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ABSTRACT: In August 2009 the Sun illuminated Saturn’s rings from almost exactly edge-on,

revealing a subtle corrugation that extends across the entire C ring. This corrugation’s amplitude is

2-20 m and its wavelength is 30-80 km. Radial trends in the corrugation’s wavelength indicate that

this structure –like a similar corrugation previously identified in the D ring– results from differential

nodal regression within a ring that became tilted relative to Saturn’s equator plane in 1983. We

suggest that this initial tilt arose because interplanetary debris struck the rings. The corrugation’s

radial extent implies that the impacting material was a dispersed cloud of debris instead of a single

object, and the corrugation’s amplitude indicates that the debris’ total mass was ∼ 1011-1013 kg.

The Cassini spacecraft obtained numerous images of Saturn’s rings within a few months of

Saturn’s equinox in August 2009, when the Sun illuminated the rings from almost exactly edge-on.

Many of these observations were designed to investigate ring features that would be highlighted by

this unusual lighting geometry, such as shadows cast by embedded moonlets or inclined ringlets.

Among the most surprising structures revealed by these images was a series of regularly spaced

bright and dark bands extending throughout the entire C ring (Fig. 1). Because this periodic

banding was not seen in earlier Cassini images, it cannot be ascribed to simple variations in the

ring’s density or optical depth. Instead, these bands appear to be caused by a vertical corrugation

extending across the entire C ring. Broad-scale corrugations have previously been identified in

Saturn’s D ring [1] and Jupiter’s main ring [2]; both these structures appear to have formed within

the last few decades when the relevant ring suddenly became tilted relative to its planet’s equatorial

plane [1, 3]. The C-ring corrugation seems to have been similarly generated, and indeed it was

probably created by the same ring-tilting event that produced the D-ring’s corrugation.

1



The amplitudes and wavelengths of the C-ring’s periodic brightness variations have been mea-

sured using Fourier analyses of selected images (see SOM text 1). The amplitudes of the observed

brightness variations change with viewing and illumination geometries as expected for a vertically

corrugated ring (see SOM text 2). The corrugation amplitudes derived from a simple photo-

metric model range between 2 and 20 m throughout the C ring (Fig. 2a; SOM text 2 describes

systematic uncertainties associated with these estimates), and are thus well below the few-hundred-

meter amplitudes of the previously identified D-ring corrugations [1]. Meanwhile, the corrugation

wavenumber systematically decreases with increasing distance from Saturn throughout the entire

C ring (Fig. 2b), suggesting that the observed corrugations are part of a single coherent structure.

Extrapolating the observed trends interior to the C ring, the predicted wavenumber is close to the

expected wavenumber of the previously-observed, larger-amplitude D-ring corrugation. The latter

has been interpreted as the result of differential nodal regression of an initially inclined ring [1],

which suggests that the C-ring corrugations could have been produced by the same process (Fig. 3).

Indeed, the radial trends seen in Fig. 2b are consistent with such a model.

A corrugation produced by differential nodal regression of an initially inclined ring should have

a radial wavenumber given by (see [1] and SOM text 3)

kz =

∣∣∣∣∣∂Ω̇
∂r

∣∣∣∣∣ δt, (1)

where δt is the time that has elapsed since the ring was an inclined sheet, and Ω̇(r) is the local nodal

regression rate. To first order, Ω̇ is determined by Saturn’s quadrupole gravitational harmonic J2

[4, 5], so Eq. 1 can be approximated as:

kz '
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(
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r

)2

δt, (2)

where G is the gravitational constant, Ms is Saturn’s mass, r is the ring radius and Rs is the

assumed Saturn radius used to normalize J2. Thus a corrugation produced by differential nodal

regression should have kz ∼ r−9/2. Including contributions from all Saturn’s measured higher-order

gravity harmonics [6] yields the solid curves in Figs. 2b and c, which differ slightly from the trend

calculated above and match the observed data to within 3%.

The largest deviations from this model include a quasi-periodic wavenumber modulation in

the middle C ring and a cluster of low wavenumber values in the outermost C ring (r > 90,000

km, Fig. 2c). These residuals are correlated with the optical depth structure of the ring (compare

Figs. 2c and 2e), and can be ascribed to the C-ring’s finite surface mass density σ. The ring’s gravity
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modifies the local nodal regression rates, producing perturbations to the corrugation wavenumber:

δkz
kz

=
πG

2ν

(
−∂σ
∂r

+
3σ
r

)
δt, (3)

where ν is the vertical epicyclic frequency (see SOM text 3). If we assume the ring’s optical depth τ

is proportional to its surface mass density σ, then the largest negative residuals in the corrugation

wavenumber should occur where the optical depth has the most positive slope and vice versa, as

observed. Furthermore, the magnitude of the measured residuals would require that the middle

C-ring has σ ∼3-6 g/cm2 (see SOM text 4), consistent with previous estimates [7, 8].

If we only consider regions where the predicted δkz/kz caused by the ring’s self-gravity is less

than 0.2% (Fig. 2d and SOM text 5), the wavelength estimates are fully consistent with predicted

trends based on current estimates of Saturn’s gravity field [6]. We may therefore use Eq. 1 to

determine how long ago the C-ring was a simple inclined sheet: Julian Date 2445598±40, or Day

263±40 of 1983 [9]. This is within a year of the inclined sheet epoch derived from the previously

observed temporal variations in the D-ring’s corrugation wavelength [1], and the difference between

the two estimates may be attributed to the excess variance in the D-ring wavelength estimates

derived from images taken in different viewing geometries [1]. It is therefore reasonable to conclude

that the corrugations in both the C and D rings were generated by the same ring-tilting event.

Saturn was near solar conjunction during the latter half of 1983, and thus could not be seen

clearly from Earth. Archived images therefore cannot provide direct information about any event

that might have caused the rings to become tilted relative to Saturn’s gravitational equator. How-

ever, any acceptable scenario must be able to produce a tilt across a wide swath of the ring in a

short period of time compared to the local orbital precession periods (which range between two

weeks to one month). Preliminary calculations suggest that Saturn’s equator is unlikely to shift

appropriately due to either external torques on Saturn or mass redistribution within the planet

(see SOM text 6). Furthermore, recent analyses of Galileo data indicate that Jupiter’s rings be-

came tilted around the time comet Shoemaker-Levy 9 struck the planet in 1994 [3]. We therefore

investigate scenarios in which the rings became tilted relative to Saturn’s equator plane due to

interplanetary debris impacting the rings in 1983.

The estimated corrugation amplitudes in the C ring (Fig. 2a) indicate that the entire C ring was

initially tilted relative to Saturn’s equator plane by an angle δθ between 2∗10−8 and 3∗10−7 radians.

Assuming a ring surface mass density of ∼5 g/cm2 (see above), the ring’s angular momentum would

need to re-orient by δLr ∼ 1023 kg m2/s to produce this tilt. While a reasonably dense (∼ 1 g/cm3)

1-km-wide object traveling at typical impact speeds through the rings (∼40 km/s, comparable to
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the escape speed from Saturn) would carry sufficient angular momentum to produce the required

δLr, it is unlikely that an intact comet or meteoroid could have produced a feature as radially

extensive as the observed corrugation. A compact object ∼1 km across passing through the C ring

would only interact with a small patch of the rings containing ∼ 10−3 the mass of the impactor,

so any debris from this collision would follow essentially the same trajectory as the pre-impact

projectile. Thus most of the incoming object’s momentum would escape in the debris from the

collision and not be imparted to the rings, and no large-scale tilt would be established. However, if

the rings encountered a diffuse cloud of debris instead of a single solid object, then material would

have rained down across a range of radii, producing a tilt that could ultimately form an extensive

corrugation. The incoming debris would also interact with a much larger area of the rings and a

much greater mass of ring material, so more of the momentum carried by the debris should remain

in the ring instead of departing from the Saturn system. Such a scenario could even explain the

differences in the corrugation amplitudes between the C and D rings. Assuming the momenta from

the incoming particles are efficiently transferred to the rings (see SOM text 7), the tilt induced by

a given debris flux should be directly proportional to the ring particles’ aggregate cross section and

inversely proportional to their total mass. The larger amplitude of the D-ring corrugation could

therefore arise simply because of the sub-millimeter-wide particles in the D ring [1] have much

higher surface-area-to-volume ratios than the centimeter-to-meter-sized C-ring particles [10].

The viability of this explanation for the ring’s initial tilt can be evaluated by estimating the

total debris mass required to produce the observed corrugations. For rings of modest optical depth

like the C ring, the angular momentum delivered into the rings by a debris cloud of mass mc can

be expressed as:

Lc = DF τmcvcr, (4)

where vc is the mean impact speed of the incoming material, r and τ are the orbital radius and

normal optical depth of the ring and DF is a dimensionless parameter that depends on the longitu-

dinal distribution of the impacting material. For a homogeneous debris cloud, DF ∼ 0.1 for a wide

range of plausible approach trajectories and speeds (see SOM text 7), and could be higher if the

cloud has substantial substructure. Assuming DF lies between 1 and 0.01, and further stipulating

that Lc ' δLr ∼ 1023 kg m2/s, vc ' 40 km/s and τ ∼ 0.1 (see Fig. 2e), we find that the total

mass of the debris cloud would need to be 1011-1013 kg in order to produce the observed C-ring

corrugation.

Debris clouds with masses of order 1012 kg were produced during the break-up of Shoemaker-

Levy 9 in 1992 [11, 12] and the major outburst of comet 17P/Holmes in 2007 [13]. The rate

at which Saturn would encounter such massive clouds is quite uncertain, but let us consider the
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specific scenario where a 1-km wide comet nucleus was captured into orbit around Saturn, broke

apart during a close periapse passage (due to planetary tides or a collision with the rings), producing

∼ 1012 kg of debris on bound orbits that crashed into the rings on a later periapse [14]. While the

rate at which captured cometary debris impacts Saturn has not yet been thoroughly investigated in

numerical simulations, existing studies indicate that roughly 4% of the comets that impact Jupiter

had previously passed close enough to the planet to be disrupted [15], the impact flux at Saturn

is about 40% the flux at Jupiter [16, 17], and the fraction of impactors on bound orbits is about

an order of magnitude less for Saturn than it is for Jupiter [18, 19, 20]. Together, these results

indicate that Saturn should encounter debris clouds derived from comets disrupted by previous

planetary encounters at a rate that is roughly 0.2% of Jupiter’s impact rate. The 2009 detection

of a fresh impact scar at Jupiter suggests that 1-km-wide objects may strike Jupiter as often as

once a decade [21]. In this case, the clouds of orbiting debris created by the disruption of a 1-

km-wide comet should rain down on Saturn’s rings once every 5,000-10,000 years. The probability

that debris from a previously-disrupted comet would hit Saturn’s rings in the last 30 years would

then be between roughly 1% and 0.1%, which is not very small. Such scenarios therefore provide a

reasonable explanation for the origin of the observed corrugation in Saturn’s C ring.
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Figure 1: Mosaic of images of Saturn’s C ring obtained during Cassini’s orbit 117, along with
close-ups of selected radial regions showing the periodic bright and dark bands that permeate the
entire C ring. The contrast has been adjusted in each close-up image to better show the periodic
structure. Horizontal bands within these close-ups are camera artifacts. [22]
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Figure 2: Corrugation parameters versus radius in the rings (distance from Saturn’s spin axis) derived from
three observations taken on three different Cassini orbits around the time of Saturn’s equinox (see SOM
text 1 and 2 for analysis procedures): (a) corrugation amplitude Az, (b) corrugation wavenumber kz and
(c) scaled corrugation wavenumber k′z = kz/ko ∗ (r/ro)9/2, where ko = (2π/40)km−1 and ro = 80,000 km
are constants chosen to normalize k′z to approximately unity at equinox. In these plots, each data point
is computed from a Fourier analysis of a 500-km-wide ring region, so adjacent data points from the same
observation, which are separated by only 100 km, are not independent. No amplitudes are plotted for the
Orbit 116 data because the extremely low Sun-opening angle during these observations complicates the
photometry (see SOM text 2). (d) Estimates of the rescaled corrugation wavenumber on JD 2455054 at
locations in the ring where the finite mass of the ring is negligible (see SOM text 5). The solid curves in
panels (b), (c) and (d) are the predicted wavenumber of a vertical corrugation produced by differential nodal
regression of an inclined ring that existed at JD 2445598, assuming the standard model of Saturn’s gravity
field [6] with Jn = 0 for n > 8 . In panel (d), the dashed curve shows a similar prediction assuming J8 = 0
instead of J8 = −0.00001 (e) Normal optical depth profile of the C ring measured by the Voyager Radio
Science Subsystem (obtained from the Planetary Data System rings node).
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Figure 3: Cartoon representation of how differential nodal regression produces a vertical corrugation
from an initially inclined ring. The top image shows a simple inclined ring (the central planet is
omitted for clarity), while the lower two images show the same ring at two later times, where the
orbital evolution of the ring particles has sheared this inclined sheet into an increasingly tightly-
wound spiral corrugation.
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Supporting Text 1: Data-Reduction Techniques

Imaging data reduction

Our study is based on radial brightness profiles derived from images obtained by the Narrow-Angle

Camera (NAC) of the Imaging Science Subsystem (ISS) onboard the Cassini Spacecraft [22]. Images

from the observation sequences in Table S1 were calibrated using routines that remove instrumental

backgrounds, flat-field the images and convert the data numbers into I/F , a standardized measure

of reflectivity that is unity for a Lambertian surface viewed at normal incidence [22]. Individual

images are then geometrically navigated using stars in the field of view and fiducial ring features.

Finally, the brightness data are averaged over a range of longitudes to determine the mean brightness

of the ring versus radius.

Fourier analysis of radial profiles

The relevant brightness profiles all show periodic brightness variations. Fourier analysis is the most

obvious way to isolate and quantify these structures. However, since the wavelength of this pattern

is a continuous function of radius, and furthermore because other structures are present in the ring

besides the corrugation, the radial profiles need to be processed prior to computing the Fourier

transform.

First, the radial profile is high-pass filtered to remove any background slopes or broad-scale

trends in the data that could complicate the Fourier analysis. This is done by subtracting a

boxcar-smoothed version of the radial profile from the original data. The smoothing length scale

is chosen to be 200 km, which is 2-5 times the wavelength of the observed pattern. The results of

this analysis do not change significantly so long as this parameter is not too small.

Table S1: Overview of the Geometry of the C-ring observations
Orbita Observationb Obs. Date Phase Angle Bc

� Bd
C φeobs φf� φgC

100 MNRNGSHAD004 2009-012 71.9◦-79.2◦ -3.24◦ 66.6◦-63.6◦ 343.1◦-93.1◦ 218.1◦ 256.5◦-276.5◦

114 MNRNGSHAD004 2009-192 23.7◦-24.6◦ -0.47◦ 22.9◦-24.0◦ 135.9◦-141.1◦ 223.6◦ 216.1◦-217.0◦

116 EQXSHADOW001 2009-222 152.1◦-151.5◦ -0.01◦ -4.1 ◦- -4.3◦ 102◦-112◦ 224.5◦ 21.6◦-22.1◦

117 EQXSHADOW013 2009-239 11.6◦-9.8◦ +0.26◦ 7.1◦-7.9◦ 303◦-312◦ 225.1◦ 226.0◦-231.1◦
a Orbit of Cassini around Saturn
b Name of observation sequence, individual filenames are given in Tables S2 and S3.
c Solar elevation angle above the ring plane.
d Spacecraft elevation angle above the ring plane.
e Inertial longitude (relative to the rings’ ascending node on J2000) of the observed point in the
ring.
f Inertial longitude of the sun in the rings.
g Inertial longitude of the spacecraft in the rings. Note longitude ranges of orbit 116 and orbit 117
data are for the portions of images used in the radial scans.
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Second, the measured radial positions r in the ring are converted into a re-scaled distance

parameter d:

d =
2
7
r

λo

(
ro
r

)9/2

, (S1)

where λo and ro are constants. The “rescaled wavelength” of a periodic structure measured in this

transformed coordinate system is:

λ′ =
λ

λo

(
ro
r

)9/2

, (S2)

where λ is the true radial wavelength. Based on the observations discussed in the main text,

λ scales approximately as r9/2, so λ′ is approximately constant. This transformation therefore

allows Fourier analyses to be performed on longer stretches of data without encountering difficulties

associated with position-dependent wavelength drifts, enabling us to obtain more precise wavelength

measurements. For this particular analysis, the parameters in the transformation are chosen to be

λo = 40 km and ro = 80,000 km. This normalizes the rescaled wavelength λ′ to be approximately

unity throughout the C ring during the equinox epoch. We also define a re-scaled wavenumber

k′ = 1/λ′, which is also approximately unity during the equinox epoch.

After high-pass-filtering the data and re-scaling the radius scale, an over-resolved Fourier spec-

trum of the selected data is computed by evaluating the Fourier transform for a tightly spaced

array of λ′ values (δλ′ = 0.001). These spectra typically show a strong peak near λ′ = 1. This peak

is then fitted to a Guassian in order to obtain estimates of the pattern’s wavelength and amplitude.

Only data having λ′ within ±0.1 of the peak location and above 0.5 of the peak amplitude are

included in the fit. The fitting routine then returns the following parameters:

• The mean orbital radius of the analyzed data set.

• The median I/F of the analyzed data MI/F .

• The location of the peak in the Fourier spectrum, which is an estimate of λ′.

• The amplitude AI/F of the pattern, derived from the peak amplitude of the Fourier spectrum.

• The Gaussian width of the peak in the Fourier spectrum σ′λ, which is a useful tool for deter-

mining the quality of the wavelength data.

• The standard deviation of the high-pass-filtered data sI/F , which is another means to evaluate

the quality of the wavelength data.

Note that the fractional amplitude of the brightness variations is given by AI/F /MI/F .
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Evaluating the quality of the wavelength measurements

While the high-pass filtering and re-scaling help produce robust wavelength estimates, we still must

cope with various sharp features, such as gap edges, plateau edges, ringlets, stars or cosmic rays,

that may affect the wavelength estimates. In some cases (such as our analysis of the observations

from Orbit 100), we deal with these issues by judiciously selecting the regions to analyze. However,

for the equinox observations covering a large radial range in the C ring, we wanted to be able

to exclude data affected by small-scale features automatically. This was accomplished using the

following criteria to evaluate the quality of the wavelength measurements:

• The re-scaled wavelength λ′, which should not deviate too much from unity.

• The re-scaled wavelength spread σ′λ. This is a measure of the reliability and precision of the

wavelength measurement, and should not be too large.

• The “excess variance” of the data, defined as (sI/F − AI/F /
√

2)/AI/F , where sI/F is the

standard deviation of the de-trended radial profile and AI/F is the estimated amplitude of

the periodic brightness variations. This is a measure of the strength of any non-sinusoidal

features in the data, and should not be too large.

Figure S1 shows histograms of these parameters for wavelength measurements derived from

Fourier analyses of 500-km wide regions of the radial scans derived from the various equinox ob-

servations. Based in part on inspection of these histograms, we chose to exclude all data with λ′

less than 0.95 or greater than 1.10, σ′λ greater than 0.09, and excess variance greater than unity.

We also deliberately exclude regions near the (non-circular) ringlets at 77,860, 87,500, 88,710 and

90,160 km. These cuts eliminate the outliers in the distribution and therefore allow us to produce

reliable plots of wavelength versus radius without selecting radial ranges explicitly by hand. The

data that pass these criteria are plotted in Fig. 2.
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Figure S1: Histograms of the various quality-of-fit parameters for wavelength measurements derived
from Fourier analyses of 500-km-wide regions of the radial scans derived from the Orbit 114, 116
and 117 sequences. The left-hand column shows the scaled wavelength values. The middle column
displays the scaled wavelength spread values σ′λ, and the right-hand column shows the data’s “excess
variance”, defined as (sI/F−AI/F /

√
2)/AI/F , where sI/F is the standard deviation of the de-trended

data, and AI/F is the amplitude of the periodic brightness variation. The dotted lines indicate the
limits on the scaled wavelengths and the upper bounds on the scaled wavelength spreads and excess
variances used to select reliable wavelength measurements.
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Supporting Text 2: Photometry of corrugated rings

To first order, a ring’s apparent surface brightness S is given by the standard single-scattering

formulae [23] for cases where the light source and observer are on the same side of the ring (reflected

light):

Sr = So
µ0

µ0 + µ
[1− e−τ/µeff ], (S3)

and where the light source and receiver are opposite sides of the ring (transmitted light):

St = So
µ0

µ0 − µ
[e−τ/µ0 − e−τ/µ]. (S4)

In these expressions, So is a factor that depends on the ring’s intrinsic albedo and phase function,

τ is the ring’s optical depth, µ and µ0 are the cosines of the incidence and emission angles, and

µeff = µµ0/(µ + µ0). A corrugation in the ring will cause the photometrically relevant direction

cosines µ and µ0 to vary with radius, and thereby generate brightness variations.

Consider a vertically corrugated ring in which the ring’s vertical displacement z is a simple

sinusoidal function of the radius r:

z = Az sin(kzr), (S5)

where Az and kz = 2π/λz are the amplitude and the wavenumber of the corrugation, respectively.

Also, imagine that Cassini observes this corrugated ring from an angle BC above the ring plane

and an azimuthal angle of φ′C relative to the local radial direction. Similarly, say that the sun

illuminates the rings from an angle B� above the rings and is located at an azimuth φ′�. In a

Cartesian coordinate system where the x axis is in the local radial direction, the y axis points

in the local azimuthal direction, and the z axis points vertically, the local surface normal to the

warped surface is:

n̂ =
ẑ− (Azkz cos kzr)x̂√
1 + (Azkz cos kzr)2

, (S6)

while the unit vectors aligned with the incident and emitted light rays from the corrugated surface

are:

î = cosB� cosφ′�x̂+ cosB� sinφ′�ŷ + sinB�ẑ (S7)

and

ê = cosBC cosφ′C x̂+ cosBC sinφ′C ŷ + sinBC ẑ. (S8)
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The relevant direction cosines can therefore be expressed as:

µ0 = |n̂ · î| = | sinB�|
∣∣∣∣∣1− cotB� cosφ′�(Azkz cos kzr)√

1 + (Azkz cos kzr)2

∣∣∣∣∣ (S9)

and

µ = |n̂ · ê| = | sinBC |
∣∣∣∣∣1− cotBC cosφ′C(Azkz cos kzr)√

1 + (Azkz cos kzr)2

∣∣∣∣∣ . (S10)

(Note that in the limit where corrugations are tiny (Az ' 0), then µ0 ' | sinB�| and µ ' | sinBC |,

as expected.)

Inserting these expressions for µ and µ0 directly into Eqs. S3 and S4 yields rather complicated

expressions for the surface brightness. It is therefore more useful to consider limiting cases appro-

priate to the images analyzed here, which were taken close to equinox. Thus |B�| is sufficiently

small that we can assume that µ0 << µ and that e−τ/µ0 ' 0. Furthermore, the images of the C

ring discussed here were either taken on the lit side of the rings, or at sufficiently high values of BC

that e−τ/µ can be approximated as unity (see Table S1). In these situations, the surface brightness

formulae may be approximated as:

Sr ' St ' SC = So
µ0

µ
. (S11)

Substituting in the above expressions for µ and µ0 yields:

SC = So

∣∣∣∣sinB�sinBC

∣∣∣∣
∣∣∣∣∣1− cotB� cosφ′�(Azkz cos kzr)
1− cotBC cosφ′C(Azkz cos kzr)

∣∣∣∣∣ . (S12)

The brightness variations should therefore have the same characteristic wavelength as the underlying

corrugation. Furthermore, the fractional brightness variations are (to first order in Azkz):

FC = Azkz| cotB� cosφ′� − cotBC cosφ′C |. (S13)

Note that since |B�| << |BC |, we expect the first term to dominate, so the fractional amplitude

of the brightness variations should be proportional to | cotB� cosφ′�|.

A sequence of images covering a wide range of longitudes in the C ring taken six months prior

to equinox (during Cassini Orbit 100) clearly demonstrates that the amplitude of the brightness

variations is proportional to | cosφ′�| (see Fig. S2 and Table S2). This provides strong evidence

that these periodic brightness variations are indeed due to a vertical corrugation.

Rough estimates of the corrugation amplitude can be obtained from the observed amplitudes

and wavelengths of the brightness variations using the above model (see Fig. 2a). However, it is
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Figure S2: Fractional amplitude of brightness variations between 79,900 and 80,100 km from Sat-
urn’s center versus longitude relative to the Sun φ′� derived from a series of observations taken
six months prior to equinox, when B� = −3.24◦ (see Table S2). The amplitude clearly scales like
| cosφ′�| as predicted for a vertical corrugation.

important to realize that this simple model does not include the effects of Saturn-shine or the ring’s

finite thickness, both of which are likely to be important given the low solar elevation angles and the

small corrugation amplitudes involved. Thus the derived estimates of the corrugation amplitude

Az may contain significant systematic errors. Indeed, the corrugation amplitudes derived from the

data in Fig. S2 differ from those derived from the Orbit 114 and 117 data shown in Fig. 2a by

almost a factor of two. More complex and detailed photometric modeling will therefore be needed

to obtain accurate and robust estimates of the corrugation amplitudes.
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Table S2: Orbit 100 measurements of brightness variations in the range 79,900-80,100 km (B� =
−3.24◦).

Image Name φobs − φSun Fractional Amplitude Wavelength (km)
N1610490312 +125◦ 0.0042 42.4
N1610490912 +115◦ 0.0034 42.4
N1610491512 +105◦ 0.0019 41.6
N1610492112 +95◦ 0.0006 38.7
N1610492712 +85◦ 0.0006 43.2
N1610493312 +75◦ 0.0018 42.7
N1610493912 +65◦ 0.0029 43.1
N1610494512 +55◦ 0.0038 42.7
N1610495112 +45◦ 0.0044 43.1
N1610495712 +35◦ 0.0047 42.8
N1610496312 +25◦ 0.0053 43.4
N1610496912 +15◦ 0.0055 43.2
N1610497512 +5◦ 0.0051 43.0
N1610498112 -5◦ 0.0054 43.0
N1610498712 -15◦ 0.0052 42.5
N1610499312 -25◦ 0.0043 41.4
N1610499912 -35◦ 0.0043 42.1
N1610500512 -45◦ 0.0039 42.7
N1610501112 - 55◦ 0.0027 41.8
N1610501712 -65◦ 0.0021 41.6
N1610502312 -75◦ 0.0011 39.8
N1610502912 -85◦ 0.0004 37.3
N1610503512 -95◦ 0.0008 44.1
N1610504112 -105◦ 0.0023 43.2
N1610504712 -115◦ 0.0036 43.0
N1610505312 -125◦ 0.0043 43.2
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Supporting Text 3: Corrugation wavelengths and the modulations

induced by a finite ring mass

Say a ring became inclined to Saturn’s equatorial plane at a time ti. At this time, all the ring-

particles’ orbits have their ascending nodes at the same longitude, which we can set to zero without

loss of generality. Thus Ω(r, ti) = 0 at all radii. However, if the ring is observed at a later time

tf , then the ring will not appear as a simple inclined sheet because the nodes of the particles’

orbits will regress at a radially-dependent rate Ω̇(r). If the particles’ orbits are sufficiently circular

that collisions between particles with different semi-major axes are unable to dissipate orbital

inclinations and flatten the ring, and if the nodal regression rate is determined entirely by Saturn’s

unchanging gravitational field (see below), then at time tf , the node location at any given radius

is simply Ω(r, tf ) = (tf − ti) ∗ Ω̇(r). In general, |Ω̇| is a monotonically decreasing function of radius

r [4], so the longitude of ascending node forms an increasingly tightly wound spiral as tf increases

(see Fig. 3). A radial cut through this structure will therefore show the vertical position of the ring

oscillating up and down as a function of radius, producing the desired corrugation. The wavelength

λz of this corrugation corresponds to a radial distance ∆r over which the node’s longitude has

cycled through 360◦ (i.e., ∆Ω = 2π), so the wavenumber kz = 2π/λz is given by the expression:

kz =
∣∣∣∣ ∂∂rΩ

∣∣∣∣ =
∣∣∣∣ ∂∂r

∫ tf

ti

Ω̇dt
∣∣∣∣ , (S14)

where Ω̇ is the nodal regression rate. If the ring were massless, the precession rate would be entirely

due to Saturn’s gravity field, given by the difference in the epicyclic frequencies:

Ω̇(r) = Ω̇o(r) = n− ν, (S15)

where n is the particle’s mean motion and ν is the vertical epicyclic frequency [4]. In this case, the

precession rate is a constant in time and the integral is trivial. Thus the wavenumber is just:

koz =

∣∣∣∣∣∂Ω̇o

∂r

∣∣∣∣∣ (tf − ti). (S16)

And, assuming that J2 dominates the nodal regression rates, this means koz ∼ r−9/2, and λoz =

2π/koz ∼ r9/2, as observed (see main text).

Now consider the case where the ring has a finite surface mass density σ that can vary with

radius. This will change the precession rates in the ring by a small amount, which can be computed
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using the dispersion relation for free vertical waves derived in [24, Eq. 84]:

(Ω̇− n)2 = ν2 + 2πGσ|kz|. (S17)

(Note we assume a m = 1 disturbance and change [24]’s notation to match our own). Solving this

equation for Ω̇, we find (taking the lower frequency solution):

Ω̇ = n− ν

√
1 +

2πGσ
ν2
|kz|. (S18)

If we now assume that 2πGσ|kz| << ν2, which is valid for the C ring corrugations throughout their

history, then we may approximate the above expression as:

Ω̇ = n− ν − πGσ

ν
|kz| = Ω̇o −

πGσ

ν
|kz|. (S19)

Again, assuming that the second term in the above expression is a small perturbation, then we

may approximate |kz| in this expression as simply |∂Ω̇o/∂r|(t− ti):

Ω̇ = Ω̇o −
πGσ

ν

∣∣∣∣∣∂Ω̇o

∂r

∣∣∣∣∣ (t− ti). (S20)

Inserting this expression into Eq. S14, we get

kz =

∣∣∣∣∣ ∂∂r
∫ tf

ti

[
Ω̇o −

πGσ

ν

∣∣∣∣∣∂Ω̇o

∂r

∣∣∣∣∣ (t− ti)
]
dt

∣∣∣∣∣ . (S21)

Now we may evaluate the integral, take the derivative, and pull out a factor koz (see Eq. S16) to

obtain the expression:

kz = koz

(
1− πG

2ν
∂σ

∂r
(tf − ti) +

πGσ

2ν2

∂ν

∂r
(tf − ti) +

πGσ

2ν

∣∣∣∣∣∂2Ω̇o/∂r
2

∂Ω̇o/∂r

∣∣∣∣∣ (tf − ti)
)
. (S22)

Thus the ring’s mass induces three correction terms to the wavenumber. We may simplify the last

two of these terms by recalling that, to first order, ν ∝ r−3/2 and Ω̇o ∝ r−7/2, so the derivatives in

these two terms can be evaluated and then the terms combined to yield:

kz = koz

(
1− πG

2ν
∂σ

∂r
(tf − ti) +

πG

2ν
3σ
r

(tf − ti)
)
. (S23)

In other words, the fractional variations in the corrugation wavenumber induced by the ring’s own
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gravity are:
δkz
kz

=
πG

2ν

(
−∂σ
∂r

+
3σ
r

)
(tf − ti). (S24)
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Supporting Text 4: Quantitative analysis of wavelength residuals

induced by the C-ring’s finite mass density

We can estimate the mass density that the C ring would need in order to produce the observed

wavenumber residuals if we assume the ring’s optical depth is strictly proportional to its surface

mass density, i.e., the opacity τ/σ is constant. In this case we can use the Voyager RSS optical depth

profile obtained from the Planetary Data System to compute the product of the opacity times the

predicted wavenumber residuals (τ/σ)δkz/kz and compare these numbers to the observed deviations

from the predicted trend. Since τ/σ may not be constant over regions containing dramatic varia-

tions in the optical depth [25], we restrict this analysis to the region between 78,000 km and 84,000

km, where the optical depth variations are relatively subtle. As shown in Fig. S3, the observed

wavenumber residuals are reasonably well correlated with the average values of (τRSS/σ)(δkz/kz)

derived from the optical-depth profile. This is consistent with τRSS/σ being approximately con-

stant. Fitting a line to these data, we can estimate the radio opacity in this part of the C ring to

be τRSS/σ = 0.034 ± 0.005 cm2/g (which would correspond to an optical opacity of 0.017 cm2/g)

and implies that the surface mass density of the middle C ring would need to be 3-6 g/cm2 in order

to produce the observed wavenumber residuals. These values are reasonably consistent with mass

density estimates derived from scattering of the Voyager radio signals [7] and several unidentified

density and/or bending waves in this region (assuming the number of arms in some of these waves

exceeds two) [8]. While this mass density is several times higher than published estimates derived

from identifiable waves in the C ring [26, 27, 8], both these features are found in the inner C ring,

where the background optical depth is somewhat lower than it is in the middle C ring. The mass

density required to produce the observed residuals in the corrugation’s wavenumber therefore does

not seem unreasonable. Furthermore, if we assume the C-ring ramp has an opacity similar to that

of the middle C-ring, this would account for the 1-2% residuals in the wavenumbers beyond 90,000

km seen in Fig. 2c.
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Figure S3: Plot of the observed wavenumber residuals δkz/kz versus the predicted (τRSS/σ)δkz/kz
assuming the mass density is directly proportional to the optical depth. The data come from the
region between 78,000 km and 84,000 km from Saturn center, and each point derives from an
analysis of a region 500 km across, with central values sampled every 100 km. The data points are
therefore correlated. The slope of a linear fit to these data implies an opacity τRSS/σ = 0.034±0.005
cm2/g (the error bar accounts for the oversampling in the data by rescaling the fit error by

√
5).
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Supporting Text 5: Estimates of C-ring corrugation wavelengths in

selected regions

Table S3: Selected C-ring corrugation wavelength estimates
Radius Orbit 116 Orbit 117 Orbit 116 Orbit 117 Equinox λaz Predicted δkz/k

b
z

(km) Image Image λz (km) λz (km) (km)
75250±200 N1628587518 N1630093134 30.92 30.79 30.88±0.10 +0.00113
78600±250 N1628588163 N1630094064 38.09 38.01 38.08±0.12 -0.00033
80200±250 N1628588163 N1630094529 41.75 41.87 41.85±0.13 -0.00194
80800±250 N1628588163 N1630094529 43.25 43.25 43.33±0.13 -0.00006
81300±250 N1628588163 N1630094529 44.86 44.77 44.86±0.13 -0.00014
81900±250 N1628588163 N1630094529 46.54 46.23 46.43±0.14 +0.00018
82400±250 N1628588812 N1630094994 47.70 47.79 47.79±0.14 +0.00085
82900±250 N1628688812 N1630094994 49.25 49.16 49.25±0.15 +0.00079
83700±250 N1628688812 N1630094994 51.23 51.28 51.30±0.15 -0.00018

Note: Orbit 114 data are not used in this analysis because the corrugation signal was smaller relative
to background brightness trends, leading to a larger scatter in the wavelength measurements.
a The estimate is the average of the Orbit 116 wavelength and the Orbit 117 wavelength rescaled
by a factor of 1+ (17/9450) to account for the evolution of the corrugation wavelength in the 17
days between the observations. The error bars are those based on the scatter of the differences
between these two numbers among the different measurements.
b Predicted δkz/kz is computed assuming a radio opacity of 0.034 cm2/g, see SOM text 4.
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Supporting Text 6: Shifting Saturn’s equator plane

In principle, changes in Saturn’s gravitational field could move the planet’s gravitational equator

plane out from under the rings, giving a wide region of the rings a finite inclination relative to the

planet. However, as discussed in detail below, many scenarios involving changes to the planet’s

spin axis or internal structure are unlikely to generate sufficiently large tilt angles over a sufficiently

short timescale, and therefore do not provide viable alternatives to the ring-tilting impact events

discussed in the main text.

Of course, the simplest way to change Saturn’s gravitational equator by an angle δθ is to tilt

the entire planet, but this is extremely unlikely to have occurred in the last 30 years. A change in

Saturn’s spin axis δθ corresponds to a change in the orientation of the planet’s angular momentum:

δLS = FSMSR
2
SωSδθ, (S25)

where FS is a factor of order unity, MS and RS are the planet’s mass and radius, and ωS is the

bulk spin rate. Assuming ωS ∼ 820◦/day (or a rotation period of ∼ 10.5 hours), then the required

angular momentum shift is δLS ∼ 1031 kg m2/s. Such a large change in angular momentum would

require an extreme event like a collision with an object with a mass of order 1018 kg. (and ∼100

km wide assuming it had a density comparable to water ice). Such events are very unlikely to

have occurred in the last century [17], so this particular scenario can be effectively ruled out as an

explanation for the corrugation.

Instead of tilting the entire planet, one may consider the possibility that a shift in the mass

distribution or flow fields inside Saturn changed the orientation of the planet’s gravitational equator.

Note that such shifts would need to happen relatively rapidly, or else the ring particles’ orbits will

just adiabatically track the motion of Saturn’s gravitational equator. Since the nodal regression

periods in the C ring are on the order of weeks, this means that the changes in the planet’s mass

distribution must occur in just a few days, so seasonal processes are unlikely drivers. Instead, we

will consider more rapid phenomena. For example, consider a parcel of material with mass MP

rising from close to the planets’s center to near its surface or sinking from the surface to near the

center. In either case, this motion could tilt Saturn’s equator by a factor of δθ ∼ FPMP /(J2MS),

where FP is a constant of order unity. To produce the required tilt δθ ∼ 10−7, MP would need to

be on the order of 10−8 the mass of the entire planet. Alternatively, Saturn’s equatorial jet could

have become misaligned relative to the rest of the planet. If the jet has a mass MJ and changes

its orientation by an angle δθJ , this will tilt the location of Saturn’s gravitational equator by an

angle δθ ∼ FJδθJMJ/(J2MS), where FJ is another constant of order unity. Again, to produce
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the observed corrugation, δθJMJ would need to be of order 10−8MS . Thus in both cases only a

relatively small part of the planet needs to shift to produce the required change in Saturn’s gravity

field. Furthermore, the large storms that appear occasionally at Saturn [28] could be the surface

manifestations of massive upflow of material. Recent observations even indicate that the overall

flow of Titan’s atmosphere is misaligned from the rotation axis of the solid satellite [29]. Sufficiently

large changes in Saturn’s internal structure therefore may have occurred in the last 30 years.

The major difficulty with the above scenarios is that these changes in the planet’s internal

structure alter Saturn’s moments of inertia, but being internal to the planet, cannot affect Saturn’s

total angular momentum. For a solid body, such a misalignment between the principal inertial

axes and the angular momentum always causes the body to wobble [30]. For a fluid planet, the

situation is a bit more complicated because initially different parts of the planet could potentially

circulate about different axes. Even so, there are only an extremely limited number of ways that

the mass and angular velocity distribution within the planet can be redistributed that would keep

the planet’s moment of inertia aligned with the angular momentum vector. These sorts of finely

tuned scenarios (for example, where the equatorial jet tilts in one direction and the rest of the

planet tilts in the opposite direction to compensate) appear rather implausible at present. If the

planet does wobble, then the body axes, and hence the gravitational equator plane, do not retain

a fixed orientation in inertial space, but instead regress at a rate ωw ∼ ωS [30] about the angular

momentum vector. Since the wobble frequency is not much slower than the ring’s nodal regression

rate, the ring particles’ orbits would not maintain a fixed inclination relative to the new equator

plane. Instead, the ring particles would move within a gravitational potential that on average

has the same equator plane as it did before the shift, but now includes a vertical component that

varies with time at the rate ωw. This time-variable part of the potential could drive changes in

ring particles’ inclinations and node positions like those found at vertical resonances with inclined

moons, but those effects will only be significant at specific locations in the rings where the epicyclic

frequencies resonate with ωw. These perturbations could therefore potentially drive bending waves

through the rings, but would not furnish the extensive inclined sheet that we appear to have had

in the D and C rings.

In conclusion, while we cannot yet rule out the possibility that a tilt in Saturn’s equator plane

was responsible for producing the corrugation in the C ring, we also cannot provide a plausible

scenario that would be consistent with the observed data. Thus at this point we must regard shifts

in Saturn’s gravitational field as unlikely explanations for the C-ring corrugation, at least until a

model can be developed where changes in Saturn’s internal structure do not lead to a wobbling

planet, or a suddenly wobbling gravitational field produces a simple inclined ring.
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Supporting Text 7: Calculation of DF for homogeneous debris

clouds

As discussed in the main text, the angular momentum imparted to the rings by a debris cloud with

mass mc crossing the rings at a speed vc can be expressed as:

Lc = DF τmcvcr, (S26)

where r is the orbital radius in the rings, τ is the normal optical depth of the rings, and DF is a

numerical factor that depends on the structure, speed and geometry of the incoming cloud. While

there are no direct observations of the debris cloud that we propose struck Saturn’s rings in 1983,

estimates of the likely range of values for DF can be obtained by considering idealized, spatially

homogeneous debris clouds composed of particles that are all much smaller than the typical ring

particle.

Assuming a spatially homogeneous cloud means that far from the planet the cloud has a constant

mass volume density ρ∞ and all the particles in the cloud are traveling at the same velocity

v∞ relative to Saturn. These assumptions not only simplify the calculation of DF , but are also

conservative because substructure in the cloud should increase the variations in the amount of

material striking different ring longitudes and thus produce a larger net tilt in the rings.

In order to further simplify the calculations, we also assume the storm particles are sufficiently

small compared to the ring particles that none of the debris from the collisions can escape the

Saturn system or avoid re-impact with the rings. If this condition is met, then any debris from

a collision within a moderate optical depth ring like the C ring will be swept up onto the ring

particles on time scales much shorter than the relevant relative precession periods, and the ring

will absorb all the incoming momenta of all the storm particles that strike ring material. (Collisions

among the ring particles should also ensure that the incoming momentum from the debris particles

is equitably distributed among the relevant ring particles.) While there is no direct evidence that

this constraint was satisfied during in the 1983 event, it is a reasonable assumption to make given

that typical C-ring particles are centimeters to meters in size [10], much larger than most of the

visible dust surrounding comets.

Finally, in order to avoid complications and inefficiencies associated with changes in the ring

particle’s orbital parameters during the ring-tilting event, we will assume here the ring is exposed

to a debris cloud for a total time t that is much less than the precession period of the rings (roughly

15 days in the C ring).

Figure S4 illustrates the geometry of this problem. All the particles in the debris cloud are
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Figure S4: Geometry of the debris cloud approaching Saturn and its ring
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assumed to approach Saturn from a great distance in the same direction and at the same velocity

v∞, but with a range of different impact parameters b and azimuth angles φ. The spin axis of

the planet, or equivalently the surface normal of Saturn’s rings n̂, is assumed to be tilted by an

angle θr relative to the incident flow (i.e., θr = 0 corresponds to face-on flow into the rings, and

θr = π/2 corresponds to edge-on flow). The coordinates of any given point in the rings are specified

by a radius r and longitude λ. Both λ and φ are measured from an axis that is given by the cross

product n̂× v∞.

While the ring is exposed to the debris cloud, a mass flux fm passes through the rings. In

fact, due to gravitational focusing, debris particles can in principle curve 180◦ around the planet

to strike both faces of the rings, so there are actually two mass fluxes across the rings. We will

here designate these fluxes f±m, where f+
m corresponds to particles that hit the side of the rings

that faces the incident flow far from the planet (what would be the lit side of the rings if the flow

were anti-aligned with the Sun), and f−m corresponds to the particles that strike the ring from

the opposite (“unlit”) face. Thus the total mass flux through the ring is the sum of these fluxes

f+
m + f−m.

Each of the two mass fluxes will apply forces on the small patch of ring. In the continuum limit,

the normal component of the force applied to a small area dA of the ring at a specified radius and

longitude is given by the stress:

dF±n
dA

= (1− T±)f±m(v± · n̂), (S27)

where T± is the transmission through the ring (i.e., the fraction of storm particles that pass through

the ring without hitting any ring particles), f±m is the mass flux through the ring, v± is the velocity

of the storm particles at the ring, and n̂ is the ring surface normal. Note that the transmission

factor can be written in terms of the ring’s normal optical depth τ :

1− T± = 1− e−τ/|v̂±·n̂|, (S28)

where v̂± is a unit vector aligned with the flow into the rings. For the C ring, which has a relatively

low τ ∼ 0.1, we can approximate:

1− T± ' τ

|v̂± · n̂|
. (S29)

So we can simplify the expression for the stress as:

dF±n
dA

= ±τv±f±m, (S30)
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where v± is simply the speed of the storm particles as they pass through the ring. This approxi-

mation will certainly break down if the impacting flux hits the rings at such a shallow angle that

τ/|v̂ · n̂| is not small. However we will ignore such complications here. If we assume that the storm

particles all have the same speed far from the planet, then according to energy conservation the

speed of the debris approaching the ring from both sides is equal, so we can set v+ = v− = vc and

compute the net stress on the rings as:

dFN
dA

= τvc(f+
m − f−m). (S31)

In general, the mass fluxes into the rings will vary with longitude λ, so as any given patch of ring

material orbits the planet, it will be exposed to varying fluxes and experience varying torques. In

order for these torques to cause a tilt in the rings, the average torque density over all ring longitudes

λ needs to be non-zero about some axis in the rings (i.e. it must have a component lying in the

ring plane). By symmetry, we expect the stress to be an odd function of λ. Thus the net torque

should have the form:
dT̄
dA

= τvcr
1

2π

∫
(f+
m − f−m) sinλdλ, (S32)

and, assuming the ring is exposed to the debris for a time t, the total angular momentum imparted

to the rings per unit area is

dLc
dA

= t
dT̄
dA

= τvcrt
1

2π

∫
(f+
m − f−m) sinλdλ. (S33)

If this is nonzero, the ring will become tilted along the axis that lies in the plane containing the

incident flow vector v∞ and the initial surface normal n̂.

We can also compute the average mass flux passing through the rings:

f̄ =
1

2π

∫
(f+
m + f−m)dλ. (S34)

During a time t, the total mass passing through this patch of rings can therefore be written as:

dmc

dA
=

t

2π

∫
(f+
m + f−m)dλ. (S35)

Combining Eqs. S33 and S35, we can obtain an expression analogous to Eq. S26:

dLc
dA

= DF τ
dmc

dA
vcr, (S36)
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where

DF =
∫

(f+
m − f−m) sinλdλ∫
(f+
m + f−m)dλ

(S37)

is an explicit expression for DF in terms of the integrated mass fluxes.

To evaluate the above expression for DF , we need to consider in more detail the trajectories of

the storm particles into the rings. Given the approximate spherical symmetry of the gravity field,

it is easiest to describe the storm-particle’s trajectories in terms of Saturn-centered spherical polar

coordinates r, θ (polar angle) and φ (azimuth angle). It is also simplest to align this coordinate

system such that the debris particles all approach the planet from θ ' 0, then for any given particle’s

trajectory, φ will remain constant and any trajectory can be expressed as r(θ). Note that along a

particles’ trajectory, θ may sweep more than 180◦ as the particle swings around the planet, so we

must allow θ to range from 0 to 2π along the particle’s trajectory. Assuming the surface normal of

the rings n̂ is tilted by an angle θr relative to the incident flow direction (see Figure S4) then the

θ, φ coordinates of a ring patch at longitude λ is given by :

cos θ = − sinλ sin θr (S38)

tanφ = tanλ cos θr. (S39)

The latter allows sinλ to be written as a function of φ:

sinλ =
sinφ√

sin2 φ sin2 θr + cos2 θr

. (S40)

Combined with Eq. S38 above, the polar angle θ at the ring can be expressed as a function of φ

cos θ =
− sinφ sin θr√

sin2 φ sin2 θr + cos2 θr

(S41)

sin θ =
cos θr√

sin2 φ sin2 θr + cos2 θr

. (S42)

A particle crossing the ring at a given r and λ can also be tracked back to a starting point far

from the planet with impact parameter b and azimuth φ. A patch of the ring between radii of r

and r + dr and longitudes of λ and λ+dλ therefore maps to a region of the incident flow between

impact parameters of b and b + db, and azimuths between φ and φ + dφ. In the steady state, the

total mass of debris passing through the ring patch in a given time must equal the integrated flux
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over the corresponding area in the incident flow. This means:

f±mrdrdλ = fm,∞b
±db±dφ, (S43)

where fm,∞ is the incident mass flux far from Saturn, which is simply ρ∞v∞, so we can express the

flux into the rings as:

f±m = ρ∞v∞
b±

r

db

dr

±dφ

dλ
. (S44)

This function, however, assumes that the particles are actually able to reach the ring. In practice,

the planet will block particles from reaching some parts of the ring. We can account for this

possibility by defining “blocking functions” K±. These functions equal zero if the storm particles

are blocked from reaching a given point on the rings and are one otherwise. Thus the fluxes are

actually:

f±m = ρ∞v∞K
± b
±

r

db

dr

±dφ

dλ
. (S45)

Inserting these expressions into Eq. S37, we find

DF =

∫ (
K+ b+

r
db
dr

+ −K− b−r
db
dr

−) sinφdφ√
sin2 φ sin2 θr+cos2 θr∫ (

K+ b+

r
db
dr

+
+K− b

−

r
db
dr

−)
dφ

. (S46)

Note that the leading factors of ρ∞ and v∞ drop out, as one should expect since DF is a unitless

quantity in Eqs. S26 and S36.

In order to make further progress, we need to evaluate expressions for b and db/dr as functions

of r and θ. Thus let us consider the trajectory of a single particle in the storm. Since the particles

far from Saturn have a finite speed v∞, these particles all follow hyperbolic trajectories of the form:

r =
p(1 + e)

1 + e cos(θ − θp)
, (S47)

where p and e > 1 are the pericenter distance and the eccentricity of the hyperbolic orbit, and θp

determines the location of the orbit’s periapse. Recall we are assuming that the storm particles all

approach the planet from the +z direction, so r must approach infinity as θ approaches 0. This

requires that cos θp = −1/e, so we can re-write the above equation as:

r =
p(1 + e)

1− cos θ +
√
e2 − 1 sin θ

. (S48)

We can now express the parameters p and e in terms of v∞ and b. Conservation of energy and
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angular momentum between infinity and pericenter requires that:

v∞b = vpp (S49)

and

v2
∞ = v2

p −
2GM
p

, (S50)

where vp is the velocity of the particle at periapse. Combining these two expressions to eliminate

vp, we obtain the following expression for p:

p = b

√(GM
v2
∞b

)2

+ 1− GM

v2
∞b

 . (S51)

We can determine e using the standard expression for v∞:

v∞ =

√
GM

−a
, (S52)

where −a = p/(e−1) is the orbit’s semi-major axis. Solving for e and inserting the above expression

for p, we get:

e =

√(
v2
∞b

GM

)2

+ 1. (S53)

Inserting these two expressions into Eq. S48, we find:

r =
v2
∞b

2

GM

[
1− cos θ +

v2
∞b

GM
sin θ

]−1

. (S54)

Solving this expression for b, we can find the original impact parameter of a storm particle that

hits the ring at a given radius r and angle θ:

b =
r

2

[√
sin2 θ +

4GM
v2
∞r

(1− cos θ) + sin θ

]
(S55)

and taking the derivative of this expression, we find:

db

dr
=

GM
v2∞r

(1− cos θ) + 1
2 sin2 θ + 1

2 sin θ
√

sin2 θ + 4GM
v2∞r

(1− cos θ)√
sin2 θ + 4GM

v2∞r
(1− cos θ)

. (S56)

Recalling the definition of circular orbital velocity vo =
√
GM/r, we can re-write these expressions

31



as:
b+

r
=

1
2

[√
sin2 θ +

4v2
o

v2
∞

(1− cos θ) + sin θ

]
(S57)

and

db+

dr
=

v2o
v2∞

(1− cos θ) + 1
2 sin2 θ + 1

2 sin θ
√

sin2 θ + 4v2o
v2∞

(1− cos θ)√
sin2 θ + 4v2o

v2∞
(1− cos θ)

. (S58)

Note that we have now explicitly identified these factors as applying to the particles that strike the

side of the ring facing the incoming debris cloud. For these functions, θ lies in the range between

0 and π. However, there is nothing to prevent the particles from following trajectories beyond

θ = π as they pass close to Saturn, so we can continue the trajectories around Saturn’s far side

and determine the factors appropriate for the storm particles striking the back side of the ring by

replacing θ with 2π − θ in the above expressions. This means cos θ → cos θ and sin θ → − sin θ, so

the resulting expressions for b− and db−/dr are

b−

r
=

1
2

[√
sin2 θ +

4v2
o

v2
∞

(1− cos θ)− sin θ

]
(S59)

and

db−

dr
=

v2o
v2∞

(1− cos θ) + 1
2 sin2 θ − 1

2 sin θ
√

sin2 θ + 4v2o
v2∞

(1− cos θ)√
sin2 θ + 4v2o

v2∞
(1− cos θ)

. (S60)

Now we need to determine the how blocking functions K± vary with r and θ. Obviously, for a

storm particle to be blocked by the planet, the periapse distance p must be less than the planet’s

radius Rs. From Eq. S51 we can derive an expression for b as a function of p:

b = p

√
1 +

2GM
v2
∞p

(S61)

Thus the critical impact parameter:

bc = Rs

√
1 +

2GM
v2
∞Rs

(S62)

such that, if b < bc, then the particles will impact the planet, and if b > bc, then the particles will

miss the planet.

However just because the particles eventually impact the planet does not mean they could not

hit the rings first. Particles with b < bc will still be able to reach the rings if they encounter the
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rings at an angle θ < θp. Note that θp must be between π/2 and π. Thus a particle with b < bc

will always impact the planet before it can reach the back face of the rings. By contrast, particles

approaching the front face of the rings will only be blocked when θ > θp, or, equivalently (using

Eq. S53) when:

cos θ < cos θp = −1
e

= −

( v2
∞b

GM

)2

+ 1

−1/2

. (S63)

Thus the blocking functions are:

K+ = Θ(b+ − bc) + Θ(bc − b+)Θ(cos θ − cos θp) (S64)

and

K− = Θ(b− − bc), (S65)

where Θ(x) are Heaviside step functions for argument x.

Inserting the above expressions for b±/r, db±/dr and K± into Eq. S46 for DF clearly yields

rather complex expressions. However, these integrals can be evaluated numerically to yield Fig. S5,

which shows DF as a function of tilt angle for several different values of v∞ and a single radius in the

rings. These curves have unusual shapes that arise because two different mechanisms can generate

the asymmetries in the integrated flux needed to produce the observed tilt. On the one hand, the

planet can simply block debris from reaching certain longitudes. On the other hand, gravitational

focusing by the planet can deliver more material to certain longitudes than others. The competition

between these two mechanisms leads to the complex shapes of these curves. Nevertheless, it is clear

that for a broad range of conditions, DF is of order 10%.
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Figure S5: Plot of the factor DF at a radius of 80, 000 km in Saturn’s rings as a function of the
ring tilt angle θr for several different values of v∞.
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Supporting Text 8: Break-up of Comets in the Saturn System

As alternatives to the scenario described in the main text, we have considered the possibility that a

comet was catastrophically disrupted during its passage through the Saturn system, and the debris

from that event rained down on the ring before it could again escape into interplanetary space.

Three processes may disrupt a comet in the Saturn system: (1) tidal stresses during a close pass by

the planet, (2) high-velocity collisions with objects in orbit around Saturn, and (3) excessive ram

pressures in the upper layers of Saturn’s atmosphere.

In practice, the first two options seem unlikely because in both these cases it is difficult to deliver

the debris appropriately into the C ring along purely ballistic trajectories. Tidal disruption tends

to disperse material almost entirely along the original projectile’s orbit track [11]. Hence, unless

some other process further disperses the material, all the resulting debris would pass through the

rings at approximately the same radius and longitude, and not rain down across the entire region

now covered by the corrugation (dispersion by solar radiation pressure, like that proposed for the

debris striking Jupiter’s rings [3], will not be effective on the short time scales of a single periapse

passage). On, the other hand, the only place in the Saturn system that the comet is likely encounter

an object that would cause it to shatter is within the main rings. However, no hyperbolic trajectory

exists that can intersect the rings twice –once between 75,000 and 92,000 km– while missing the

planet (at 60,300 km) in between. Thus the debris from the first ring passage cannot reach the C

ring to produce the corrugation.

With the first two options eliminated as viable scenarios, the only remaining possibility is that

the comet broke apart as it passed through the upper layers of Saturn’s atmosphere. In this scenario,

the debris must pass sufficiently deeply through the atmosphere to be disrupted but not so deep

that it cannot again emerge from the atmosphere. The atmosphere will cause the object to fragment

when the ram pressure exceeds the material strength of the object [31, 32]. Estimates of the tensile

strength of comet nuclei generally lie in the range of ∼ 102−104 N/m2 [33], while the ram pressure

on an object moving through an atmosphere is given by the expression: Pram = namav
2 where na

is the local atmospheric number density, ma is the average molecular mass, and v is the velocity of

the object through the atmosphere. Assuming ma ∼ 2 amu and v ∼ 40 km/s, we can estimate that

a comet will fragment in Saturn’s atmosphere when the number density exceeds 1013 − 1015/cm3.

Such number densities are found between 500 and 1000 km above the 1-bar level [34].

In order to reach the outer parts of the C ring, the debris must leave the atmosphere with a

speed of ∼ 30 km/s. The deceleration of a piece of debris of radius rd, mass md and mass density
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ρd ∼ 1000 kg/m3 within the atmosphere can be derived from the ram pressure [35, 32]:

dv

dt
= −Pram

md
πr2d = −3mav

2

4ρrd
na. (S66)

Integrating this expression over the entire track through the atmosphere (which we may approxi-

mate as straight), we find the final velocity of the debris is:

vf = vie
−3maNa/4ρrd , (S67)

where vi is the initial velocity of the debris and Na is the total column density of molecules along

the path. If we assume vi ∼ 40 km/s, then in order for vf to exceed 30 km/s, Na needs to be less

than ∼ 1019/cm2 ∗ (rd/1µm). The column density Na will only exceed 1019/cm2 when the path

reaches deeper than ∼300 km above the 1-bar level [34], so there is a few-hundred kilometer wide

region where a comet could break up and even micron-sized grains could potentially escape from

the planet and make it to the outer C ring. Furthermore, if the debris consists of particles with a

range of sizes, they will emerge from the planet with a range of velocities, which will help disperse

the material before it encounters the rings.

The rate of such Saturn-grazing impacts can be estimated from the present-day flux of the

required ∼1 km-sized objects in the outer solar system. Numerical simulations show that the

impact flux into Saturn is ∼0.4 times the impact flux into Jupiter [16, 17]. As discussed in the

main text, the observation of a fresh impact scar on Jupiter in 2009 [37] may imply that the

impact rate of roughly 1-km-sized objects into Jupiter could be as high as 10 per century [21].

If this higher rate is correct, then we expect roughly four such objects would strike Saturn every

century. Of course, the impactor needs to have a rather specific trajectory in order to both skim

through the atmosphere and then collide with the rings. The few-hundred-kilometer-wide shell in

Saturn’s atmosphere the comet needs to pass through has about 1% the cross sectional area of

the entire planet, and only about 10% of the quasi-linear trajectories passing through this region

would then pass through the C ring. The rate of Saturn-grazing C-ring impactors should therefore

be about 103 times lower than the impact rate into Saturn. If we expect four 1-km-wide comets

to collide with Saturn per century then a collision with a geometry that could yield the desired

ring-impacting debris cloud would only occur about every 25,000 years. This mechanism therefore

generates suitable debris clouds less frequently than the temporarily captured objects described in

the main text, and there is only a ∼0.1% chance that such an event has occurred in the last 30

years.
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