f. for 1;. The dotted vertical lines indicate different possible values of 1;. For
each possible t; value, 1 is equally likely to occur at any time between t; and f;, which corresponds to a simple bar-like
p-d.f. (shown as horizontal bars in the plot). By summing together all the p.d.f.s for all different possible values of 1,
one can obtain the full p.d.f. for 1,. Similarly, the p.d.f. of 13 shown in the bottom panel is constructed from bar-like
p-d.f:s for different possible values of 1,. Note that in general different values of the prior node times will have different
probabilities, so the different p.d.f.s must be weighted appropriately prior to the summation. Graphically, this means
that each bar-like p.d.f in 13 covers a total area that is proportional to the probability of 1.

where the individual terms p(t; I1;-4, t)) are
given by equation (19). One can obtain an
explicit probability distribution function for
the age of the most recent node 1, from this
expression by integrating over all possible
values of the earlier node times:

p(Tn | TO) tIs tHa tN)
0 0 OO
= J J J ],’)(Tl,‘tz,...‘cn “Eo,tl,fﬂ,...tz\])
0 Jo

0

d‘fld‘fz...d‘[?nfl. (22)

Calculation of the Probability Distribution

Functions.—The most straightforward proce-
dure for evaluating equation (22) to obtain
probability distribution functions for the
individual node times is an iterative method
illustrated in Figure 2. This approach starts
with an explicit probability distribution func-
tion for the age of the earliest node in the
cladogram 14, which is equally likely to occur
anytime between the known age of the
earliest fossil representative of taxon I ()
and the assumed maximum possible age 1y <
t1. The posterior probability distribution for
Ty, given 1y and #;, is simply:
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0(t1 —10)0(t — 1)
tr—1o

p(t1| 0, t) = (23)

For a given value of 11, equation (19) tells us that

0(t2 —11)0(tn — 12)
th—11 ’

p(to1 | T, tn) = (24)

Integrating the overall possible values of 1,
yields the total probability of 1, occurring at a
given time, given 1o, ¢, and tyr:

p(t2|To, t, )

= J p(t2|t1, t)p(te |0, td 1. (25)
0

This process can then be repeated for each
subsequent node in the cladogram to obtain a
probability distribution function for each T,
that depends only on the known fossil ages
and the arbitrary parameter 1y:

p(ty | to, t, t, i) =

"
J p(t | T—1, tN)P(Tu—1 | 0, t1, tr1s - EN—1)ATH 1,

0
(26)

where p(t,, 11,-1, ty) is given by equation (19)
and p(t,—1 |, ty, ty ... fn—1) is the probability
distribution function for the prior node’s age
derived from the previous step in the analysis.
In principle, the relevant integrals could be
evaluated analytically, but in practice it is easy
enough to perform the calculations numerically.
A sample computer program that evaluates
the probability distribution functions for a
given set of t;and 1y is provided in the appendix.

Figures 2 and 3 provide examples of the
posterior probability distributions derived
with this method. The function for any given
node j abruptly goes to zero after t;, the age of
the earliest fossil representative of the taxa
derived from this node. This edge reflects the
hard constraint that the first fossil represen-
tative of taxon | must be more recent than
node j. The probability of t; is constant
between times f; and t;_;, because this
analysis effectively assumes that any node is
equally likely to occur at any time between
T;—1 (which must occur prior to t;—) and t;.
Prior to t;j—;, the probability of t; declines
monotonically toward zero. Heuristically, this
is because prior to t;_;, there is an increasing

likelihood that node j — 1 has not yet split,
and node j cannot occur until after 7t;_;.
Similarly, prior to t;_, there is an increasing
chance that neither node j — 2 nor node j — 1
have split, so the probability of 1;is even more
strongly attenuated. Thus for sufficiently
large j, we should expect that the probability
T; occurs as early as 1y will be extremely small
and the probability distribution should be
very insensitive to this parameter. Quantita-
tive estimates of the influence of 1y on this
analysis are discussed in the next section.

After computing the probability distribution
functions, one can compute various parameters
to estimate and constrain the age of each node by
using whatever criteria are appropriate to the
situation. However, because the functions de-
rived with this technique are asymmetric, I must
caution that different methods of computing
these parameters will yield different results, so
the procedures used to obtain these limits
should always be made explicit. In this paper I
define the age estimate as the point that bisects
the probability distribution function into two
equal areas, and define the older (younger) age
limit as the time where the probability of
obtaining an age older (younger) than the given
limit is 2.5%, so there is a 95% probability the age
of the node is contained between the two limits.

Extensions of the Basic Algorithm.—Although
the above example considered a simple case
of a perfectly resolved Hennig comb clado-
gram where t; < ty < tip < ... < ty (implying
perfect congruence between the cladogram
and the stratigraphic record), this method can
be extended to provide age estimates for
nodes of cladograms with more complex
topologies, unresolved nodes, and even in-
congruities between the cladogram and the
stratigraphic sequence.

Applying the above algorithm to cladograms
with more complex topologies is relatively
straightforward. For any given node in a
cladogram with arbitrary (well-resolved) to-
pology, an age estimate can be computed by
simply identifying the times t; with the ages of
the earliest members of the various outgroups
of the taxon under consideration.

If there are only a few unresolved nodes in
the cladogram, these can also be dealt with
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Ficure 3. Examples of the probability distribution functions discussed in the text. These distributions are computed
assuming the earliest fossil examples of taxa L, II, III, IV, etc. are equally spaced in time (dotted lines). Each panel shows
the probability distribution functions derived for a different node in the cladogram, and the solid and dashed curves
are the functions derived by using two values of 1, that differ by 100 units of time. Note that as the node number n
increases, the differences between the two curves get smaller, and the two curves become almost indistinguishable for
n greater than 5. This implies that 5 fossil outgroups are sufficient to provide a robust age estimate for a given node.
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rather easily. An unresolved node provides
insufficient topological information to deter-
mine which of several clades is the relevant
outgroup for any given taxon, so the most
logical way to handle these situations is to treat
this part of the cladogram as a single node, with
the earliest representative of any of the multiple
clades providing the relevant outgroup age.

On the other hand, if many nodes in the tree
are unresolved, so that multiple cladograms
with very different topologies are viable, then
the above approach for constraining node ages
will require more substantial modifications. If
one can assign relative likelihoods to the
different possible cladograms (perhaps using
Bayesian methods as discussed in Huelsen-
beck et al. 2001), then it should be possible to
combine the probability distribution functions
computed from the different cladograms into a
single age estimate for certain clades. This sort
of analysis is beyond the scope of this paper, so
at this point I will simply caution that the
reliability of the relevant cladogram should be
carefully evaluated prior to using the algo-
rithms described here.

Coping with incongruities between the
cladogram topology and the stratigraphic
record also requires careful consideration.
Say ... tj_p < t; < tj_1 < tpq ... so the earliest
representative of taxon | occurs earlier than
the earliest fossil of taxon | — 1. There are two
different ways one might handle such a
stratigraphic gap, which I will refer to as the
“consistent” and “conservative’” approaches.
With the “consistent approach” we recognize
that because the assumed cladogram requires
that the node leading to taxon ] — 1 must be
earlier than that leading to J, some member of
] — U’s clade existed as least as early as t;, and
we can extend a ““ghost lineage”” (Norell 1993)
back to this time. Therefore, we replace t; 4
with t; and proceed as usual. With the
“conservative approach” we simply ignore
taxon | — 1 and include only those fossil
outgroups that follow the correct stratigraph-
ic sequence. If the cladogram is well resolved
and well supported, then the consistent
method should obviously be preferred, as it
uses all the relevant data. However, if there
are uncertainties in the cladogram or many
inconsistencies with the stratigraphic record,

then it is less clear which approach is most
appropriate. If nothing else, the conservative
approach provides a way to gauge how
strongly the stratigraphically incongruent
taxa influence the age estimates. In lieu of a
full analysis of the relative merits of these
different approaches (which would require
dealing with uncertainties in the cladogram’s
topology), the following section includes a
preliminary study of certain aspects of both
methods” performance.

Finally, although the basic algorithm pre-
sented here does not require any specific
information about fossil recovery rates, such
information could be incorporated into the
age estimations as different priors on the r/(f)
parameters. For example, if there were sig-
nificant changes in the number of the relevant
fossiliferous localities over time, it might be
more appropriate to assume priors that result
in node j being equally likely to be found in
any of the localities dating between t; and
1j—1, rather than at any time between those
two events (see, e.g., Wagner 1995). In this
case, one could use the same basic algorithms
derived above, but interpret the parameters t;
and 1; as positions in the sequence of localities
(or depths in the stratigraphic column) rather
than as absolute times (as mentioned above).
Beyond this, there is an extensive literature on
estimating fossil recovery rates and how they
vary over time and across taxa (e.g., Solow
and Smith 1997; Foote 1997, 2001, Wagner
2000). However, incorporating such estimates
into this sort of analysis and exploring how
variable preservation rates might influence
the age constraints is a complex task and
therefore must be the subject of a future work.

Tests of the Algorithm and Sensitivity to
Assumed Parameters

To explore how the derived constraints on
the node ages depend on assumptions (such
as the parameter 19) and the sampling of the
fossil record, it is useful to consider some
concrete examples using simulated data sets.
These preliminary simulations do not test the
sensitivity of this method to uncertainties in
the clade topology or variations in recovery
rates over time and among taxa, so they
should not be considered exhaustive tests of
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the reliability and range of applicability of the
above algorithms. Nevertheless, these studies
demonstrate the utility of these algorithms
and suggest tests that could be done to gauge
the results’ sensitivity to unknown parame-
ters.

Sensitivity to to.—The parameter 1, specifies
the assumed maximum possible age of the
node closest to the cladogram’s root. It
initializes the algorithm and enables explicit
probability distribution functions to be de-
rived for the ages of all the other nodes in the
cladogram. All the age constraints derived
with this method therefore depend to some
extent on the arbitrarily chosen value of To.
However, different nodes in the cladogram
do not have the same sensitivity to ty. For
example, the solid and dashed lines in
Figure 3 show the probability distribution
functions derived from a simple cladogram
(with equally spaced t)) assuming two differ-
ent values of 1j. Clearly the two probability
distribution functions of t; derived by this
method are very different. However, the
probability distribution functions for the
other nodes are more similar to each other,
and for nodes 5 and 6, the two functions are
almost indistinguishable. The latter probabil-
ity distribution functions are already well
below their peak values at 1o, so it is relatively
unlikely that these nodes will occur as early
as Tg. Therefore, it should not be surprising
that the exact value of this parameter has
limited effects on the shape of these functions.

To better quantify the sensitivity of the
probability distribution functions to 1y, I
computed the older limit of the confidence
interval for each node, assuming two values
of 1y that differ by Aty. I then determined the
difference in the older limit between these
two cases and divided that number by At (I
do not consider the younger limit here
because it is much less sensitive to Tg).
Figure 4 shows a plot of the resulting ratios
as a function of node number. For the first
node this ratio is essentially 1, because the
older limit on 1, is tg. However, for the other
nodes this ratio is less than unity, and indeed
the ratio monotonically decreases with in-
creasing n. For n = 6, this ratio is about 0.1,
meaning that an uncertainty in 1t of 100 Myr
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FiGURE 4. The sensitivity of the older limit on 1, to the
assumed value of 1p. Each point on this plot shows the
ratio of the change in the older limit on a given 7, to the
change in the assumed 1. The monotonic decline in this
ratio with node number confirms that the older limits on
the ages of nodes with sufficient numbers of outgroups
are largely independent of the assumed 1,. This graph
was constructed with the assumption that the earliest
fossil examples of the taxa are equally spaced in time.
Assuming different values for fossil ages changes the
exact values of the ratios, but does not change the
overall trend.

would correspond to an uncertainty in the
older limit of ts of only 10 Myr. Note that
although the data shown in Figure 4 assume
that the ages t; are regularly spaced in time,
trials using t; with increasingly large or small
spacings show the same qualitative trend.

Of course, the degree of uncertainty one is
willing to tolerate in 1, or the chosen node age
will depend on the specific situation, but as a
rule of thumb it appears that any node with 5
or more outgroups in the cladogram should
have an age estimate that is reasonably
insensitive to the assumed 713 Even so,
because the calculation of a node age is not
computationally intensive, I strongly urge
that anyone using this method try several
different values of 1y to determine precisely
how sensitive the result is to this parameter
and whether the uncertainty in 1o will be an
issue in their particular analysis.
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Ficure 5. This plot shows the age limits derived for one node from a collection of simulated cladograms. Each
cladogram consists of a series of nodes separated by 10 Myr, giving rise to a series of taxa that last for a random interval
between 0 and 100 Myr. The last node occurs at 100 Ma and is assumed to give rise to taxa that persist to the present. A
common sampling rate is assumed for all the taxa. The symbols show some of the younger (pluses) and older
(diamonds and triangles) limits on the age of the final node derived from individual simulations using the methods
described in the text. Note that the younger limits derived from the consistent and conservative approaches are almost
identical and so are not plotted separately on this graph. The lines show the average value of the limits as a function of
sampling rate. The mean younger limit on the node age moves further into the past as the sampling rate increases,
while the mean older limit becomes moves closer to the present, as desired.

Trends with Sampling Rates.—If this method
yields reasonable confidence intervals on the
clade ages, we should expect that the limits
on the age of a given node will converge
toward the true age of the node as the fossil
sampling and recovery rates improve. To
verify that this is indeed the case, the above
analysis was run on a collection of simulated
cladograms. Each cladogram has the basic
topology shown in Figure 1, with a series of
nodes that are assumed to be equally spaced
in time (with 10 Myr between each node) up
to a final node that formed 100 Myr ago. For
simplicity, I assume a common sampling rate
for all lineages in this cladogram. For each
simulation, I assume the taxa derived from
the last node persist until the present day
(when they are always recovered), assign a

randomly determined duration between 0
and 100 Myr to each taxon derived from all
earlier nodes, choose a number of fossil
specimens for each taxa using the appropriate
Poisson distribution for a given sampling rate
and distribute the fossils uniformly along the
duration of the lineage. Finally, using the
techniques described above, I compute the
probability distribution function and age
limits for the final node in the cladogram.
Both conservative and consistent approaches
are used.

Figure 5 plots the limits derived from these
simulations as a function of the assumed
sampling rate. The results of individual runs
(40 per sampling rate) are shown as symbols
and the lines show the average value of the
individual runs as a function of the sampling
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rate. Note that younger limits from the
simulations are almost always more recent
that the true age of the node (100 Myr ago),
and the older limits from both the conserva-
tive and the consistent approaches are almost
always earlier than the true age of the node.
This suggests that these limits can provide
reliable constraints on node ages. We also
note that for sampling rates below roughly
0.05/Myr, both the older and younger confi-
dence limits converge toward the true age of
the node, as desired.

Because the younger limit on the node’s age
is set by the age of the oldest fossil represen-
tative of the taxa derived from that node, it
makes sense that the younger limit on the age
steadily moves backward in time as the
sampling rate improves. The trends in the
older limits, by contrast, result from a more
complex interaction between two processes.
On the one hand, improving the sampling
rate means that the earliest members of a
given lineage will typically be found at earlier
times, causing the t; to move back in time and
driving the older limit earlier. On the other
hand, increasing the sampling rate will also
result in the recovery of additional taxa,
increasing the number of outgroups within a
given time span and thus moving the older
limit later in time. In these simulations, the
latter effect wins out for sampling rates below
about 0.05/Myr, producing the desired trend
of increasingly tight limits on the age of the
node.

These simulations also indicate that when
the sampling rate is above 0.05/Myr, the
older limit saturates at a value roughly
20 Myr before the true age of the node,
whereas the younger limit continues to move
to earlier times. This is partially a limitation of
the simulations, which assumed that internal
branches in the cladogram are never sampled.
Thus, in the limit of perfect sampling, the first
fossil representative of the taxa derived from
the final node will appear 100 Myr ago and
the first fossil representative of its various
outgroups will occur at 110 Ma , 120 Ma, and
so on. In this limit, the probability distribu-
tion function on the node age reaches a
limiting form with an older limit around
120 Ma. Although this limiting case is clearly

unrealistic, it does demonstrate an important
limitation of the method proposed here.
These algorithms are most likely to produce
confidence intervals that converge toward the
true node age if it is probable that additional
outgroups will be discovered. By contrast,
methods that explicitly include sampling
rates (e.g., Strauss and Sadler 1989) are more
appropriate if the fossil recovery rate is
sufficiently good that it is unlikely that
additional outgroup taxa are going to be
recovered (or if direct ancestor-descendent
relationships between taxa are expected).
Additional simulations (using 1000 repli-
cates for each sampling rate) provide more
quantitative data on the validity of the older
limits derived by this analysis. Given the
criteria used to define this older limit, one
expects that these will be more recent than the
true node age 2.5% of the time. In reality, for
simulations with sampling rates between
0.006/Myr and 0.03/Myr, the older limit is
more recent than 100 Ma in roughly 2% of the
simulations when the consistent approach is
used and only 0.5% of the simulations when
the conservative approach is used. The results
for the consistent approach are close to
expectations, perhaps a little low because of
the conservative priors assumed for the fossil
recovery rates. The lower value for the
conservative approach confirms that this
approach gives more conservative constraints
on the node age. At sampling rates above
0.03/Myr or below 0.0006/Myr the percent-
age of simulations with upper limits more
recent than 100 Ma decrease to below 0.1%.
For high sampling rates, this reflects the
limitation of the simulations discussed above.
For low sampling rates it becomes unlikely
that any fossil is recovered anytime in the
interval between the node’s true age and the
present, so the only evidence for taxa derived
from the node of interest comes from the
specimens assumed to be recovered at the
present. Such a situation violates the assump-
tions of the above calculations, so deviations
from predictions are not unexpected. These
models therefore indicate that the consistent
approach provides a reasonable older limit on
the node time for the range of recovery rates
where the assumptions behind this model are
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justified, and provides conservative con-
straints on the node age outside of this range.

Although the consistent approach yields
limits with the appropriate significance in the
above simulations, this result is somewhat
dependent on the durations and node spac-
ings of the assumed lineage. If the time
interval between adjacent nodes is decreased
relative to the lineages” mean duration, then it
becomes more probable that the ages of the
earliest fossil representatives of the various
outgroups will be found out of the expected
stratigraphic sequence. This could potentially
make the consistent approach more likely to
underestimate the older limit on the node age.
Simulations where the interval between two
nodes in the cladogram were reduced by a
factor of two (to 5 Myr) while keeping the
lineages durations the same confirm that this
in fact occurs, and also show that the
conservative approach continues to produce
more conservative older limits. These results
indicate that the limits derived with this
method are most reliable when the fossil
record is stratigraphically consistent with the
cladogram, and the consistent approach in
particular should be used with caution when
many taxa are out of the expected strati-
graphic sequence.

Application of the Algorithm to the Origin of
Placental Mammals

To demonstrate how this method can be
applied to actual fossil data, let us consider
the origin of placental mammals. The se-
quence of outgroups used in this analysis
derive from two cladograms of stem Mesozo-
ic eutherians from the recent literature, both
of which contain at least five stratigraphically
consistent outgroups to placentalians (Ji et al.
2002; Wible et al. 2007). The Ji et al. (2002)
cladogram only contains a single placentalian
(Erinaceus), which has the Cenozoic Protungu-
latum as a sister group. The Wible et al. (2007)
cladogram shows the Cenozoic animals Pro-
tungulatum, Purgatorius, and Oxyprimus form-
ing an outgroup to Placentalia, but the
authors cannot rule out a cladogram with
these animals located inside Placentalia (see
supplemental online material of Wible et al.
2007). To keep things simple, we will treat

Protungulatum, Purgatorius, and Oxyprimus as
““Cenozoic allies”” of Placentalia and consider
the age of this entire clade, whose earliest
members date back to approximately 65 Ma.
Table 1 lists the sequence of outgroups to
this placental clade in the two cladograms,
with ages obtained from Kielan-Jaworowska
et al. (2004). Both cladograms have at least
one outgroup that is out of stratigraphic
sequence, so we tabulate the dates used in
the consistent and conservative approaches
separately for clarity (note the Ji et al. 2002
cladogram also contains one trichotomy).

Results and Discussion

Figure 6 shows the probability distribution
functions derived from the fossil outgroup
data, and the corresponding age estimates
and limits are included in Table 1. As
expected, the conservative approach yields
somewhat looser constraints and higher age
estimates than the consistent approach.

Given that the two sequences of outgroups
are quite different, it is perhaps surprising
that the two cladograms give very similar
estimates for the age of modern placentalians
and their Cenozoic allies, with central values
ranging from 74 to 79 Ma, younger limits at
65-66 Ma, and older limits between 88 and
98 Ma. Upon closer inspection, we can see
that in both cladograms numerous outgroups
date back to ca. 90 Ma, causing all the
probability ~distribution functions to be
strongly attenuated before this time. In fact,
the primary difference between the two
cladograms for the purposes of this analysis
is that the Wible et al. cladogram has the first
outgroup (Gypsonictops) dating back to 76 Ma,
whereas the Ji et al. data has its first outgroup
(Eoungulatum) at 87 Ma. This leads to the
narrower probability distribution function for
the Wible et al. analysis and the somewhat
more recent age estimate.

We may compare these results with the
recent molecule-based estimates for the origin
of modern placental mammals tabulated in
Springer et al. (2003). This source provides
multiple age estimates based on different
subsets of their molecular data. For the full
data set, the estimated age and 95% confi-
dence interval for the base of Placentalia is
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TabLe 1. Data used to estimate age of Placentalia.

Consistent Conservative
Outgroup” Earliest age” Assumed date’ (Ma)  approach (Ma) approach (Ma)
Ji et al. 2002 cladogram
Eoungulatum Coinacian 87 87 87
Aspanlestes L. Turonian 90 90 90
Gypsonictops/Cimolestes Judithian 76 90 —
Daulestes L. Turonian 90 90 90
Montanalestes” Aptian-Albian 112 112 112
Eomaia M. Barremian 125 125 125
Estimated age of Placentalia (and Cenozoic allies)’ 78 (66-93) 79 (66-98)
Wible et al. 2007 cladogram
Gypsonictops Judithian 76 76 76
Zalambdalestidae L. Turonian 90 90 90
Deccanolestes Maastrichtian 69 90 —
Asioryctitheria etc. Coniacian 87 90 —
Eozhelestes E. Cenomanian 97 97 97
Zhelestidae L. Turonian 90 97 —
Montanalestes Aptian-Albian 112 112 112
Bobolestes L. Albian 100 112 —
Eomaia M. Barremian 125 125 125
Estimated age of Placentalia (and Cenozoic allies)’ 74 (65-88) 76 (66-98)

?Possible Cenozoic outgroups including Protungulatum not included (see text).

" Earliest ages of each outgroup are derived from Kielan-Jaworowska et al. (2004).

€ Assumed date used for calculations presented here, based on the formations recorded in the previous column.

9 As earliest member of trichotomy involving Zalambdalestidae.

€ Age estimates assume the earliest Placentalian fossil are from 65 Ma and use 1o = 150 Ma; varying 1o between 130 Ma and 170 Ma shifts the older limit by
less than 3 Myr and the younger limit by less than 1 Myr.
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FIGURE 6. Probability distribution functions of the age of the last common ancestor of placental mammals and their
Cenozoic allies assuming outgroups from cladograms in Ji et al. (2002) and Wible et al. (2007) and outgroup ages
contained in Table 1. Functions calculated with the consistent and conservative approaches are shown as solid and
dashed lines, respectively. The units on the y-axes are per million years.
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107 (98-117) Ma, but some subsets (for 3’
UTRs and mitochondrial RNA) give ages as
low as 97 (86-109) Ma. These lower dates
from some of the molecular data subsets do
overlap with the older limits from this
analysis, but even in these cases the hypoth-
esis that the two dates are consistent is
disfavored (the probability of no difference
being less than 10%). However, this analysis
suggests that the magnitude of the difference
between the two age estimates may be smaller
than previously considered. The fossil-based
age limits derived here indicate the present
fossil evidence cannot rule out the possibility
that placentalians and their Cenozoic allies
originated as much as 20 or even 30 Myr
before the K/T boundary. If the last common
ancestor of placentalians did live this long
ago, then the molecular estimates would only
be off by 20 Myr (or about 25%), not 40 Myr,
as would be required to move the base of
Placentalia all the way to the K/T boundary.

Again, I must remind the reader that the
age estimates derived here rest on several
assumptions, and these must be carefully
evaluated. Obviously, this includes the as-
sumed priors on the fossil recovery rates and
node ages. As noted above, the priors
assumed for this analysis tend to be conser-
vative, so other priors, which might be based
on estimates the preservation and fossil
recovery rates, will tend to tighten the limits
on the age of Placentalia and increase the
discrepancy between the fossil and molecular
evidence.

A bigger issue is that a given age estimate is
based on a particular cladogram, so the
estimate is sensitive to the topology of the
resulting tree. In this example, two different
cladograms gave similar results, which may
give us some confidence in the reliability of
these calculations. However, the topologies of
these two cladograms were similar in that all
of the Mesozoic animals formed a highly
nested set of outgroups to Placentalia. If some
Mesozoic eutherians are not outgroups to
Placentalia but instead part of it (Archibald et
al. 2001; Archibald 2003), then the age
estimate will shift significantly earlier. (Un-
fortunately, the cladograms showing this
pattern contain insufficient stratigraphically

consistent fossils below the base of Placentalia
to derive a robust date with the present
method.) Also, if the eutherian cladogram
had fewer discrete outgroups leading to
Placentalia, the age estimate would tend to
move earlier. Conversely, if more of the late
Cretaceous and early Cenozoic eutherians
turn out to be closely related outgroups to
Placentalia and not part of Placentalia itself,
the age estimate will shift later, perhaps more
consistent with “explosive’”” models of pla-
centalian origins (Archibald and Deutschman
2001). An exhaustive analysis of the consis-
tency between the molecular analyses and the
fossil analysis would therefore have to ac-
count for uncertainties in the topology of the
eutherian phylogeny. Even though such an
analysis is beyond the scope of this report, the
age estimates presented here demonstrate
that this technique can be a useful way to
investigate the consistency between molecu-
lar age estimates and fossil evidence.

Conclusions

The algorithms presented here provide a
way to constrain the ages of nodes in a
cladogram based on the ages of the earliest
fossil specimens of that clade’s outgroups.
The age estimate for the last common
ancestor of modern placentalians and their
Cenozoic allies derived by using this method
permit us to quantify the significance and
magnitude of the difference between molec-
ular-based age estimates and the fossil
evidence. Of course, additional work still
needs to be done to verify whether the age
estimates derived with this method are
reliable. In particular, it will be important
to evaluate how uncertainties in the clado-
gram topology and variations in the fossil
recovery rate in time and space affect the age
estimates derived with this method. Even so,
some form of these algorithms could be
useful for a wide range of applications,
including calibrating DNA-based age esti-
mates and identifying times of rapid clado-
genesis. Furthermore, because the calcula-
tions presented here are not computationally
intensive, anytime researchers create a suffi-
ciently deep, well-resolved, and stratigra-
phically consistent cladogram of fossil taxa,
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they could easily also provide age estimates
for all of the nodes sufficiently far from the
root.
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Appendix
Sample Code for Computing Clade Ages

This is the basic algorithm for calculating the probability
distribution function for a given clade, written in the R computing
language (thanks to M. Foote for translating the original IDL
script into this form).

#declare function

nodeage<-function(tsteps,tnodes,t0)

#function returns p.d.f. for node ages

#t0 is an arbitrary oldest age to consider

#tnodes are the ages of oldest known fossil stemming from
each node

#tsteps is a vector of arbitrary time steps on which the p.d.f. is
calculated

{
nn<-length(tnodes)
nt<-length(tsteps)
pnodes<-matrix(0,nn,nt) #initialize array
# first get pdf for node 1, at discrete values
ii<-which(tsteps > t0&tsteps<tnodes[1])
pnodes|[1,ii]<-1.0/length(ii) #assume uniform distribution
for (i in 2:nn) #cycle through remaining nodes
{
for (j in 1:nt) #cycle through series of time steps
{
p21<-rep(0,nt) #initialize vector
ii<-which(tsteps > = tsteps|j]&tsteps<tnodes][i])
p21[ii]<-1.0/length(ii)*pnodes|[(i-1),j]
#cond. probability of this age, given previous node age,
#times prob. of previous node age
pnodes]i,ii]<-pnodesl[i,ii[+p21[ii]
#add to cumulative sum
}
}

list(pp = as.vector(pnodes[nn,]))

#return the p.d.f. vector for the youngest node

}



